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t. The paper addresses the issue of s
ienti�
 data visualization pro-
ess validation. Three fundamental 
onditions for s
ienti�
 visualization areintrodu
ed; one of them { the Pre
ision Condition { is dis
ussed in detail.The theory allows a better formal des
ription of the s
ienti�
 visualizationpro
ess.Index terms { s
ienti�
 visualization, pre
ision 
lasses, and s
ienti�
visualization pro
ess validation1. Introdu
tionS
ienti�
 Visualization is a 
omputational pro
ess that maps s
ienti�
 dataand its attributes into visual obje
ts [1℄. S
ienti�
 data 
an be obtained in manydi�erent ways, e.g. by running a simulation or by a DAQ pro
ess. Usually, s
i-enti�
 data obje
ts are �nite representations of 
omplex mathemati
al obje
ts.We note by O the set of su
h obje
ts, o 2 O. During the visualization pro
ess,initial data obje
ts, o, are pro
essed through di�erent transformation fun
tionsMat(o) = o0, into a new set o0 2 O0. Obje
ts o0 are then mapped Map(o0) = ginto a set of virtual geometri
al obje
ts g 2 G, through a set of graphi
alprimitives. Obje
ts g usually are n-dimensional (nD), animated (t) and intera
-tive.De�nition 1 A group of virtual geometri
al obje
ts, logi
ally inter
onne
ted, is
alled a logi
al visualization of that s
ene.Ideal geometri
al obje
ts g, nD, animated (t) and intera
tive are usually repre-sented Rep(g) = g0 , g0 2 G0, on real 2D s
reens.De�nition 2 The proje
tion of the logi
al visualization of a s
ene on a s
reenis 
alled a physi
al visualization of that s
ene.The fun
tions Rep(g) = g0 implement 
lassi
al graphi
al operations su
h as
omposition of the s
ene, volume generation, isosurfa
e generation, simulation oftransparen
y, re
e
tivity and lighting 
onditions, nD ! 2D proje
tion, 
lipping,2000 Mathemati
s Subje
t Classi�
ation. 65D18.1998 CR Categories and Des
riptors. I.3.6 [Computing Methodologies℄: ComputerGraphi
s { Methodology and Te
hniques. 3



4 DUMITRU R�ADOIU AND ADRIAN ROMANhidden surfa
e removal, shading, animation (t), setting user intera
tivity (zoom,rotate, translate, pan, et
), et
.De�nition 3. By intera
tivity we understand the attributes of visual obje
ts(logi
al and/or physi
al) whose setting allows nD ! 2D proje
tion (zoom, rotate,translate, pan, et
), animation 
ontrol (t), 
ontrol of the obje
ts 
omposing thes
ene and 
ontrol of the s
ene as a 
omposite obje
t.The s
ienti�
 visualization pro
ess is des
ribed by the V is(o) = g0, V is(o) =Rep(Map(Mat(o))) = g0 fun
tion. The pro
ess is des
ribed in �gure 1.

Figure 1. Des
ription of the s
ienti�
 visualisation pro
ess2. Fundamental 
onditions of s
ientifi
 visualizationThere are many requirements 
on
erning a 
ertain s
ienti�
 visualization pro-
ess. We 
onsider three of them to be fundamental. The �rst one is the dis-tin
tiveness 
ondition. This 
ondition (although very weak) enables users todistinguish between di�erent data obje
ts based on their display. The 
ondition isne
essary as one 
an imagine many visualization fun
tions that generate imageswith no use, whi
h reveal none of the data obje
ts 
hara
teristi
s/attributes.The se
ond 
ondition is the expressiveness 
ondition. This 
ondition assuresthat the attributes of the visual obje
t represent the attributes of the input dataset.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 5The third one is the pre
ision 
ondition. This 
ondition insures that theorder among data obje
ts is preserved among visual obje
ts.The distin
tiveness 
ondition. Di�erent input data (di�erent mathemati
alobje
ts) are represented by di�erent visual obje
ts.This 
ondition 
an be stated:o1 6= o2 ) V is(o1) 6= V is(o2)) Rep(Map(Mat(o1))) 6= Rep(Map(Mat(o2)))) g10 6= g20; for any o1; o2 2 O; g10; g20 2 G0The interpretation of this 
ondition is that V is(), Mat(), Map() and Rep()fun
tions are inje
tive.The expressiveness 
ondition. The visual obje
ts express all and only the
hara
teristi
s of the input data.It results that the visualization fun
tion should be one to one.The two 
onditions are ne
essary but not suÆ
ient. Another 
ondition is neededto establish an order relation both among data and visual obje
ts. This 
ondition
ould be seen as a pre
ision relation.The pre
ision 
ondition. For any obje
ts o1; o2 2 O su
h that o1 is \morepre
ise" than o2 we have that V is(o1) is \more pre
ise" than V is(o2), with V is(o1),V is(o2) 2 G0.The pre
ision 
ondition adds something new. If the visualization fun
tion iswell de�ned and the input data obje
ts are stri
tly ordered, the visual obje
ts 
anbe ordered by their \pre
ision".The �rst two 
onditions introdu
e 
riteria of validation and 
ontrol of the visu-alization pro
ess. The visualization fun
tion V is() ful�lling these 
riteria resultsin a s
ienti�
 visualization. The third 
ondition allows further developments byde�ning mathemati
al operations on the given ordering.3. Equivalen
e 
lassesWe introdu
e another approa
h to des
ribe formally the visualization pro
ess.There are examples that prove that the above 
onditions are too \tight". Be
ausewe display the visual obje
ts on real s
reens (i.e. with �nite resolution) it is possiblethat two or more obje
ts o to be mapped into identi
al visual obje
ts. Thereforea more relaxed approa
h to formally des
ribe the visualization pro
ess of s
ienti�
data is ne
essary. In order to des
ribe the new approa
h some mathemati
al
on
epts are to be presented.We have already introdu
ed the basi
 sets denoted by O, O0, G and G0. O repre-sents the set of the so 
alled \data obje
ts". O0 is the set of the elements obtainedfrom \data obje
ts" through di�erent transformation fun
tions. G represents theset of virtual geometri
al obje
ts, nD. Virtual geometri
al obje
ts be
ome realgeometri
al obje
ts (G0) by proje
tion/display (e.g. on 2D s
reens).The visualization fun
tion 
an be des
ribed as the mapping of the set O intoG0.



6 DUMITRU R�ADOIU AND ADRIAN ROMANDe�nition 4. Let O and G0 be two sets and v be a binary relation. We 
allv a mapping of O in G0 if for ea
h element o 2 O, there is exa
tly one elementg0 2 G0 that satis�es ho; g0i 2 v.The element g0 is 
alled the image of the element o through v, and o is 
alledthe inverse image of g0 through v. For the mapping v we introdu
e the notationv : o ! g0 and the fun
tional notation v(o) = g0. We 
an write that v : O ! G0to show that v = V is() is a mapping of O into G0. O is 
alled the domain of v. Ifthe inverse relation is also a mapping, we will denote it by v�1.From the set theory we know that a partition � of a set O is a subset of P (O)(the power set of O) not 
ontaining �, satisfying the following property: everyo 2 O is an element of exa
tly one A 2 �. The elements of a partition are 
alledblo
ks. If � and �0 are partitions of O, we will write � � �0 if for every blo
k B 2 �there exists a blo
k C 2 �0 su
h that B � C.We use the fundamental theorem of the equivalen
e relations in order to under-line some important aspe
ts:Theorem 1. [10℄ (a) Let � be a partition of O and de�ne a binary relation �pon O by o1�o2 if and only if o1 and o2 are in the same blo
k of the partition �.Then �� is an equivalen
e relation on O.(b) If � is an equivalen
e relation over a set O, then there exists a partition ��over O su
h that o1; o2 2 O are elements of the same blo
 of �� if and only if o1�o2.(
) If � � �0, then �� � ��0 . If � � �0, then �� � �0�.Theorem 1(a) shows that a binary relation is an equivalen
e relation if it \
on-serves" the initial partitioning over the given set. Theorem 1(b) states that apartitioning of a set 
an be obtained starting from a given equivalen
e relation �.Theorem 1(
) introdu
es an order relation.The following remark has to be stated:Remark 1. If more than one element o is mapped into the same visual obje
tg0, then the set O 
an be partitioned into non-empty subsets that in
lude all the oelements mapped into the same visual obje
t.Remark 1 introdu
es the idea of equivalen
e relations as the main tool in orderto obtain a more realisti
 des
ription of the visualization pro
ess. A natural equiv-alen
e relation �v 
an be de�ned over O. The relation �v is 
alled the equivalen
erelation indu
ed by v over the set of obje
ts O and it partitions the set O intosubsets of obje
ts sharing the same visualization (see theorem 1). We denote by�v the indu
ed partitioning over O.The proposed model is based on the 
on
ept of equivalen
e 
lasses.De�nition 5. [9℄ The equivalen
e 
lass of an element o 2 O, indu
ed by theequivalen
e relation �, is the subset of those elements from O that are in the relation� with o.We denote by [o℄� the equivalen
e 
lass of o 2 O, indu
ed by the equivalen
erelation �. When the equivalen
e relation is impli
it, we use the notation [o℄.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 7Further, another theorem is introdu
ed in order for us to be able to formulatethe new visualization 
onditions.Theorem 2. [10℄ Any mapping v : O ! G0 
an de represented as a produ
tof two mappings ' and �, v = '�, where ' is onto and � is one-to-one; if � isthe equivalen
e relation indu
ed by v, then ' = '� : O ! Oj� and � : Oj� ! G0,where Oj� is the set of all equivalen
e 
lasses indu
ed by � (Figure 2).

Figure 2. S
hemati
 representation for Theorem 2So, if we have a well-de�ned equivalen
e relation over O, then we 
an 
onsiderinstead of v a produ
t of two mappings (Figure 3). This approa
h has the advan-tage that it redu
es the set of obje
ts O to the set of 
lasses Oj�. Order relations
an be stated over the set of 
lasses.The presented theory is exempli�ed below. We 
onsider two data sets havingthe same format. The equivalen
e relation � imposes that the attributes of theobje
ts (element by element) have values between:(ai)1; (ai)2 2 (ai ��ai; ai +�ai);where (ai)1 are the attributes of the �rst obje
t, and (ai)2 those of the se
ondobje
t. If the resolution of the s
reen is small enough we observe that, for thesame visualization system, the two di�erent data sets will be represented on thes
reen by the same visual obje
t.



8 DUMITRU R�ADOIU AND ADRIAN ROMAN

Figure 3. Des
ription of the visualization pro
ess using equiva-len
e 
lassesRemark 2. Assuming that the equivalen
e relations �0, �1, . . . , �n�1, de�nedover the same set exist, we 
on
lude that the partitions �o, �1, . . . , �n�1 alsoexist.Theorem 1(
) and remark 2 introdu
e an order relation between the equiva-len
e 
lasses, relation that 
an be regarded as \pre
ision" relation. For the aboveexample, we 
onsider another equivalen
e relation �0 imposing that the attributesof the obje
ts (element by element) have values between:(ai0)1; (a0i)2 2 (a0i ��a0i; a0i +�a0i);where (a0i)1 are the attributes of the �rst obje
t, and (a0i)2 those of the se
ondobje
t, with �ai � �a0i. In this 
ase � � �0, where � and �0 represent thepartitions 
orresponding to the equivalen
e relations � and �0. From theorem 1.3it results that � � �0.4. The pre
ision relation over the s
ientifi
 visualization pro
essAn order relation is ne
essary over the visualization pro
ess. We have intro-du
ed the \pre
ision relation" as a fundamental 
ondition of the s
ienti�
 visual-ization. Now, the equivalen
e 
lasses allow a further development of the idea. Weare espe
ially interested in the O (or Oj�), G and G0 sets.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 9De�nition 6. A 
lass of obje
ts, de�ned by the equivalen
e relation � (seetheorem 1), is \more pre
ise" than another one, de�ned by the equivalen
e relation�0, if � � �0.So, [o1℄� � [o2℄�0 (� des
ribes the pre
ision relation) if � � �0.The set of virtual geometri
al obje
ts is denoted by G. A virtual geometri
alobje
t g 
an be regarded as a 
omposition of graphi
al primitives. We denote byP the set of all types of graphi
al primitives. Let us denote by SUM(N;P ) thesum Pni=1 pi: Then the virtual geometri
al obje
t g 
an be des
ribed as:g = SUM(N;P ); where pi 2 P; for a �nite N:De�nition 7. 1. A virtual geometri
al obje
t g1 = SUM(N1; P ) is said to be\stri
tly more pre
ise" than another virtual geometri
al obje
t g2 = SUM(N2; P )if N1 > N2.2. If N1 = N2, then a virtual geometri
al obje
t g1 =Map(Mat(o1)), o1 � [o1℄�is said to be \more pre
ise" than another obje
t g2 = Map(Mat(o2)), o2 � [o2℄�0if the 
lass [o1℄� is \more pre
ise" than the 
lass [o2℄�0.Remarks. 1. An obje
t 
an be represented using several ways (Figure 4). Therepresentation 
onsidered \the most (stri
tly) pre
ise" is the one that uses thehighest number of graphi
al primitives. We 
all this kind of pre
ision represen-tation pre
ision.2. If the representation uses the same number of graphi
al primitives then theset G 
onserves the pre
ision relation over O. The pre
ision indu
ed over G is
alled order pre
ision.If di�erent numbers of graphi
al primitives are used, then the representationpre
ision is 
onsidered as order relation.De�nition 8. A visual geometri
al obje
t g1 2 G is said to be \(stri
tly) morepre
ise" than another visual obje
t g2 2 G if g1 = Rep�1(g1) is \(stri
tly) morepre
ise" than g2 = Rep�1(g2).5. The relaxation of fundamental 
onditions of the s
ientifi
visualizationThe fundamental 
onditions of the s
ienti�
 visualization 
an be restated:The distin
tiveness 
ondition. Di�erent equivalen
e 
lasses are mappedinto di�erent visual obje
ts.Formally: [o1℄ 6= [o2℄) �([o1℄) 6= �([o2℄)) g01 6= g02[o1℄; [o2℄ 2 Oj�; g01; g02 2 G0.The expressiveness 
ondition. The visual obje
ts express all the 
hara
ter-isti
s of input equivalen
e 
lasses, and only those 
hara
teristi
s.Formally: 8g0 2 G0; 9[o℄ 2 Oj� su
h that �([o℄) = g0.The distin
tiveness 
ondition and the expressiveness 
ondition impose the map-ping � to be one-to-one.
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Figure 4. Example of visualization pipelinesThe pre
ision 
ondition be
omes the pre
ision theorem. The equivalen
e 
lassapproa
h redu
es the number of fundamental 
onditions and in the same timeallows the introdu
tion of a well-de�ned order relation.Pre
ision Theorem. 1. Let [o℄� 2 Oj� be a 
lass of obje
ts and let theideal geometri
al obje
ts g1; g2 2 G, where g01 represents the physi
al visualizationof the the [o℄ 
lass using N1 graphi
al primitives, and g02 represents the physi
alvisualization of the [o℄ 
lass obje
t using N2 graphi
al primitives.i.: If N1 > N2 then g01 is \stri
tly more pre
ise" than g02.ii.: If N1 = N2 then g01 is represented with the same pre
ision as g02.iii.: If N1 < N2 then g02 is \stri
tly more pre
ise" than g01.2. Let [o1℄�; [o2℄� 2 Oj� be two 
lasses of obje
ts and let the ideal geometri
alobje
ts g01; g02 2 G, where g01 represents the physi
al visualization of the the [o1℄�
lass using N1 graphi
al primitives, and g02 represents the physi
al visualizationof the [o2℄� 
lass obje
t using N2 graphi
al primitives. We 
onsider that the 
lass[o1℄� is \more pre
ise" than [o2℄�.i.: If N1 > N2 then g01 is \stri
tly more pre
ise" than g02.ii.: If N1 = N2 then g01 is \more pre
ise" than g02.iii.: If N1 < N2 then g02 is \stri
tly more pre
ise" than g01.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 11Proof. 1. i. For the obje
ts g1 = SUM(N1; P ) and g2 = SUM(N2; P ) we haveN1 > N2. From de�nition 7.1 it results that g1 is \stri
tly more pre
ise" than g2.From de�nition 8 we 
on
lude that g01 is \stri
tly more pre
ise" than g02.ii. If N1 = N2 then g1 = g2 and g01 = g02.iii. The same proof as for i.2. ii. We assume that a 
lass of obje
ts indu
ed by an equivalen
e relation �,[o1℄�, is \more pre
ise" than another one, [o2℄�, indu
ed by the equivalen
e relation�. We have then [o1℄� � [o2℄�.From the de�nition of the pre
ision relation for obje
t 
lasses from O, we 
on-
lude that � � � as the result of the relation [o1℄� � [o2℄�. From theorem 1(
) wefurther 
on
lude that � � �, where � and � are partitions of the set O. If � and� are partitions of O, we write � � � if for every blo
k B 2 � there exists a blo
kC 2 � su
h that B � C.Then, the obje
ts that belong to the equivalen
e 
lass [o1℄� are more exa
t thanthose from the 
lass [o2℄� and as a result their representations are more a

urate.From de�nition 7.2 it results that g1 is \more pre
ise" than g2.So, from de�nition 8, if g1 is \more pre
ise" than g2 then g1 = Rep(g1) is \morepre
ise" than g2 = Rep(g2).For i. and ii. we use the de�nition 7.1.6. Con
lusionsThis arti
le proves that a more \relaxed" approa
h of the mathemati
al de-s
ription of the pro
ess is ne
essary. The �nite s
reen resolution and the �nitea

ura
y of the system introdu
e visualization \error": di�erent data sets havesometimes the same display/visualization, i.e. are mapped into the same visualobje
t. The introdu
ed data models allow the de�nition of di�erent operationsbetween data sets and the de�nition of a pre
ision relation.Referen
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