
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000THE RELAXATION OF THE FUNDAMENTAL CONDITIONSOF SCIENTIFIC VISUALIZATION USING EQUIVALENCECLASSESDUMITRU R�ADOIU AND ADRIAN ROMANAbstrat. The paper addresses the issue of sienti� data visualization pro-ess validation. Three fundamental onditions for sienti� visualization areintrodued; one of them { the Preision Condition { is disussed in detail.The theory allows a better formal desription of the sienti� visualizationproess.Index terms { sienti� visualization, preision lasses, and sienti�visualization proess validation1. IntrodutionSienti� Visualization is a omputational proess that maps sienti� dataand its attributes into visual objets [1℄. Sienti� data an be obtained in manydi�erent ways, e.g. by running a simulation or by a DAQ proess. Usually, si-enti� data objets are �nite representations of omplex mathematial objets.We note by O the set of suh objets, o 2 O. During the visualization proess,initial data objets, o, are proessed through di�erent transformation funtionsMat(o) = o0, into a new set o0 2 O0. Objets o0 are then mapped Map(o0) = ginto a set of virtual geometrial objets g 2 G, through a set of graphialprimitives. Objets g usually are n-dimensional (nD), animated (t) and intera-tive.De�nition 1 A group of virtual geometrial objets, logially interonneted, isalled a logial visualization of that sene.Ideal geometrial objets g, nD, animated (t) and interative are usually repre-sented Rep(g) = g0 , g0 2 G0, on real 2D sreens.De�nition 2 The projetion of the logial visualization of a sene on a sreenis alled a physial visualization of that sene.The funtions Rep(g) = g0 implement lassial graphial operations suh asomposition of the sene, volume generation, isosurfae generation, simulation oftranspareny, reetivity and lighting onditions, nD ! 2D projetion, lipping,2000 Mathematis Subjet Classi�ation. 65D18.1998 CR Categories and Desriptors. I.3.6 [Computing Methodologies℄: ComputerGraphis { Methodology and Tehniques. 3



4 DUMITRU R�ADOIU AND ADRIAN ROMANhidden surfae removal, shading, animation (t), setting user interativity (zoom,rotate, translate, pan, et), et.De�nition 3. By interativity we understand the attributes of visual objets(logial and/or physial) whose setting allows nD ! 2D projetion (zoom, rotate,translate, pan, et), animation ontrol (t), ontrol of the objets omposing thesene and ontrol of the sene as a omposite objet.The sienti� visualization proess is desribed by the V is(o) = g0, V is(o) =Rep(Map(Mat(o))) = g0 funtion. The proess is desribed in �gure 1.

Figure 1. Desription of the sienti� visualisation proess2. Fundamental onditions of sientifi visualizationThere are many requirements onerning a ertain sienti� visualization pro-ess. We onsider three of them to be fundamental. The �rst one is the dis-tintiveness ondition. This ondition (although very weak) enables users todistinguish between di�erent data objets based on their display. The ondition isneessary as one an imagine many visualization funtions that generate imageswith no use, whih reveal none of the data objets harateristis/attributes.The seond ondition is the expressiveness ondition. This ondition assuresthat the attributes of the visual objet represent the attributes of the input dataset.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 5The third one is the preision ondition. This ondition insures that theorder among data objets is preserved among visual objets.The distintiveness ondition. Di�erent input data (di�erent mathematialobjets) are represented by di�erent visual objets.This ondition an be stated:o1 6= o2 ) V is(o1) 6= V is(o2)) Rep(Map(Mat(o1))) 6= Rep(Map(Mat(o2)))) g10 6= g20; for any o1; o2 2 O; g10; g20 2 G0The interpretation of this ondition is that V is(), Mat(), Map() and Rep()funtions are injetive.The expressiveness ondition. The visual objets express all and only theharateristis of the input data.It results that the visualization funtion should be one to one.The two onditions are neessary but not suÆient. Another ondition is neededto establish an order relation both among data and visual objets. This onditionould be seen as a preision relation.The preision ondition. For any objets o1; o2 2 O suh that o1 is \morepreise" than o2 we have that V is(o1) is \more preise" than V is(o2), with V is(o1),V is(o2) 2 G0.The preision ondition adds something new. If the visualization funtion iswell de�ned and the input data objets are stritly ordered, the visual objets anbe ordered by their \preision".The �rst two onditions introdue riteria of validation and ontrol of the visu-alization proess. The visualization funtion V is() ful�lling these riteria resultsin a sienti� visualization. The third ondition allows further developments byde�ning mathematial operations on the given ordering.3. Equivalene lassesWe introdue another approah to desribe formally the visualization proess.There are examples that prove that the above onditions are too \tight". Beausewe display the visual objets on real sreens (i.e. with �nite resolution) it is possiblethat two or more objets o to be mapped into idential visual objets. Thereforea more relaxed approah to formally desribe the visualization proess of sienti�data is neessary. In order to desribe the new approah some mathematialonepts are to be presented.We have already introdued the basi sets denoted by O, O0, G and G0. O repre-sents the set of the so alled \data objets". O0 is the set of the elements obtainedfrom \data objets" through di�erent transformation funtions. G represents theset of virtual geometrial objets, nD. Virtual geometrial objets beome realgeometrial objets (G0) by projetion/display (e.g. on 2D sreens).The visualization funtion an be desribed as the mapping of the set O intoG0.



6 DUMITRU R�ADOIU AND ADRIAN ROMANDe�nition 4. Let O and G0 be two sets and v be a binary relation. We allv a mapping of O in G0 if for eah element o 2 O, there is exatly one elementg0 2 G0 that satis�es ho; g0i 2 v.The element g0 is alled the image of the element o through v, and o is alledthe inverse image of g0 through v. For the mapping v we introdue the notationv : o ! g0 and the funtional notation v(o) = g0. We an write that v : O ! G0to show that v = V is() is a mapping of O into G0. O is alled the domain of v. Ifthe inverse relation is also a mapping, we will denote it by v�1.From the set theory we know that a partition � of a set O is a subset of P (O)(the power set of O) not ontaining �, satisfying the following property: everyo 2 O is an element of exatly one A 2 �. The elements of a partition are alledbloks. If � and �0 are partitions of O, we will write � � �0 if for every blok B 2 �there exists a blok C 2 �0 suh that B � C.We use the fundamental theorem of the equivalene relations in order to under-line some important aspets:Theorem 1. [10℄ (a) Let � be a partition of O and de�ne a binary relation �pon O by o1�o2 if and only if o1 and o2 are in the same blok of the partition �.Then �� is an equivalene relation on O.(b) If � is an equivalene relation over a set O, then there exists a partition ��over O suh that o1; o2 2 O are elements of the same blo of �� if and only if o1�o2.() If � � �0, then �� � ��0 . If � � �0, then �� � �0�.Theorem 1(a) shows that a binary relation is an equivalene relation if it \on-serves" the initial partitioning over the given set. Theorem 1(b) states that apartitioning of a set an be obtained starting from a given equivalene relation �.Theorem 1() introdues an order relation.The following remark has to be stated:Remark 1. If more than one element o is mapped into the same visual objetg0, then the set O an be partitioned into non-empty subsets that inlude all the oelements mapped into the same visual objet.Remark 1 introdues the idea of equivalene relations as the main tool in orderto obtain a more realisti desription of the visualization proess. A natural equiv-alene relation �v an be de�ned over O. The relation �v is alled the equivalenerelation indued by v over the set of objets O and it partitions the set O intosubsets of objets sharing the same visualization (see theorem 1). We denote by�v the indued partitioning over O.The proposed model is based on the onept of equivalene lasses.De�nition 5. [9℄ The equivalene lass of an element o 2 O, indued by theequivalene relation �, is the subset of those elements from O that are in the relation� with o.We denote by [o℄� the equivalene lass of o 2 O, indued by the equivalenerelation �. When the equivalene relation is impliit, we use the notation [o℄.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 7Further, another theorem is introdued in order for us to be able to formulatethe new visualization onditions.Theorem 2. [10℄ Any mapping v : O ! G0 an de represented as a produtof two mappings ' and �, v = '�, where ' is onto and � is one-to-one; if � isthe equivalene relation indued by v, then ' = '� : O ! Oj� and � : Oj� ! G0,where Oj� is the set of all equivalene lasses indued by � (Figure 2).

Figure 2. Shemati representation for Theorem 2So, if we have a well-de�ned equivalene relation over O, then we an onsiderinstead of v a produt of two mappings (Figure 3). This approah has the advan-tage that it redues the set of objets O to the set of lasses Oj�. Order relationsan be stated over the set of lasses.The presented theory is exempli�ed below. We onsider two data sets havingthe same format. The equivalene relation � imposes that the attributes of theobjets (element by element) have values between:(ai)1; (ai)2 2 (ai ��ai; ai +�ai);where (ai)1 are the attributes of the �rst objet, and (ai)2 those of the seondobjet. If the resolution of the sreen is small enough we observe that, for thesame visualization system, the two di�erent data sets will be represented on thesreen by the same visual objet.



8 DUMITRU R�ADOIU AND ADRIAN ROMAN

Figure 3. Desription of the visualization proess using equiva-lene lassesRemark 2. Assuming that the equivalene relations �0, �1, . . . , �n�1, de�nedover the same set exist, we onlude that the partitions �o, �1, . . . , �n�1 alsoexist.Theorem 1() and remark 2 introdue an order relation between the equiva-lene lasses, relation that an be regarded as \preision" relation. For the aboveexample, we onsider another equivalene relation �0 imposing that the attributesof the objets (element by element) have values between:(ai0)1; (a0i)2 2 (a0i ��a0i; a0i +�a0i);where (a0i)1 are the attributes of the �rst objet, and (a0i)2 those of the seondobjet, with �ai � �a0i. In this ase � � �0, where � and �0 represent thepartitions orresponding to the equivalene relations � and �0. From theorem 1.3it results that � � �0.4. The preision relation over the sientifi visualization proessAn order relation is neessary over the visualization proess. We have intro-dued the \preision relation" as a fundamental ondition of the sienti� visual-ization. Now, the equivalene lasses allow a further development of the idea. Weare espeially interested in the O (or Oj�), G and G0 sets.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 9De�nition 6. A lass of objets, de�ned by the equivalene relation � (seetheorem 1), is \more preise" than another one, de�ned by the equivalene relation�0, if � � �0.So, [o1℄� � [o2℄�0 (� desribes the preision relation) if � � �0.The set of virtual geometrial objets is denoted by G. A virtual geometrialobjet g an be regarded as a omposition of graphial primitives. We denote byP the set of all types of graphial primitives. Let us denote by SUM(N;P ) thesum Pni=1 pi: Then the virtual geometrial objet g an be desribed as:g = SUM(N;P ); where pi 2 P; for a �nite N:De�nition 7. 1. A virtual geometrial objet g1 = SUM(N1; P ) is said to be\stritly more preise" than another virtual geometrial objet g2 = SUM(N2; P )if N1 > N2.2. If N1 = N2, then a virtual geometrial objet g1 =Map(Mat(o1)), o1 � [o1℄�is said to be \more preise" than another objet g2 = Map(Mat(o2)), o2 � [o2℄�0if the lass [o1℄� is \more preise" than the lass [o2℄�0.Remarks. 1. An objet an be represented using several ways (Figure 4). Therepresentation onsidered \the most (stritly) preise" is the one that uses thehighest number of graphial primitives. We all this kind of preision represen-tation preision.2. If the representation uses the same number of graphial primitives then theset G onserves the preision relation over O. The preision indued over G isalled order preision.If di�erent numbers of graphial primitives are used, then the representationpreision is onsidered as order relation.De�nition 8. A visual geometrial objet g1 2 G is said to be \(stritly) morepreise" than another visual objet g2 2 G if g1 = Rep�1(g1) is \(stritly) morepreise" than g2 = Rep�1(g2).5. The relaxation of fundamental onditions of the sientifivisualizationThe fundamental onditions of the sienti� visualization an be restated:The distintiveness ondition. Di�erent equivalene lasses are mappedinto di�erent visual objets.Formally: [o1℄ 6= [o2℄) �([o1℄) 6= �([o2℄)) g01 6= g02[o1℄; [o2℄ 2 Oj�; g01; g02 2 G0.The expressiveness ondition. The visual objets express all the harater-istis of input equivalene lasses, and only those harateristis.Formally: 8g0 2 G0; 9[o℄ 2 Oj� suh that �([o℄) = g0.The distintiveness ondition and the expressiveness ondition impose the map-ping � to be one-to-one.
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Figure 4. Example of visualization pipelinesThe preision ondition beomes the preision theorem. The equivalene lassapproah redues the number of fundamental onditions and in the same timeallows the introdution of a well-de�ned order relation.Preision Theorem. 1. Let [o℄� 2 Oj� be a lass of objets and let theideal geometrial objets g1; g2 2 G, where g01 represents the physial visualizationof the the [o℄ lass using N1 graphial primitives, and g02 represents the physialvisualization of the [o℄ lass objet using N2 graphial primitives.i.: If N1 > N2 then g01 is \stritly more preise" than g02.ii.: If N1 = N2 then g01 is represented with the same preision as g02.iii.: If N1 < N2 then g02 is \stritly more preise" than g01.2. Let [o1℄�; [o2℄� 2 Oj� be two lasses of objets and let the ideal geometrialobjets g01; g02 2 G, where g01 represents the physial visualization of the the [o1℄�lass using N1 graphial primitives, and g02 represents the physial visualizationof the [o2℄� lass objet using N2 graphial primitives. We onsider that the lass[o1℄� is \more preise" than [o2℄�.i.: If N1 > N2 then g01 is \stritly more preise" than g02.ii.: If N1 = N2 then g01 is \more preise" than g02.iii.: If N1 < N2 then g02 is \stritly more preise" than g01.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 11Proof. 1. i. For the objets g1 = SUM(N1; P ) and g2 = SUM(N2; P ) we haveN1 > N2. From de�nition 7.1 it results that g1 is \stritly more preise" than g2.From de�nition 8 we onlude that g01 is \stritly more preise" than g02.ii. If N1 = N2 then g1 = g2 and g01 = g02.iii. The same proof as for i.2. ii. We assume that a lass of objets indued by an equivalene relation �,[o1℄�, is \more preise" than another one, [o2℄�, indued by the equivalene relation�. We have then [o1℄� � [o2℄�.From the de�nition of the preision relation for objet lasses from O, we on-lude that � � � as the result of the relation [o1℄� � [o2℄�. From theorem 1() wefurther onlude that � � �, where � and � are partitions of the set O. If � and� are partitions of O, we write � � � if for every blok B 2 � there exists a blokC 2 � suh that B � C.Then, the objets that belong to the equivalene lass [o1℄� are more exat thanthose from the lass [o2℄� and as a result their representations are more aurate.From de�nition 7.2 it results that g1 is \more preise" than g2.So, from de�nition 8, if g1 is \more preise" than g2 then g1 = Rep(g1) is \morepreise" than g2 = Rep(g2).For i. and ii. we use the de�nition 7.1.6. ConlusionsThis artile proves that a more \relaxed" approah of the mathematial de-sription of the proess is neessary. The �nite sreen resolution and the �niteauray of the system introdue visualization \error": di�erent data sets havesometimes the same display/visualization, i.e. are mapped into the same visualobjet. The introdued data models allow the de�nition of di�erent operationsbetween data sets and the de�nition of a preision relation.Referenes[1℄ Kaufman Arie, Nielson G., Rosenblum L. J., \The Visualization Revolution", IEEE Com-puter Graphis, July 1993, pp. 16{17[2℄ Williams L. Hibbard, Charles R. Dyer, Brian E. Paul, \Towards a Systemati Analysisfor Designing Visualizations", Sienti� Visualization, IEEE Computer Soiety, 1997, pp.229{251[3℄ MaKinlay, \Automating the Design of Graphial Presentations of Relational Information",ACM Transations on Graphis, Vol.5, Nr.2 1986, pp. 110{141[4℄ W. Hibbard, C. Dyer, B. Paul, \A lattie Model for Data Display", Proeedings of IEEEVisualization '94, 1994, pp. 310{317[5℄ Upson C., Faulhaber, Jr. T., Kamins D., Laidlau D., Shelgel D., Vroom J., Gurwitz R.,van Dam A., \The Appliation Visualization System: A Computational Environment forSienti� Visualization", Computer Graphis and Appliations, vol 9, nr.4, 1989[6℄ R�adoiu D., Roman A., \Modelarea proesului de vizualizare", in Tehnologii Avansate {Apliat�ii �̂n eduat�ie, Editura Universit�at�ii Petru Maior, 1999, p. 86{101
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