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EXTENDING STATECHARTS FOR CONCURRENT OBJECTS

MODELING

DAN MIRCEA SUCIU

Abstract. Object-oriented concurrent programming is a methodology that
seems to satisfy nowadays requirements for complex applications develop-
ment. The fundamental abstractions used in this methodology are concur-
rent (or active) objects and protocols for passing messages between them.
Statecharts seem to be one of the most appropriate ways of modeling the be-
havior of concurrent objects. Based on statecharts we defined an executable
formalism, called scalable statechart, for effective modeling of object-oriented
concurrent applications with respecting of homogeneous object model.
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1. Introduction

Object-oriented concurrent programming is based on object-oriented program-
ming methodology, which is known at this moment as a top methodology for
developing reusable applications. This methodology is conceptually simple and
wide applicable and is based on two fundamental concepts:objects (that identify
knowledge) and message passing (that is an unified protocol for communicating
between objects).

The idea of building programming languages that can integrate the object- ori-
ented programming mechanisms with concurrency mechanisms is very attractive.
To achieve an optimal integration of these mechanisms is very useful to identify ob-
jects as activity units and to associate synchronizing code at the message passing
level. These objects are often called concurrent objects, active objects oractors.
The result of this unification is the integration of all the object-oriented program-
ming and concurrency concepts and it allow the programmer not to be explicitly
involved in establishing the synchronization discipline.

In section 2 we will describe and detail the key concepts of the object-oriented
concurrent programming. Section 3 contains the structural description of a general
concurrent (active) object that belongs to homogeneous object model, based on
studies realized on over 100 object-oriented concurrent languages [SUC98].

Statecharts represent a visual formalism for describing states and transitions
in a modular fashion, enabling nesting, orthogonality and refinement [HAR87],
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[OMG99]. Statecharts are used for specifying objects behavior in designing com-
plex systems. In section 4 we propose an extension of statecharts for modeling the
behavior of concurrent (active) objects. The formal description of our statechart,
called scalable statechart, proves its consistency and executability.

2. The context of object-oriented concurrent programming

In object-oriented concurrent programming a system is viewed as a physical
simulation model of real or conceptual world behavior. This physical model is
defined with a particular programming language and is materialized through an
application.

Objects are key elements of object-oriented concurrent programming and they
represent real or abstract entities with clear defined role into a system. An ob-
ject has identity, state and behavior. All that an object knows (state) and can
do (behavior) is expressed by sets of properties (orattributes) and operations (or
methods). The state of an object is given by the values of its properties. The
operations implement the object’s behavior and they are procedures or functions
that eventually modify the value of properties.

The object-oriented concurrent applications are composed by a set of objects
that interact and communicate between them through messages. A message is a
request for execution of an object’s operation and it is composed of three elements:
the identity of the receiver object, the name of the requested operation and a list
of parameters. The mechanism of message passing allows objects to comunicate
between them even if they are in different processes, contexts and/or computers.
Because the entire activity of an object is revealed by its operations, the mechanism
of message passing can express all the possible interactions between objects.

The process of identification of sets of objects with common properties and be-
haviors is called classification. The class is another key concept of object-oriented
concurrent programming and represents the abstraction of the common elements
(properties or operations) shared by a set of objects and describes their implemen-
tation.

The objects are concrete representations of classes and the process of building a
particular object based on its class definition is called instantiation. The concur-
rent feature of a programming language represents the capacity of that language
to express a potential parallelism. The object-oriented concurrent languages al-
low building applications where two or more operations are parallely executed, in
distinct threads.

Based on the nature of relation between objects and threads, the concurrent
object models can be classified in three categories: orthogonal, homogeneous and
heterogeneous [PAP89].

In orthogonal approach the objects and threads are viewed as independent con-
cepts. The objects are not implicitly protected by concurrent operation calls. Thus
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the protection of the internal state is explicitly realized through low-level synchro-
nization mechanisms, like semaphores or conditional critical regions [PHI95].

The homogeneous approach introduces the concept of concurrent (or active)
object. An active object is an object that controls and schedules the execution of
its operations. Active objects own threads, which in most homogeneous object
models are implicitly created when a message is received. These objects may or
may not be implicitly protected by external concurrent calls and contain specific
mechanism for explicit protection of their internal state (method guards, behavior
abstractions, enable sets etc [PHI95]). The logical conditions used in synchronizing
the concurrent operations of active objects are called synchronization constraints.

In heterogeneous approach there are two kinds of objects: active and passive.
Passive objects not own threads, are not protected (implicitly or explicitly) by
external concurrent calls and their operations are executed in threads owned by
caller objects.

3. The homogeneous concurrent object model

As we stated in section 2, the active objects that belong to homogeneous con-
current object models can control and schedule the receiving messages to protect
their internal state by concurrent operation calls. The protection is implicit, when
mechanisms with external control are used (monitor-like mechanisms) or explicit,
in case of mechanisms with mixed or reflective control (method guards, enable sets
etc) [SUC98].

In figure 1 is presented the structure of a general active object. The inter-
face manager is a special entity located at each active object level. This entity
controls and schedules the received messages and is materialized into a particu-
lar programming language by a distinct thread, a locking mechanism or a special
object encapsulated in the kernel of active objects.

The interface manager controls the messages handling through asynchronous
executions of associated operations based on object’s state, synchronization con-
straints values and/or current executed operations. The messages scheduling is
achieved through a special structure called messages queue, which retains all re-
ceived and not handled messages. The interface manager, the messages queue, the
properties and the synchronization constraints are not externally visible. Further-
more, just a subset of operations is visible and this subset represents the interface
of the active object.

4. Scalable statecharts

In this section we define an extension of statecharts formalism for modeling
the behavior of active objects corresponding to homogeneous object model. We
define the scalable statecharts in an incremental way, starting from finite state ma-
chines (that we will call level 0 scalable statecharts) and adding elements to handle
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Figure 1. The structure of a general active object

the depth, orthogonality etc. For each intermediary statechart, the configuration
and execution notions will be defined. The approach of definitions is a composi-
tional one, where the execution of a statechart can be expressed by the executions
of its components. The scalable statecharts represent an original way of model-
ing active objects behavior. They are closely related with particular concurrent
object-oriented concepts, like messages, operations, properties orsynchronization
constraints. Therefore, the scalable statecharts are specialized versions of state-
charts used in reactive systems modeling and they extend UML statecharts with
specific elements of homogeneous object model presented in section 3.

4.1. Level 0 scalable statecharts (SS0). Definition 1. A level 0 scalable
statechart of a class K is a tuple: SS0

K = (M, S, s0, SF , T ; saC), where:

• M - is a finite set of messages. We will consider, without affecting the
generality, that the messages signature do not contain parameters. The
generalization of statecharts considering messages parameters is imme-
diately and does not affect the semantics of statecharts execution. We
will use ⊥ to symbolize the empty message.

• S - is a finite, non-empty set of states,
• s0 ∈ S - is the initial state,
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• SF is a finite set of final states. When SF is empty, the modeled objects
can not destroy themselves.

• T ⊆ S × M × (S ∪ SF ) is a finite set of transitions. A transition
(s′, m, s′′) ∈ T means that if an object is in state s′ and receives the
message m then, after handling of message m (in fact, after terminating
of execution of the attached operation), the object will be in state s′′.

• sa ∈ S - the active state of the statechart in a given moment,
• C ∈ M∗ is a finite sequence of messages, and models the messages queue

of an active object. We will figure with C = m0̂ Cr, where m0 is the
first message of the sequence and Cr represents the rest of sequence (the
symbol ̂ denotes the operation of concatenation).

Figure 2 contains an example of a SS0 statechart and its visual representation.
The structure of the modeled class (Bottle) is defined in the same figure using
UML notation.

The first five elements of SS0 form the static component and they describe
the structure of the statechart. These five elements are shared by all objects of
class K for which SS0

K is defined and they are not modified by objects execution.
The dynamic component consists of active state sa and messages queue C and
not describes the objects behavior. We will use the dynamic component for the
execution of statechart.

Definition 2. The configuration of a SS0 statechart is a tuple: (s,a m 0̂Cr) ∈
S × M∗, where sa is the active state and m0 is the first message from queue C at
a given moment. The initial configuration of a SS0 statechart is given by tuple
(s0,⊥).

The execution of an active object modeled with a SS0 statechart lay in sequen-
tial interpretation of messages from the queue C. The interpretation of a message
implies the modifying of statechart configuration or the returning of that message
in the queue C.

Definition 3. The interpretation of a SS0 statechart configuration is a func-
tion: δ0 : S × M∗ → (S ∪ SF ) × M∗,

δ0(sa, m0̂ Cr) =






(s′, C′

r), if ∃(sa, m0, s
′) ∈ T

(sa, C′

r), if there is no (s1, s2 ∈ S : (s1, m0, s2) ∈ T

(sa, C′

r̂m0), otherwise

In parallel with the interpretation of a configuration, the queue C may suffer
some modifications. In the above definition of function δ0 it is possible that Cr 6=
C′

r (in general, C′

r = CR
r , where R ∈ M∗ represents the sequence of messages

received by an object in the time of interpretation).
The interpretation of a SS0 configuration models the functionality of the in-

terface manager of active objects. A message will be accepted and its attached
operation is executed if the message labels a transition that leaves the active state
or if it does not appear in any transition label. Otherwise, the message is returned
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Figure 2. Graphical representation of SS0statecharts

in the message queue. When it exists more than one transition labeled with the
same message which leaves the active state, the selection of the interpreted tran-
sition is non- deterministic. To avoid the non-determinism from statecharts is
possible to attach priorities to transitions.

Definition 4. The execution of a SS0 statechart is a finite or infinite sequence
of configuration interpretations, starting from the initial configuration, and it is
denoted by:

(so,⊥)
δ0

−→ (s1, m1̂ Cr1)
δ0

−→ ...
δ0

−→ (sk, mk Ĉrk)
δ0

−→ ...,

where s0, s1, , sk, .. ∈ S, m1, ..., mk, ... ∈ M and Cr1, ..., Crk, ... ∈ M∗. The execu-
tion is finite if a final state becomes an active state.

A possible execution of an object of class Bottle defined in figure 2 is:
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(Empty,⊥)
δ0

−→ (Empty, < Fill >< Fill >< Capacity >)
δ0

−→

(Full, < Fill >< Capacity >< Break >)
δ0

−→

(Full, < Capacity >< Break >< Fill >)
δ0

−→

(Full, < Break >< Fill >)
δ0

−→ (F, < Fill >).
The message queue C described in definition 1 models a particular mechanism

for choosing the next handled message. This mechanism was selected to sim-
plify the description of interpretation and execution notions. In general, the syn-
chronization mechanisms used in object-oriented concurrent languages are more
complex, and allow attaching priorities to messages or have particular policies
of selecting of the right message. These mechanisms can be modeled by replac-
ing the queue C with the pair (C′, pol), where C′ ∈ M∗ and pol is a function
pol : M∗ → M that describes the choosing policy of a message from the set of
received messages, modeled by C′. In this case, in all previous expressions the
message m0 will be replaced with pol(C′).

4.2. Level 1 scalable statecharts (SS1). We will attach to SS0 statecharts the
notions of depth and orthogonality introduced in [HAR87]. Because these exten-
sions allow objects to be in more than one state, in distinct orthogonal compo-
nents, we will extent the definitions of configuration, interpretation and execution
of statecharts.

The notions of depth and orthogonality are modeled in SS1 through a hetero-
geneous tree. The root of the tree and the intermediary nodes from even levels are
states and the nodes from odd levels are orthogonal components (figure 3). We
consider that all states have at least one orthogonal component and each orthogo-
nal component can have zero or more states. The three types of states introduced
in [HAR87] can be unitary modeled in this way:

• the simple states are states that have only one empty orthogonal com-
ponent,

• the composed states (OR-states) are states that have only one non- empty
orthogonal component,

• the orthogonal states (AND-states) are states that have more than one
non-empty orthogonal components.

Definition 5. A level 1 scalable statechart of a class K is a tuple: SS1
K =

(M, S, O, sR, SF , (stSucc, stInit, ortSucc), T ; Sa, C), where:

• M - is a finite set of messages,
• S - is a finite, non-empty set of states,
• O - is a finite, non-empty set of orthogonal components,
• sR ∈ S - is the root of the states hierarchy,
• SF is a finite set of final states. To preserve the consistency of our

model we will presume that all the final states will be successors of
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Figure 3. Graphical representation of SS1 statechart
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orthogonal components from the root state sR. Thus we will eliminate
the termination transitions proposed in UML [OMG99] without affecting
the modeling power of the statecharts.

• functions that defines the states hierarchy:
– stSucc : O → ℘(S ∪ SF ), where stSucc(o) = s1, s2, ..., sn is the set

of sub-states of the orthogonal component o, with the restriction
that ∀o1, o2 ∈ O if we have stSucc(o1) ∩ stSucc(o2) = φ;

– stInit : O\{o : stSucc(o) = φ} → S, stInit(o) = s0 ∈ stSucc(o),
the initial sub-state of the orthogonal component o (stSucc is de-
fined only for non-empty orthogonal components);

– ortSucc : S → ℘(O)\{φ}, where ortSucc(s) = o1, o2, ..., om is the
set of the orthogonal components owned by the state s, with the
restriction that ∀s1, s2 ∈ S we have ortSucc(s1) ∩ ortSucc(s2) = φ

(a state has at least one orthogonal component);
• T ⊆ ℘(S\{sR}) × M × ℘(S\{sR}) is a finite set of transitions. A tran-

sition (s′1, ..., s
′

i), m, s′′1 , ..., s′′j ) ∈ T means that if an object is in source
states s′1, ..., s

′

i ∈ S\{sR} (each source state is located in distinct orthog-
onal components of a state from S) and receives a message m then, after
executing the operation associated with m, the object will enter in des-
tination states s′′1 , ..., s′′j ∈ S\{sR}. The root state can’t be source nor
destination for a transition and the sets of source states and destination
states do not contain states that include each other.

• Sa ⊆ S ∪ SF - is the set of active states of the statechart in a given
moment with the restriction that ∀sa ∈ Sa, ortSucc(sa) = φ,

• C ∈ M∗ is a finite sequence of messages, and models the messages queue
of an active object.

If an instance of class Bottle (modeled in figure 3) is in state Full then, cor-
responding to the states hierarchy, the instance it is in states Normal and Bottle
too. To define in a unique way the configuration of a SS1 statechart we extended
the notion of active state. In definition 5 an active state of a SS1 statechart has
the property that is a simple state (has only one empty orthogonal component).
Corresponding to definition 5, for the example from figure 3 the only states that
can become active are Empty, Full and F .

Definition 6. A pseudo-active state is a composed state that contains an active
sub-state. We denote with Spa ⊆ S the finite set of pseudo-active states of a SS1

statechart in a given moment.
A SS1 statechart can have more than one active state, each located in distinct

orthogonal components of a pseudo-active state. It is obviously that the root state
sR is always pseudo-active.

If a composed state is a destination state of a transition and the transition is
triggered, then its initial sub-states will be activated. We will define a recursive
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function that will be used to determine the active states when a statechart enters
in a composed state.

Definition 7. The activation function is a function that associates to each
state s ∈ S its simple or final sub-states that will be implicitly activated when an
SS1 statechart enters in state s. We will denote this function: activ : S ∪ SF →
℘(S ∪ SF ),

activ(s) =

{
s, if (s ∈ S, ortSucc(s) = 0, stSucc(0) = Φ)0rs ∈ SF⋃

0∈ortSucc(s) activ(stInit(0)), otherwise

The global activation function, denoted by:

Activ : ℘(S
⋃

SF ) → ℘(S
⋃

SF ), Activ(S′) =
⋃

s∈S

activ(s),

associates to a set of states their implicitly activated sub-states.
Definition 8. A configuration of a SS1 statechart is a tuple (Sa, m0̂ Cr),

where Sa ⊆ S is the finite set of active states and m0̂ Cr ∈ M∗ represents the
content of the messages queue C in a given moment. The initial configuration of
a SS1 statechart if given by (active(sR),⊥).

Definition 9. The interpretation of a SS1 statechart configuration is a func-
tion: δ1 : ℘(S) × M∗ rightarrow℘(S

⋃
SF ) × M∗,

δ1(Sa, m0̂ Cr) =






(Activ(S”), C′

r), if(S′, m0, S”) ∈ TsiS′ ⊆ Sa ∪ Spa

(Sa, C′

r), if∃S1, S2 ⊆ S : (S1, m0, S2) ∈ T

(Sa, C′

r̂m0), otherwise

Definition 10. The execution of a SS1 statechart is a finite or infinite sequence
of configuration interpretations, starting from the initial configuration, and is de-
noted:

(active(sR),⊥)
δ1

→ (S1, m1̂ Cr1)
δ1

→ ...(Sk, mk Ĉrk)
δ1

→ ...,

where S1, ..., Sk, .. ⊆ S, m1, ..., mk, ... ∈ M and Cr1, ..., Crk, ... ∈ M∗. The execu-
tion is finite if the set of activated states contains at least a final state.

A possible execution of the statechart for an object of Bottle class (figure 3) is:

(Empty,⊥)
δ1

→ (Empty, < Empty >< Fill >< Capacity >)
δ1

→

(Empty, < Fill >< Capacity >< Empty >)
δ1

→

(Full, < Capacity >< Empty >< Break >)
δ1

→

(Full, < Empty >< Break >)
δ1

→ (Empty, < Break >)
δ1

→ (F,⊥).

5. Conclusions

In the third section we ascertained a general structure of active objects. The
implementation of this model is retrieved in most concurrent object-oriented lan-
guages that use synchronization mechanisms that belong to homogeneous concur-
rent object models. In section four we propose a formalism for modeling of active
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objects behavior, called scalable statechart, that is based on statecharts visual for-
malism described by Harel in [HAR87]. The executability of scalable statecharts is
a fundamental feature for automatization of active objects implementation. More-
over, the executability allows testing, simulating and debugging of active objects at
the same level of abstraction as their behavioral model. In this way the conceptual
gap between the formal models of active objects behavior and debugging at their
source code level is avoided. Because the scalable statechart was defined having
in mind a general model of active objects, it can be used for code generation in
any concurrent object-oriented programming language that contains communica-
tion and synchronization mechanism belonging to homogeneous approach. This
property gives more flexibility in translation of behavioral models in source code.
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