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THE RELAXATION OF THE FUNDAMENTAL CONDITIONS
OF SCIENTIFIC VISUALIZATION USING EQUIVALENCE
CLASSES

DUMITRU RADOIU AND ADRIAN ROMAN

ABSTRACT. The paper addresses the issue of scientific data visualization pro-
cess validation. Three fundamental conditions for scientific visualization are
introduced; one of them — the Precision Condition — is discussed in detail.
The theory allows a better formal description of the scientific visualization
process.

Index terms — scientific visualization, precision classes, and scientific
visualization process validation

1. INTRODUCTION

Scientific Visualization is a computational process that maps scientific data
and its attributes into visual objects [1]. Scientific data can be obtained in many
different ways, e.g. by running a simulation or by a DAQ process. Usually, sci-
entific data objects are finite representations of complex mathematical objects.
We note by O the set of such objects, o € O. During the visualization process,
initial data objects, o, are processed through different transformation functions
Mat(o) = o', into a new set o' € O'. Objects o' are then mapped Map(o') = ¢
into a set of virtual geometrical objects g € GG, through a set of graphical
primitives. Objects g usually are n-dimensional (nD), animated (t) and interac-
tive.

Definition 1 A group of virtual geometrical objects, logically interconnected, is
called a logical visualization of that scene.

Ideal geometrical objects g, nD, animated (t) and interactive are usually repre-
sented Rep(g) = ¢’ , g’ € G', on real 2D screens.

Definition 2 The projection of the logical visualization of a scene on a screen
is called o physical visualization of that scene.

The functions Rep(g) = ¢' implement classical graphical operations such as
composition of the scene, volume generation, isosurface generation, simulation of
transparency, reflectivity and lighting conditions, nD — 2D projection, clipping,

2000 Mathematics Subject Classification. 65D18.
1998 CR Categories and Descriptors. 1.3.6 [Computing Methodologies]: Computer
Graphics — Methodology and Techniques.



4 DUMITRU RADOIU AND ADRIAN ROMAN

hidden surface removal, shading, animation (t), setting user interactivity (zoom,
rotate, translate, pan, etc), etc.

Definition 3. By interactivity we understand the attributes of visual objects
(logical and/or physical) whose setting allows nD — 2D projection (zoom, rotate,
translate, pan, etc), animation control (t), control of the objects composing the
scene and control of the scene as a composite object.

The scientific visualization process is described by the Vis(o) = ¢', Vis(o) =
Rep(Map(Mat(o))) = ¢’ function. The process is described in figure 1.
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FIGURE 1. Description of the scientific visualisation process

2. FUNDAMENTATL CONDITIONS OF SCIENTIFIC VISUALIZATION

There are many requirements concerning a certain scientific visualization pro-
cess. We consider three of them to be fundamental. The first one is the dis-
tinctiveness condition. This condition (although very weak) enables users to
distinguish between different data objects based on their display. The condition is
necessary as one can imagine many visualization functions that generate images
with no use, which reveal none of the data objects characteristics/attributes.

The second condition is the expressiveness condition. This condition assures
that the attributes of the visual object represent the attributes of the input data
set.
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The third one is the precision condition. This condition insures that the
order among data objects is preserved among visual objects.

The distinctiveness condition. Different input data (different mathematical
objects) are represented by different visual objects.

This condition can be stated:

o1 Z0oy = Vis(o1) # Vis(0o2) = Rep(Map(Mat(oy))) # Rep(Map(Mat(02)))
= gl' # g2', for any o0l,02 € O,g1',92' € G’

The interpretation of this condition is that Vis(), Mat(), Map() and Rep()
functions are injective.

The expressiveness condition. The visual objects express all and only the
characteristics of the input data.

It results that the visualization function should be one to one.

The two conditions are necessary but not sufficient. Another condition is needed
to establish an order relation both among data and visual objects. This condition
could be seen as a precision relation.

The precision condition. For any objects 01,02 € O such that o1 is “more
precise” than oo we have that Vis(o1) is “more precise” than Vis(o2), with Vis(o1),
Vis(o2) € G'.

The precision condition adds something new. If the visualization function is
well defined and the input data objects are strictly ordered, the visual objects can
be ordered by their “precision”.

The first two conditions introduce criteria of validation and control of the visu-
alization process. The visualization function Vis() fulfilling these criteria results
in a scientific visualization. The third condition allows further developments by
defining mathematical operations on the given ordering.

3. EQUIVALENCE CLASSES

We introduce another approach to describe formally the visualization process.
There are examples that prove that the above conditions are too “tight”. Because
we display the visual objects on real screens (i.e. with finite resolution) it is possible
that two or more objects o to be mapped into identical visual objects. Therefore
a more relaxed approach to formally describe the visualization process of scientific
data is necessary. In order to describe the new approach some mathematical
concepts are to be presented.

We have already introduced the basic sets denoted by O, O', G and G'. O repre-
sents the set of the so called “data objects”. O’ is the set of the elements obtained
from “data objects” through different transformation functions. G represents the
set of virtual geometrical objects, nD. Virtual geometrical objects become real
geometrical objects (G') by projection/display (e.g. on 2D screens).

The visualization function can be described as the mapping of the set O into

G
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Definition 4. Let O and G’ be two sets and v be a binary relation. We call
v a mapping of O in G' if for each element o € O, there is exactly one element
g € G' that satisfies (0,9') € v.

The element ¢’ is called the image of the element o through v, and o is called
the inverse image of ¢’ through v. For the mapping v we introduce the notation
v : 0 — ¢' and the functional notation v(o) = g'. We can write that v : O — G’
to show that v = Vis() is a mapping of O into G'. O is called the domain of v. If
the inverse relation is also a mapping, we will denote it by v—!.

From the set theory we know that a partition = of a set O is a subset of P(O)
(the power set of O) not containing ®, satisfying the following property: every
o € O is an element of exactly one A € m. The elements of a partition are called
blocks. If m and 7' are partitions of O, we will write 7 < «' if for every block B € 7
there exists a block C € «’ such that B C C.

We use the fundamental theorem of the equivalence relations in order to under-
line some important aspects:

Theorem 1. [10] (a) Let 7 be a partition of O and define a binary relation ¢,
on O by o1€0s if and only if 01 and o0y are in the same block of the partition 7.
Then €, is an equivalence relation on O.

(b) If € is an equivalence relation over a set O, then there exists a partition 7,
over O such that 01,0, € O are elements of the same bloc of 7, if and only if 0;€0.

(c) If # < 7', then e, < €. If e <€, then 7 < 7l.

Theorem 1(a) shows that a binary relation is an equivalence relation if it “con-
serves” the initial partitioning over the given set. Theorem 1(b) states that a
partitioning of a set can be obtained starting from a given equivalence relation e.
Theorem 1(c) introduces an order relation.

The following remark has to be stated:

Remark 1. If more than one element o is mapped into the same visual object
g', then the set O can be partitioned into non-empty subsets that include all the o
elements mapped into the same visual object.

Remark 1 introduces the idea of equivalence relations as the main tool in order
to obtain a more realistic description of the visualization process. A natural equiv-
alence relation €, can be defined over O. The relation €, is called the equivalence
relation induced by v over the set of objects O and it partitions the set O into
subsets of objects sharing the same visualization (see theorem 1). We denote by
my the induced partitioning over O.

The proposed model is based on the concept of equivalence classes.

Definition 5. [9] The equivalence class of an element o € O, induced by the
equivalence relation €, is the subset of those elements from O that are in the relation
€ with o.

We denote by [o]e the equivalence class of o € O, induced by the equivalence
relation e. When the equivalence relation is implicit, we use the notation [o].
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Further, another theorem is introduced in order for us to be able to formulate
the new visualization conditions.

Theorem 2. [10] Any mapping v : O — G’ can de represented as a product
of two mappings ¢ and ¢, v = @@, where ¢ is onto and ¢ is one-to-one; if € is
the equivalence relation induced by v, then ¢ = ¢, : O = Ole and ¢ : Ole = G',
where Ole is the set of all equivalence classes induced by e (Figure 2).
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FIGURE 2. Schematic representation for Theorem 2

So, if we have a well-defined equivalence relation over O, then we can consider
instead of v a product of two mappings (Figure 3). This approach has the advan-
tage that it reduces the set of objects O to the set of classes Ole. Order relations
can be stated over the set of classes.

The presented theory is exemplified below. We consider two data sets having
the same format. The equivalence relation e imposes that the attributes of the
objects (element by element) have values between:

(ai)l, (ai)2 S (ai — Aai, a; + Aai),

where (a;); are the attributes of the first object, and (a;)2 those of the second
object. If the resolution of the screen is small enough we observe that, for the
same visualization system, the two different data sets will be represented on the
screen by the same visual object.
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Remark 2. Assuming that the equivalence relations €g, €1, ..., €n—1, defined
over the same set exist, we conclude that the partitions w,, ™, ..., Tn_1 also
erist.

Theorem 1(c) and remark 2 introduce an order relation between the equiva-
lence classes, relation that can be regarded as “precision” relation. For the above
example, we consider another equivalence relation € imposing that the attributes
of the objects (element by element) have values between:

(ai,)la (a’;)2 € (a; - Aa;a a; + Aa;)a
where (a}); are the attributes of the first object, and (a})2 those of the second
object, with Aa; < Aa}. In this case 7 < 7', where m and 7' represent the

partitions corresponding to the equivalence relations € and €. From theorem 1.3
it results that € < €.

4. THE PRECISION RELATION OVER THE SCIENTIFIC VISUALIZATION PROCESS

An order relation is necessary over the visualization process. We have intro-
duced the “precision relation” as a fundamental condition of the scientific visual-
ization. Now, the equivalence classes allow a further development of the idea. We
are especially interested in the O (or Ole), G and G’ sets.
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Definition 6. A class of objects, defined by the equivalence relation € (see
theorem 1), is “more precise” than another one, defined by the equivalence relation
€,ife<é.

So, [01]e < [02]€’ (< describes the precision relation) if € < €.

The set of virtual geometrical objects is denoted by G. A virtual geometrical
object g can be regarded as a composition of graphical primitives. We denote by
P the set of all types of graphical primitives. Let us denote by SUM (N, P) the
sum Y, p;. Then the virtual geometrical object g can be described as:

g=SUM(N, P), where p; € P, for a finite N.

Definition 7. 1. A virtual geometrical object g1 = SUM (N1, P) is said to be
“strictly more precise” than another virtual geometrical object go = SUM (Ns, P)
Zf Ny > Ns.

2. If Ny = N, then a virtual geometrical object g3 = Map(Mat(o1)), 01 < [o1]e
is said to be “more precise” than another object go = Map(Mat(02)), 02 < [02]€
if the class [ol]e is “more precise” than the class [02]€'.

Remarks. 1. An object can be represented using several ways (Figure 4). The
representation considered “the most (strictly) precise” is the one that uses the
highest number of graphical primitives. We call this kind of precision represen-
tation precision.

2. If the representation uses the same number of graphical primitives then the
set G conserves the precision relation over Q. The precision induced over G is
called order precision.

If different numbers of graphical primitives are used, then the representation
precision is considered as order relation.

Definition 8. A visual geometrical object g1 € G is said to be “(strictly) more
precise” than another visual object g» € G if g1 = Rep~'(g1) is “(strictly) more
precise” than g = Rep *(go).

5. THE RELAXATION OF FUNDAMENTAL CONDITIONS OF THE SCIENTIFIC
VISUALIZATION

The fundamental conditions of the scientific visualization can be restated:

The distinctiveness condition. Different equivalence classes are mapped
into different visual objects.

Formally: [o1] # [os] = ¢([o1]) # 6([02]) = g # g5
[01], [02] € Ole, g1, 95 € G-

The expressiveness condition. The visual objects express all the character-
istics of input equivalence classes, and only those characteristics.

Formally: V¢’ € G',3[o] € Ole such that ¢([o]) = ¢'.

The distinctiveness condition and the expressiveness condition impose the map-
ping ¢ to be one-to-one.
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The precision condition becomes the precision theorem. The equivalence class
approach reduces the number of fundamental conditions and in the same time
allows the introduction of a well-defined order relation.

Precision Theorem. 1. Let [o]e € Ole be a class of objects and let the
ideal geometrical objects g1, g2 € G, where g} represents the physical visualization
of the the [o] class using N; graphical primitives, and g} represents the physical
visualization of the [0] class object using N» graphical primitives.

i.: If Ny > N then gf is “strictly more precise” than gj.
ii.: If Ny = N, then g} is represented with the same precision as g5.
iii.: If Ny < Ny then g} is “strictly more precise” than g;.

2. Let [ol]e, [02]e € Ole be two classes of objects and let the ideal geometrical
objects g1, 95 € G, where ¢{ represents the physical visualization of the the [o]e
class using N; graphical primitives, and g5 represents the physical visualization
of the [02]e class object using Ny graphical primitives. We consider that the class
[01]€ is “more precise” than [oq]e.

i.: If Ny > N then gf is “strictly more precise” than gj.
ii.: If Ny = N, then g} is “more precise” than gb.
iii.: If Ny < N, then g} is “strictly more precise” than gj.
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Proof. 1. i. For the objects g = SUM (Ny, P) and go = SUM (Ns, P) we have
N1 > Ns. From definition 7.1 it results that g; is “strictly more precise” than gs.
From definition 8 we conclude that ¢{ is “strictly more precise” than gb.

ii. If Ny = N, then g; = g2 and g} = g5.

iii. The same proof as for i.

2. ii. We assume that a class of objects induced by an equivalence relation e,
[o1]e, is “more precise” than another one, [02]e, induced by the equivalence relation
€. We have then [01]e < [oz]e.

From the definition of the precision relation for object classes from O, we con-
clude that e < € as the result of the relation [01]e < [02]e. From theorem 1(c) we
further conclude that m < 7, where m and 7 are partitions of the set O. If = and
7 are partitions of O, we write m < 7 if for every block B € 7 there exists a block
C € 7 such that B C C.

Then, the objects that belong to the equivalence class [0; e are more exact than
those from the class [02]e and as a result their representations are more accurate.
From definition 7.2 it results that g; is “more precise” than gs.

So, from definition 8, if g; is “more precise” than g» then g = Rep(g1) is “more
precise” than go = Rep(gs).-

For i. and ii. we use the definition 7.1.

6. CONCLUSIONS

This article proves that a more “relaxed” approach of the mathematical de-
scription of the process is necessary. The finite screen resolution and the finite
accuracy of the system introduce visualization “error”: different data sets have
sometimes the same display/visualization, i.e. are mapped into the same visual
object. The introduced data models allow the definition of different operations
between data sets and the definition of a precision relation.
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