
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000ON THE USING OF ARTIFICIAL NEURAL NETWORKS INAUTOMATIC METALOGRAPHIC ANALYSISIOAN ILEAN�A AND REMUS JOLDEAbstra
t. This paper presents several 
onsiderations and preliminary re-sults in implementing an automati
 metallographi
 analysis system using ar-ti�
ial neural networks. The opti
al mi
ros
ope images of spe
ial preparedsamples of metals and alloys may be 
lassi�ed by a neural network trainedwith standards. We present some of the results and problems we en
oun-tered in our work. Our 
ontribution mainly 
onsist in analysis system design,images prepro
essing and network training.Keywords: metallographi
 analysis, pattern re
ognition, arti�
ial neu-ral network, prepro
essing. 1. Introdu
tionOne of the important investigation methods used by the physi
al metallurgy isopti
al metallography, whi
h also 
on
erns mi
rographi
 analysis using the opti
almi
ros
ope (magnifying rate up to 2000:1). The images obtained by mi
ros
opegive dire
t indi
ations on the 
hemi
al and stru
tural 
omposition, also indire
tlyinforming on the physi
al and me
hani
al properties of the metalli
 alloys. One
an as well get data on the stru
tural 
hanges o

urred under the in
uen
e ofvarious me
hani
al pro
essing previously applied to the alloy.When 
onsidering pure metals or monophasi
 alloys, mi
rographi
 analysis al-lows observing the size and the orientation of the 
rystalline grains, the parti
u-larities of the dendriti
 stru
ture, even the repartition of the dislo
ations. As forpolyphasi
 alloys, whi
h present more 
omplex stru
tural aspe
ts, one 
an deter-mine the nature, quantity, shape, size and repartition of the various phases in thestru
ture.Mi
ros
opi
 analysis is an important information sour
e. Its eÆ
ien
y is partlyin
uen
ed by the pla
e where the samples are 
olle
ted and the 
olle
ting manner,as well as the skills and experien
e of the spe
ialist performing the analysis. Figure1 presents images of samples taken from di�erent materials.It is to be noti
ed that the information is \
oded" in graphi
al patterns-images(using gray tones or 
olors) that have to be interpreted by the person that does2000 Mathemati
s Subje
t Classi�
ation. 68T10.1998 CR Categories and Des
riptors. I.5.1 [Computing Methodologies℄: PatternRe
ogniton { Models. 101
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Figure 1. Metalli
 surfa
es viewed through opti
al mi
ros
ope:a) steel with 0.08{0.15% C, rolled at warm; b) steel with 0.16{0.25% C normalized at 880degC; 
) bronze with biphasi
 
astaluminium. Sour
e: [8℄.the analysis. This operation is diÆ
ult, demanding a lot of time and experien
e.Therefore a very useful improvement would 
onsist in the automation of theseanalysis by 
reating a system that is able to 
lassify and re
ognize, possibly in realtime, in the images obtained by mi
ros
ope stru
tures, 
aws, previous pro
essing.2. Automati
 Metallographi
 Analysis SystemOur team, in 
ollaboration with the industrial partner \SC SATURN SA"AlbaIulia, has started a proje
t 
on
erning the implementation of an automati
 sys-tem for metallographi
 analysis (�g. 2), where the re
ognition and 
lassi�
ationfun
tions are performed by a neural network.

Figure 2. Automati
 metallographi
 analysis systemDuring the 
urrent stage of the proje
t, our attention has been fo
used on theinterpretation and 
lassi�
ation of the material samples images.The interpretation of mi
rographi
 images is part of the larger area of pattern
lassifying and re
ognition. As it is shown by the example in �gure 1, identi-fying rather simple patterns 
an require the interpretation of mega-dimensionaldatabases, with 
ompli
ated stru
ture and unknown topologi
al relations. In gen-eral there aren't known possible transformations that 
ould simplify this stru
tureand a multilevel hierar
hy system of feature extra
tion be
omes ne
essary.Another general issue in model based pattern re
ognition 
onsists in 
orre
t in-put image identifying, even when the image is a geometri
ally transformed version
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ognition 
an be a
hieved using, instead of the ini-tial pattern, the result of a mathemati
al transformation, that ne
essarily assuresa 
ertain invarian
e (Fourier transform, Mellin transform et
.). Unfortunately thismathemati
al pattern prepro
essing implies a great 
omputing e�ort in ele
troni
(hardware and software) implementations. Opti
al and optoele
troni
 systems 
anbypass this drawba
k due to the parallel 
omputing.In our 
ase, for metallographi
 opti
al analysis, we 
an assume that the pro-totype (standard) images and those to be re
ognized and interpreted, will havethe same s
ale fa
tor, so that the system must be only translation and rotationinvariant.We intend to use for image interpretation a software simulated arti�
ial neuralnetwork (ANN), therefore we have evaluated several ANN 
ategories and severalprepro
essing te
hniques, in order to �nd an a

eptable solution. The followingse
tion present some preliminary results of our work.3. Neural Network ModelIn our work we used two kinds of arti�
ial neural ntworks: a re
urrent networkand then a feed forward neural network, trained with ba
kpropagation method.The pro
essing unit (arti�
ial neuron) used in the two 
ases is displayed in �gure3. In this �gure x1; x2; : : : ; xn are neuron inputs, w1; w2; : : : ; wn are the inter
on-ne
tion weights, � is the neuron threshold, f() is a
tivation fun
tion and y isneuron output.We note: x = [x1; x2; : : : ; xn℄T the input ve
tor, w = [w1; w2; : : : ; wn℄T synapti
weights ve
tor,(1) net =Xi wixi = wTx

Figure 3. The pro
essing unit used



104 IOAN ILEAN�A AND REMUS JOLDEThen the neuro output may be writen:(2) y = f(net� �) = f(wTx� �)A) For the re
urrent neural network, the model is presented in �gure 4. Let's
onsider the single-layer neural network built from totally 
onne
ted neurons,whose states are given by xi 2 �1; 1, i = 1; 2; : : : n, (�g.4).

Figure 4. The re
urrent network modelWe denote: W = [wij : 1 � i; j � n℄ the weights matrix, � = [�1; : : : ; �n℄T 2 Rnthe thresholds ve
tor, x(t) = [x1(t); : : : ; xn(t)℄T 2 �1; 1n the network state ve
tor.The evolution in time of the network is des
ribed by the following dynami
equation:(3) xI (t+ 1) = sgn24 nXj=1wijxj(t)� �i35 ; i = 1; 2; : : : ; nwith the 
onvention:(4) nXj=1 wijxj(t)� �i = 0; xi(t+ 1) = xi(t)where:(5) sgn(x) = � 1 if x > 0�1 if x < 0Notes:(1) We may 
onsider networks where the neurons' state is not bipolar: -1,1,but binary: 0,1. A relation between the two representations 
an be easilyfound.(2) In many situations we may give up the neural network threshold zi andwe'll do this whenever it doesn't a�e
t the results.
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iative memory des
ribed in this paper, the weight matrixW will be built as follows: given a set of n-dimensional prototype ve
tors X =[�1; �2; : : : ; �p℄, we establish the synapti
 matrix W and the threshold ve
tor �, sothat the prototype ve
tors be
ome stable points for the asso
iative memory, i.e.:(6) �i = sgn(W�i � �); i = 1; 2; : : : ; pwhere the sgn fun
tion is applied to ea
h 
omponent of the argument.Several 
lassi
al rules for determining the weights matrix proved su

essful intime: � the `Hebb' rule� the proje
tion rule� the delta proje
tion rule (the gradient method)B) In the se
ond approa
h we used a feed forward network with three layers,trained with ba
k propagation method. The number of neurons in the �rst layeris determined by the dimension of the input image. The number of neurons in theoutput layer depends on the number of 
lasses in whi
h the input images must be
lassi�ed. In the hidden layer we tried several 
on�guration and the �nal networkused the best stru
ture. For the neurons in hidden and output layer we used asa
tivation fun
tion the sigmoid fun
tion.4. Preliminary ResultsBe
ause of our industrial partner's interest in the metallographi
 analysis of 
astiron (its �eld of produ
tion) samples, we've studied the synthesis of an ANN that
ould allow the re
ognition and 
lassi�
ation of real samples reported to standards.Some standards used for these experiments are shown in �gures 5 and 6.
Figure 5. Standard stru
tures of 
ast iro with nodule graphite:a) below 3%; b) 3{5%; 
) 5{8%; d) 8{12%; e) over 12%. Sour
e:[8℄Using samples taken from these standard images, we investigated the trainingmethods for various types of ANN in order to perform mi
rographi
 images 
las-si�
ation. The images used as prototypes have been prepro
essed as to enhan
etheir spe
i�
 features (�g. 7).
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Figure 6. Stabdards for gray 
ast iron with lamellar graphite: a)isolated separations; b) agglomerations with low isolation degree;
) pun
tiform graphite net; d) lamellar graphite net. Sour
e: [8℄

Figure 7. Some prepro
essed prototypesA.One �rst tested ANN 
ategory was a re
urrent network used to implement anasso
iative memory. We used as prototypes 32�32 pixels images randomly sele
tedfrom the standard images. Rotation and translation invarian
e has been obtainedby storing several images of the same prototype, randomly transformed [6℄. Theasso
iative memory thus built has been veri�ed with a great number of test images.The statisti
al results were very good in what noise 
ontamination is 
on
erned(up to 50% noise 
ontamination). As for geometri
al transforms invarian
e, theresults were rather unsatisfa
tory; the 
orre
t re
ognition rate would be from 40%up to no more than 80%, depending on the prototype image.B. A se
ond simulation 
ategory 
onsisted in the setup of a feed-forward ANN,trained with the same input data used in the previous approa
h. We investigatedseveral feed-forward topologies, with 2 and 3 layers. Within the limits of availableinput data, the 3 layers stru
ture provided a

eptable results. We fa
ed somediÆ
ulties when using 32�32 pixels images, therefore we had to work with 16�16pixels images.C. In order to obtain rotation and translation invarian
e, we also tried to useinvariant moments, as presented in [1℄. The diÆ
ulties we en
ountered in thisapproa
h are 
onne
ted to the large 
omputation volume and to the ne
essity
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riptors to be di�erent enough as to separate the di�erent standard
lasses. For the 5 standards 
lasses in �g. 5 and the 4 standard 
lasses in �g.6, the above mentioned des
riptors are shown in �g. 8 and 9, respe
tively. Onemay noti
e a rather insigni�
ant di�eren
e, whi
h leads to diÆ
ulties and errorsin data interpretation. We 
urrently work on �nding more eÆ
ient prepro
essing,that 
ould lead to stronger dis
rimination among invariant des
riptors of di�erent
lasses.

Figure 8. Moment invariants for images in �g. 35. Con
lusionsThe implementation of an automati
 system for opti
al metallographi
 imagesanalysis is an important obje
tive for the laboratories where su
h tasks are per-formed. Moreover, su
h a system on
e implemented, it 
ould be used in 
awanalysis and even in biologi
al tissue analysis.This paper has presented some preliminary results obtained by our team inusing ANN to perform the re
ognition and 
lassi�
ation of opti
al mi
rographi
images of material samples, as reported to standards.The main diÆ
ulties we had to over
ome were the following:� The ne
essity of using relatively large images (over 32 � 32 pixels) inorder to extra
t signi�
ant features out of the sample stru
ture; 
onse-quently troubles in training and simulating the ANN were 
onne
ted tothe required memory spa
e, as well as to the 
omputation speed.
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Figure 9. Moment invariants for images in �g. 4� The ne
essity of re
ognition immunity, regarding the noise 
ontamina-tion of the images, and also their various geometri
al transforms.We investigated several methods to build a system that would a

omplish theserequirements and we may 
on
lude that ANN do o�er a realist perspe
tive, ifsolving the above mentioned diÆ
ulties. The solutions we 
urrently have in viewpartly refer to using a faster and more powerful 
omputer for network trainingand simulation, and partly 
onsist in using more eÆ
ient prepro
essing methodsfor the input images. Referen
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