
STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

HALF SYNCHRONIZED TRANSITION SYSTEMS

FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

Abstract. In a distributed system, defined as a collection of interconnected
nodes, the underlying role is taken by the communication subsystem. It func-
tions using common protocols which addresses the problem of heterogeneity
and homogeneity of the participants nodes, and contributes to the perfor-
mance of the whole system. No matter what type: synchronous orasynchronous,
the communication software has to be flexible, reusable and adaptable. The
formal methods used to model these protocols should reflect these qualities.
In this paper, we extend the classical, synchronous and asynchronous mes-
sage passing models, proposing an intermediary class of models, starting from
some limitations, in time and space, imposed upon the entities involved. We
named the new model, half-synchronized transition systems.

Keywords: distributed systems, distributed algorithms, transition sys-
tems, synchronous, asynchronous message passing

1. Introduction

In a distributed system, defined as a collection of interconnected nodes, the
underlying role is taken by the communication subsystem. We cannot have dis-
tributed computing if there is no communication. Also, the communication proto-
cols addresses the problem of heterogeneity and homogeneity of the participants
nodes, and together with the communication media, have a profound influence on
the performance of the whole system. These observations lead to the conclusion
that the communication software, used to design distributed applications, must
have important qualities, among which we mention: flexibility, efficiency, reusabil-
ity, adaptability.

Also, the communication medium and applications domain properties have a
major influence on designing the communications protocols. These protocols can
be selected as a compromise between some competing properties. In order to
achieve its main purposes, as the underlying system for collaborating between
distributed applications, the communication protocols take many forms and they
can be modelled in different ways, using abstract languages.

Besides the introduction, this paper is structured in two main parts. The first
part presents the two major ways synchronous and asynchronous-, of modeling
communication, between distributed processes, using transition systems. In the
second part, the paper extends the models mentioned above and proposes an

77



78 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

intermediary class of models, starting from some limitations, in time and space,
imposed upon the entities involved. We named the new model, half-synchronized
transition systems, and we will describe it both intuitively and formally.

We begin the presentation with the definitions of some background terms, that
we will use in describing the models.

Definition 1.1. A distributed system is an interconnected collection of autonomous
nodes, which can be computers, processes or processors [7]. The nodes must at least
be equipped with their own private control and they are capable of exchanging in-
formation. A more restrictive definition [6] considers a system to be distributed
only if the existence of autonomous nodes is transparent to users of the system.

We consider a sequence of processes P = (p1, p2, ..., pN), Spi
the set of the

possible states associated with the process pi, Ipi
the initial states of the process

pi(∀i ∈ 1, ..., N) and a set of messages M , which can be transmitted (sent and
received) between the processes.

In the following, the relations ” >I ”, ” >S ”, ” >R ” associated with the
internal, send, respectively receive events, will be presented.

Definition 1.2. The binary relation ” >I ” defined on Spi
× Spi

, contains the
following pairs of states of the process pi: (spi

, upi
), which means that an internal

event of the process pi is produced, the process pi changes its state from spi
to upi

,
but the communication subsystem remains unchanged.

Definition 1.3. The ternary relation ” >S ” defined on Spi
× M × Spi

, contains
the following triples: (spi

, m, upi
), where the process pi executes a send event with

the message m and changes its state from spi
to upi

.

Definition 1.4. The ternary relation ” >R ” defined on Spi
× M × Spi

, contains
the following triples: (spi

, m, upi
), where the process pi executes a receive event

with the message m ∈ M and changes its state from spi
to upi

.

Definition 1.5. The local algorithm of a process pi is a quintuple
(Spi

, Ipi
, >I , >S , >R), where all the 5 elements were defined above .

Definition 1.6. A distributed algorithm is defined as a collection of local algo-
rithms, for the sequence of processes P = (p1, p2, ..., pN ) and the set of messages
M . These messages can be exchanged between processes, using pairs of send-receive
events with the same message m ∈ M .

Definition 1.7. A configuration is an N + 1-uple of the following form: C =
(sp0, ..., spi

, ..., spN
, M ′), where ∀i ∈ {1, ..., N} spi

is a state from Spi
, and M ′ ⊆ M

is a queue associated with the messages sent, but not received yet (messages which
are in transit [1]).

Definition 1.8. An initial configuration is a configuration of the following form:
I = (sp0

, ..., spi
, ..., spN

, M), where spi
∈ Ipi

∀i ∈ {1, ..., N} and the messages queue
M is empty.



HALF SYNCHRONIZED TRANSITION SYSTEMS 79

In the following, the transition relations “→pi
” and “→pipj

” on C × C, will be
defined:

Definition 1.9. The transition relation “→pi
” is defined as the set of the following

pairs of configurations: ((sp0
, ..., spi

, ..., spN
, M1), (sp0

, ..., spi
, ..., spN

, M2)), where
one of the following conditions take place:

• (spi
, upi

) ∈>I and M1 = M2,

• ∃m ∈ M such that (spi
, m, upi

) ∈>S and M2 − m = M1.
• ∃m ∈ M such that (spi

, m, upi
) ∈>R and M1 − m = M2.

Definition 1.10. The transition relation “→pipj
”, is defined as the set of the

following pairs of configurations: ((sp0
, ..., spi

, ..., spj
, ...), (sp0

, ..., upi
, ..., upj

, ...)),

where ∃m ∈ M , (spi
, m, upi

) ∈>S ∧(spj
, m, upj

) ∈>R. In this case, there is an
exchange of messages from the process pi to the process pj. The process pi produces
the message m, initiating a send event, and the process pj consumes the message,
which leads to a receive event.

2. Synchronous and asynchronous transitions systems

Definition 2.1. The behavior of a distributed algorithm can be described using a
transition system, defined as a triple T = (C,→, I), where:

• C is the set of the possible configurations.
• “→” is a binary relation from C × C, called transition relation, and it

is defined as a reunion of the transition relations “→pi”, associated with
the N processes.

• I is the set of initial configurations.

Definition 2.2. We define a terminal configuration, a configuration c ∈ C which
doesn’t have a successor configuration (there is no configuration c1 ∈ C which
verify c → c1).

Definition 2.3. An execution of T is defined as a maximal sequence
E = (c0, c1, c2, ...), where c0 ∈ I and ∀i, ci → ci+1.

Putting it into words, the execution of a transition system can be defined as
a sequence of transitions between related configurations, sequence which can be
infinite or ended with a terminal configuration. The transitions are the events
associated with processes, events that don’t affect only the states of the processes,
but also they influence and can be influenced by the queue of messages.

The transitions systems allow modeling the transmission of messages between
distributed processes, in two possible ways: synchronous and asynchronous trans-
missions. We will describe each of the two models textually and formally.

Transition systems with asynchronous message passing. In the asynchro-
nous messages transmission, each send event and its corresponding receive event
are independent. It means that a process initiates a send event, without waiting



80 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

for a process to receive the produced message. On the other hand, a process ini-
tiates a receive event, without knowing which process produced the message (see
[1,3,7]).

We consider a collection of processes P = (p1, p2, ..., pN ) which collaborate using
a distributed algorithm A.

Definition 2.4. The transition system induced by the distributed algorithm, using
a communication model based on asynchronous message passing, is the system
T = (C,→, I), constructed according to the following steps:

(0) The local algorithms are: pi = (Spi
, Ipi

, >I
pi

, >S
pi

, >R
pi

)
(1) The set of configurations are N-tuples of the following form:

C = (sp0
, ..., spi

, ..., spN
, M ′)

, where ∀i ∈ {1, ..., N}, spi
∈ Spi

, M ′ ⊆ M

(2) The transition relation ” → ” is defined as in the general case of transi-
tion systems.

(3) The set of initial configurations I is composed of N + 1-tuples of the
form: I = (sp0

, ..., spi
, ..., spN

, M ′), where spI
∈ Ipi

∀i ∈ {1, ..., N}. The
message queue M ′ is empty.

In this model, only the process which initiates the send event, respectively the
process which initiated the receive event changes its state.

Transition systems with synchronous message passing. In the synchro-
nous message passing, each send event and its corresponding receive event are
coordinated so as they form a single transaction of the system. In this scenario a
process can transmit a message only if the destination process is ready to accept
the message (see [4,5,7]).

This transition systems model also uses a collection of processes P = (p1, p2,
..., pN ) which collaborate using a distributed algorithm A.

Definition 2.5. The transition system induced by the distributed algorithm, using
a communication model based on synchronous message passing, is the system T =
(C,→, I), constructed according to the following steps:

(0) The local algorithms are: pi = (Spi
, Ipi

, >I
pi

, >S
pi

, >R
pi

)
(1) The set of configurations are N -tuples of the following form:

C = (sp0
, ..., spi

, ..., spN
),

where ∀i ∈ {1, ..., N}, spi
∈ Spi

(2) The transition relation “→” is defined as a reunion of the transition
relations “→pi

” and “→pi,pj
”, ∀i, j ∈ {1, ..., N}.

(3) The set of initial configurations I is composed of N -tuples of the form:
I = (sp0

, ..., spi
, ..., spN

), where spi
∈ Ipi

∀i ∈ {1, ..., N}



HALF SYNCHRONIZED TRANSITION SYSTEMS 81

In the configuration obtained after processing the transition of the system, both
the process which initiated the send event and the process which got the receive
event, change their states.

3. Transition systems with half-synchronous message passing

3.1. Overview. This paper proposes a new communication model, which repre-
sents an intermediary class between the synchronous and asynchronous communi-
cation models. We call this new model half-synchronized transition system and we
will describe it using both a formal and a textual definition.

This new communication protocol also uses a transition system as the underly-
ing modeling instrument, but the model imposes some constraints on the transition
system’s entities.

Thus, the message queue M is considered to be limited in space and time. The
limitation in space means that the queue has a limited size, which coincides with
the maximum number of messages that can be queued.

On the other hand, the limitation in time imposes that a message can be kept
in the queue only for a certain period of time.

We consider that the process, which initiated the send event, establishes this
period of time, because, as a ”creator” of the message, it knows how important
the message is. If the message is not consumed, during the given period of time,
by another process, the message is automatically destroyed by a manager process,
associated with the queue.

We represent the messages queue as a 4-tuple: (M, ds, dm, mq), where dm is the
maximum size of the queue, ds is the current size of the queue (dm ≥ ds), and M

contains the messages: M = {m1, m2, ..., mds}. Each message is characterized by
a “type” id, a “content” ct and a maximum period of life-time t, ∀i ∈ {1, ..., N},
mi = (idi, cti, ti). The receiving processes can retrieve the expected messages,
using the type information, which could abstract different characteristics of a mes-
sage, as well as its source or its destinations.

If the first three components of the queue are passive entities, the fourth ele-
ment, noted with qm (queue manager) is an active process, which controls events
like sending or receiving messages, as well as the life- time of the messages (de-
stroying them, when their life-time period expires).

The queue manager have 3 possible states:

• qmw waiting for a connection of client process (a sending or receiving
process)

• qmrwaken-up by a request of a client process
• qme processing a request of a process or destroying expired messages.

The main difference between the half-synchronized and the previous two mod-
els, is that the functionality of the new model comprises the interaction between



82 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

the distributed processes and the queue manager and the activity of the queue
manager.

Another important difference of this new model, compared with the preceding
two, concerns the events of the communication subsystem. Thus, the send and
receive events presume new scenarios and new events like connect, acknowledge,
wait, store, retrieve and destroy are added. These events concern either the inter-
action between the distributed processes and the queue manager or the activity
of the queue manager. They are also associated with binary relations between
related configurations of the system.

3.2. Events describing the interaction between the distributed processes

and the queue manager.

Definition 3.1. The relation “→C
pi

” is defined as the set of the following pairs of
configurations:

((sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qmw)), (sp0

, ..., upi
, ..., spN

, (M1, ds, dm, qmr))),

where the process pi is executing a connect event to the message queue: ∃m ∈ M

of type connect-send or connect-receive, (spi
, m, upi

) ∈>S and (qmw, qmr) ∈>I .

Definition 3.2. The relation “→A
pi

” is defined as the set of the following pairs of
configurations:

((sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qmr)), (sp0

, ..., upi
, ..., spN

, (M1, ds, dm, qme))),

where the queue manager qm acknowledges the process pi that it can initiate a
send or receive event: ∃m ∈ M of type acknowledge, (qmr, m, qme) ∈>S and
(spi

, m, upi
) ∈>R.

Definition 3.3. The relation “→W pi” is defined as the set of the following pairs
of configurations:

((sp0
, ..., spi

, ..., spN
, (M1, dm, dm, qmr)), (sp0

, ..., upi
, ..., spN

, (M1, dm, dm, qmw))),

where the queue manager qm execute a wait event, announcing the process pi that
the queue is full: ∃m ∈ M of type wait, (qmr, m, qmw) ∈>S and (spi, m, upi) ∈>R.

Definition 3.4. The relation “→S
pi

” is defined as the set of the following pairs of
configurations:

((sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qme)), (sp0

, ..., upi
, ..., spN

, (M1, ds, dm, qm′

e))),

where the process pi initiates a send event with the message m and qm starts
processing it: ∃m ∈ M , (spi

, m, upi
) ∈>S, (qmp, m, qm′

e) ∈>R .

Definition 3.5. The relation “→R
pi

” is defined as the set of the following pairs of
configurations:

((sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qme)), (sp0

, ..., upi
, ..., spN

, (M2, ds2, dm, qm′

e))),

where the process pi initiates a receive event with the message m and qm starts
processing it: ∃m ∈ M1, (qmp, m, qm′

e) ∈>S and (spi
, m, upi

) ∈>R.



HALF SYNCHRONIZED TRANSITION SYSTEMS 83

3.3. Events describing the activity of the queue manager.

Definition 3.6. The relation “→S
qm” is defined as the set of the following pairs

of configurations:

((sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qme)), (sp0

, ..., spi
, ..., spN

, (M2, ds+1, dm, qmw))),

where qm store the received message m in the queue: M2 − {m} = M1 and
(qme, qmw) ∈>I .

Definition 3.7. The relation ” →R
qm ” is defined as the set of the following pairs

of configurations:

((sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qme)), (sp0

, ..., spi
, ..., spN

, (M2, ds−1, dm, qmw))),

where qm retrieves the expected message m from the queue: M1 − {m} = M2 and
(qme, qmw) ∈>I .

Definition 3.8. The relation ” →D
qm is defined as the set of the following pairs of

configurations:

((sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qme)), (sp0

, ..., spi
, ..., spN

, (M2, ds−1, dm, qmw))),

where qm destroys a message m ∈ M1, whose life-time expired (m = (id, ct, t) and
t = 0): M1 − {m} = M2and(qme, qmw) ∈>I .

Now, we are ready to define the half-synchronized transition systems.

3.4. Definition of the half-synchronized transition system. As in the pre-
vious models, we also consider a collection of processes P = (p1, p2, ..., pN ) which
collaborate using a distributed algorithm A.

Definition 3.9. The transition system induced by the distributed algorithm A,
using a communication model based on half-synchronous message passing, called
half-synchronous transition system is the system S = (C,→, I), constructed ac-
cording to the following steps:

(0) The local algorithms are: pi = (Spi
, Ipi

, >I
pi

, >S
pi

, >R
pi

)
(1) The set of configurations are N -tuples of the following form:

C = (sp0
, ..., spi

, ..., spN
, (M ′, ds, dm)),

where ∀i ∈ {1, ..., N}, spi
∈ Spi

, M ′ ⊆ M , where the messages queue
was defined above

(2) The transition relation ” → ” is defined as a reunion of a transition rela-
tions “→C

pi
”, “→A

pi
”, “→W

pi
” “→S

Pi
”, “→R

pi
”, “→S

qm”, “→R
qm”, “→D

qm”,
associated to the corresponding events, which comprise the functionality
of the system.

3.5. Space and time limitations scenarios. The following scenarios describe
the half-communication model defined above:



84 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

Time limitation.

1.

(sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qmw)) →C

pi

(sp0
, ..., upi

, ..., spN
, (M1, ds, dm, qmr)) →

A
pi

(sp0
, ..., vpi

, ..., spN
, (M1, ds, dm, qme)) →

S
pi

(sp0
, ..., zpi

, ..., spN
, (M1, ds, dm, qm′

e)) →
S
qm

(sp0
, ..., zpi

, ..., spN
, (M1 ∪ {m = (id, ct, t)}, ds + 1, dm, qmw))

and
(sp0

, ..., spj
, ..., spN

, (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qmw)) →C
pj

(sp0
, ..., upj

, ..., spN
, (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qmr)) →

A
pi

(sp0
, ..., vpj

, ..., spN
, (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qme)) →

R
pi

(sp0
, ..., vpj

, ..., spN
, (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qm′

e)) →
R
qm

(sp0
, ..., zpj

, ..., spN
, (M2, ds2 − 1, dm, qmw)) and t′ < t,

or
2.

(sp0
, ..., spi

, ..., spN
, (M1, ds, dm, qmw)) →C

pi

(sp0
, ..., upi

, ..., spN
, (M1, ds, dm, qmr)) →

A
pi

(sp0
, ..., vpi

, ..., spN
, (M1, ds, dm, qme)) →

S
pi

(sp0
, ..., zpi

, ..., spN
, (M1, ds, dm, qm′

e)) →
S
qm

(sp0
, ..., zpi

, ..., spN
, (M1 ∪ {m = (id, ct, t)}, ds + 1, dm, qmw))

and
(sp0

, ..., spN
, (M2 ∪ {m = (id, ct, t′), t′ = 0}, ds2, dm, qme)) →

D
qm

(sp0
, ..., spN

, (M2, ds2 − 1, dm, qmw)).
The first scenario refers to the case where a send event has a corresponding

receive event with the same message m ∈ M .
In the following, we will enumerate the sequence of transitions, described for-

mally above. The process pi initiates a connect event to the queue, the queue
manager returns an acknowledge that the queue can store new messages, the pro-
cess pi sends its message m (whose life-time is t) and continues its job and the
queue manager stores the received message in the queue. Later (t′ < t), a process
pj initiates a connect event, and after being acknowledged by the queue manager,
it initiates a receive event with the message m, and the queue manager retrieves
this message from the queue.

The second scenario differs from the first, in that the message m is not re-
trieved from the queue for a receiving process, hence the queue manger destroys
the message, when its life-time period expires.

Space limitation.

(sp0
, ..., spi

, ..., spN
, (M1, dm, dm, qmw)) →C

pi

(sp0
, ..., upi

, spj
, ..., spN

, (M1, dm, dm, qmr)) →
W
pi

(sp0
, ..., vpi

, ..., spN
, (M1, dm, dm, qmw))



HALF SYNCHRONIZED TRANSITION SYSTEMS 85

The space limitation scenario is similar to the producer-consumer problem. A
process pi tries to connect to the queue in order to receive the message m, but the
queue manager initiates a wait event, telling the process, that the queue is full.
So, the process waits until some free space will be available in the queue.

3.6. An example. We give an example of a real problem, which can be solved
using the half-synchronous model. The problem concerns the activity -supplying-
storing-selling merchandise- of a store of perishable nutriments.

In order to give a formal model to this problem, we consider only two processes:
P = (p1, p2), where p1 is a ”supplier” and p2 is a ”buyer”. The messages set M

contains the products prod1, prod2, ... (for simplicity, we consider that prodi

includes a given quantity of the product i) and a subset M ′ of internal, protocol
messages. Hence, M = {prod1, prod2, ...} ∪ M ′. The configurations, used in this
particular model, take the following form: (sp1

, sp2
, (M1, dc, dm, qm)) , where sp1

and sp2
are the current states of the ”supplier”, respectively ”buyer” processes,

M1 contains the products from the store, dc is the number of the products and
dm is the maximum capacity of the store and qm is the manager & seller of the
store.

Now, let’s detail the two scenarios starting from the general case, for the “store
model”:

Time limitation
1. (sp1

, sp2
, (M1, ds, dm, qmw)) →C

pi

(up1
, sp2

, (M1, ds, dm, qmr)) →
A
pi

(vp1
, sp2

, (M1, ds, dm, qme)) →
S
pi

(zp1
, sp2

, (M1, ds, dm, qm′

e)) →
S
qm

(zp1
, sp2

(M1 ∪ {m = (id, ct, 20d)}, ds + 1, dm, qmw))
and (sp1

, sp2
, (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qmw)) →C

pj

(sp1
, up2

, (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qmr)) →
A
pi

(sp1
, vp2

, (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qme)) →
R
pi

(sp1
, vp2

, (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qm′

e)) →
R
qm

(sp1
, zp2

, (M2, ds2 − 1, dm, qmw)) and t′ < t,

or
2. (sp1

, sp2
, (M1, ds, dm, qmw)) →C

pi

(up1
, sp2

, (M1, ds, dm, qmr)) →
A
pi

(vp1
, sp2

, (M1, ds, dm, qme)) →
S
pi

(zp1
, sp2

, (M1, ds, dm, qm′

e)) →
S
qm

(zp1
, sp2

,(M1 ∪ {m = (id, ct, 20d)}, ds + 1, dm, qmw))
and
(zp1

, sp2
, (M2 ∪ {m = (id, ct, 0))}, ds2, dm, qme)) →

D
qm

(zp1
, sp2

,(M2, ds2 − 1, dm, qmw)).



86 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

The first scenario corresponds to the situation when a provided product m is
bought, before its life-time period expires. The supplier offers a product m to the
store, which expires after t = 20 days. The communication protocol (connect-
acknowledge-send-store, respectively connect-acknowledge-receive- retrieve), be-
tween the supplier p1 or the buyer p2 and the store manager qm, conforms to the
general case, but with particular participants.

The second scenario models the situation when the availability period for the
product m expires before anyone have bought it. So, the store manager throws
away this product.

Space limitation
(sp1

, sp2
, (M1, dm, dm, qmw)) →C

pi

(up1
, sp2

, (M1, dm, dm, qmr)) →
W
pi

(vp1
, sp2

, (M1, dm, dm, qmw))
Finally, if there is no more free space in the store, the supplier p1 should wait

until someone buys something from the store, in order to make its own offer.
As a final remark, we point out that, this particular model can be enhanced, in

order to filter the products offered by the suppliers. In this case, the store manager
decides if a provided product suits its needs.

4. Conclusion

The communication subsystem constitutes the main part of any distributed
system. The protocols models, used to describe the functionality of the communi-
cation software, should be flexible, reusable, adaptable. In the first part, the paper
presents the two most important possibilities synchronous and asynchronous-, of
modeling communication between distributed processes, using transitions systems.
In the second part, the paper extends the models mentioned above and proposes an
intermediary class of models, called half-synchronized transition systems, starting
from some limitations, in time and space, imposed on the entities involved.

References

[1] Andrews G.R. Synchronizing Resources, ACM Transactions on Computer Systems, Number
4, October, 1981, pp. 305-330

[2] Boian F.M., Programare distribuită ı̂n Internet, Editura Albastra, 1998
[3] Fred B. Schneider, Synchronization in Distributed Programs, ACM Transactions on Computer

Systems, Volume 4, Number 2, April, 1992, pp. 125-148
[4] Lamport L., Time, clocks, and the ordering of events in a distributed system, Communica-

tions of the ACM, 21, 7, july 1978, pp. 125-133

[5] Spirakis G.P. Real-Time Synchronization of Interprocess Communications, ACM Transac-
tions on Computer Systems, Volume 6, Number 2, April, 1994 pp. 215-238

[6] Tannenbaum A.S. Distributed Operating Systems, Prentice Hall, 1995
[7] Tel G. Introduction to Distributed Algorithms, Cambridge Press, 1994

“Babeş-Bolyai” University of Cluj-Napoca, Department of Computer Science

E-mail address: {florin,cori}@cs.ubbcluj.ro


