
STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

A COMPONENT BASED APPROACH FOR SCIENTIFIC

VISUALIZATION OF EXPERIMENTAL DATA

DUMITRU RADOIU AND ADRIAN ROMAN

Abstract. The paper addresses the issue of component-based scientific vi-
sualization systems as a solution to most of the standard/commercial visual-
ization system problems. The visualization process is requested to meet the
process validation criteria. The visualization system is requested to observe
a reference model. The benefits are discussed on a detailed component based
visualization system.

Keywords: scientific visualization, software components, visualization
reference model, and visualization process validation

1. Introduction

The commercial visualization systems, the so-called “turn key systems, are easy
to use but they have some disadvantages [1]:

• they are expensive;
• they run on pretentious platforms;
• they are “rigid, meaning that one can not use more than one instance of

a visualization module. Several instances of the same module allow the
simultaneous execution of several sets of input data;

• their modules can not be used to build other systems;
• the implemented algorithms are not always the algorithms desired by

the user;
• the functionalities of a turn key system are “fixed, they can not be

changed by the user.

This article proposes a new approach of the visualization field. Three goals are
to be reached:

a.: Description of a reference model for the visualization process;
b.: Formulation of some criteria for the validation of the scientific vi-

sualization process ;
c.: Description of a software component model used to build personal-

ized visualization systems. Such a model allows the rapid construction
of visualization systems using modules that implement the desired algo-
rithms.

50

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 51

The reference model represents an abstract view of the visualization process.
It uses the concept of level. A level is seen as a distinct stage of the process that
accepts data and services of a certain format as input. The result is a new set of
data and services offered as input to the next level.

The reference model also serves to standardize the terminology, as well as to
compare the visualization systems and to identify the constraints imposed by the
process.

The validation of the scientific visualization process determines whether
the process results in a scientific visualization.

The model of the component-based visualization systems is supposed to
suggest some formalization capable to offer proper answers to the following ques-
tions: How does a software component behave? How are the interfaces between
two components described? Which are the conditions that allow the composition
of two or more components?

The idea of the component-based visualization systems is to use independent
components to construct personalized visualization systems in order to obtain
optimum and flexible systems that include a large variety of functionalities. A very
important advantage introduced by this model is that the visualization systems
can include user-made components, implementing the desired algorithms. The
construction of components implies a large agreement upon the different data
models, upon a formal model for time-sometimes the time being a critical variable–,
upon a user model, etc.

2. Towards a reference model

In order to describe the reference model for the visualization systems a “de-
composition” of the visualization process is performed. The identification of the
“levels” used for the data processing allows a better understanding of the condi-
tions that must be imposed on the visualization function. The proposed model [2]
contains three levels: modeling level, logical visualization level and physical
visualization level.

The modeling level only “extracts” from the data set the information of
interest, allowing a global processing of the data. This level performs operations
such as extraction of the data geometry, sub-sampling or re-sampling, extraction
of the data set characteristics, etc.

The data objects are passed to the next level, the logical visualization level,
where they are “factorized” into primitive data and mapped to glyphs and graphic
primitives. A set of functionalities is implemented at this level, e.g. the choice of
the visualization primitives, of the optical characteristics of objects, the computa-
tion of the optical properties of scenes, the light settings etc. Interaction elements
are also present, performing rotations, translations, zooming.

52 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 1 The architecture of a visualization system for experimental data.

The physical visualization level includes the choice of visualization medium
and classical tools are available to perform the hidden surface removal, shading,
lightning, etc.

Figure 1 proposes the architecture of a visualization system for experimental
data following the above-described model.

3. Validation of the scientific visualization process

Scientific visualization is a computational process that transforms scientific
data in visual objects [3]. Not all visualizations are scientific ones. A scientific
visualization guaranties a certain degree of accuracy. In order to state conditions
to be fulfilled by a scientific visualization, some mathematical structures over data
sets are introduced.

3.1. Basic concepts and definitions. The idea of using the mathematical struc-
tures defined over data sets to find conditions imposed on the visualization function
has been promoted by many authors [4], [5], [6], [7], [8].

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 53

Scientific data can be obtained in many different ways, e.g. by running a simula-
tion or through a DAQ process. Usually, scientific data objects are finite represen-
tations of complex mathematical objects. We note by O the set of such objects,
o ∈ O. During the visualization process, initial data objects, o, are processed
through different transformation functions Mat(o) = o′, into a new set o′ ∈ O′.
Objects o′ are then mapped Map(o′) = g into a set of ideal geometrical objects
g ∈ G, through a set of graphical primitives. Objects g are usually n-dimensional
(nD), animated (t) and interactive. A group of g objects is usually called the
logical visualization of a scene.

Ideal geometrical objects g, nD, animated (t) and interactive are usually repre-
sented Rep(g) = g′, g′ ∈ G′, on real 2D screens. A group of g′ objects is usually
called a physical visualization of a scene. Functions Rep(g) = g′ implement
classical graphical operations such as composition of the scene, volume generation,
isosurface generation, simulation of transparency, reflectivity and lighting condi-
tions, nD → 2D projection, clipping, hidden surface removal, shading, animation
(t), setting user interactivity (zoom, rotate, translate, pan, etc), etc.

By interactivity we understand the attributes of visual objects (logical and/or
physical) whose setting allows nD → 2D projection (zoom, rotate, translate, pan,
etc), animation control (t), control of the objects composing the scene and control
of the scene as a composite object.

The scientific visualization process is described by the V is(o) = g′, V is(o) =
Rep(Map(Mat(o))) = g′ function.

The above concepts and notations are synthesized in the table 1 (see Appendix).

3.2. Fundamental conditions of scientific visualization. There are many
requirements concerning a certain process of scientific visualization. Here are the
three fundamental ones.

The first one is the distinctiveness condition. This condition (although
very weak) enables users to distinguish between different data objects based on
their display. The condition is necessary as one can imagine many visualization
functions that generate images with no use, which reveal none of the data objects
characteristics/attributes.

The second condition is the so called the expressiveness condition. It assures
that the attributes of the visual object represent the attributes of the input data
set.

The third one is the precision condition. This condition insures that the
order among data objects is preserved among visual objects.

The distinctiveness condition. em Different input data (different mathemat-
ical objects) have to be mapped into different visual objects.

This can be stated as: o1 6= o2 ⇔ V is(o1) 6= V is(o2) ⇔ Rep(Map(Mat(o1))) 6=
Rep(Map(Mat(o2))) ⇔ g′1 6= g′2 for any o1, o2 ∈ O, g′1, g

′

2 ∈ G′

54 DUMITRU RADOIU AND ADRIAN ROMAN

The interpretation of this condition is that V is(), Mat(), Map() and Rep()
functions are injective.

The expressiveness condition. The visual objects express all and only the char-
acteristics of input data.

It results that the visualization function should be bijective/one to one.
The two conditions are necessary but not sufficient. Another condition is needed

to establish an order relation, seen as a precision relation.

The precision condition. For any objects on, om ∈ O such that on is “more
precise” than om we have V is(on) ”more precise” than V is(om),with V is(on),
V is(om) ∈ G′.

The precision relation adds something new. If the visualization function is well
defined and the input data objects are strictly ordered, the visual objects can be
ordered by precision.

The first two conditions introduce criteria of validation and control of the visu-
alization process. The visualization function V is() fulfilling these criteria results
in a scientific visualization. The third condition allows further developments by
defining mathematical operations on the given ordering.

The mathematical structures and the other notions presented above are later
used to support the main ideas of this paper.

4. Component based visualization systems

The alternative to the acquisition of commercial visualization systems and their
parameterization to fit to the user’s problem is the use of components. These
are pre-made complex functional entities, that can be (re)used to construct the
desired architecture of a visualization system. A component performs a specific
visualization task, which can be isolated inside the system.

A component can be a class or a collection of classes. Unlike classes, a compo-
nent can be implemented using a technology that is completely different from the
object oriented one, e.g. an assembling language. Classes are some how similar to
components, but the object-oriented technology has not imposed or hasn’t been
able to impose components. One of the reasons is that the definition of the ob-
jects is a purely technical one. An object represents the encapsulation of a state,
of a behavior, polymorphism and inheritance. The definition does not include the
notions of independence and forward composition. Components as well as objects
are re-usable. Components’ description has to be more general in order to be capa-
ble to assure their independence and reusability. Finally, the interaction between
components has to lead to a functional system.

Considering the reference model introduced in the section 2, we conclude that
a component-based visualization system resembles figure 2, where each rectangle
represents a component.

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 55

Fig. 2 The architecture of a component based visualization system

Fig. 3 The graphical description of a software component

4.1. Software Components.

4.1.1. Basic Notions and Definitions. A software component is a binary program
that represents the physical encapsulation of related services according to a pub-
lished specification. [9]

A software component can be seen as an interactive system that communi-
cates asynchronously through channels. The services implemented can be accessed
through a consistent and published interface that includes an interaction standard.
A component has a black-box view captured by the published specification, and a
white-box view showing implementation details.

The interface defines a set of channels C, divided in a subset A = A1, A2, ..., An

of the input channels and a subset B = B1, B2, ..., Bm of the output chan-
nels, meaning that C = A

⋃

B. A component can be described graphically as in
figure 3.

Any component implements a function F :

F : Xn → Y m, (x1, x2, ..., xn) → (y1, y2, ..., ym)

56 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 4 The way a software component works

which assigns an output on m channels to an input on n channels. In other words
it assigns the output data (y1, y2, ..., ym) to an input data (x1, x2, ..., xn). The
inputs are timed streams of messages. The component sends new outputs every
time the inputs change. This is why a software component can be seen as a system
that communicates asynchronously (the component waits for a message; when it is
received the component processes it and the result is sent to the output; then, the
component waits for the next message). A message can be a string of characters,
a binary number, a decimal number etc. Each channel has a stream of messages
attached, representing all the messages received (sent) through that channel.

A component needs a time t in order to process a message. We consider that the
inputs are introduced at the given moments: t0 = 0, t1 = τ , t2 = 2τ, ..., tn = nτ.

That means that the n-th message is accepted by the component only at the tn
moment.

Consider the input stream of messages x. The following notations are intro-
duced:

• x(n) - the string of the first n messages (until the moment tn) from x;
• xi

n - the input message on the channeli at the moment tn;
• F (x) - the stream of messages assigned to the output channels for the

input x;
• F (x)(n) - the first n messages from F (x);
• F i

n(x) - the output message on the channel i at the moment tn;
• Fx- the set of messages assigned to the output channels for the input x;
• Ax - the subset of the input channels for which the input is different

from zero, assigned to the input x(Ax ⊆ A);
• BF (x)- the subset of the output channels for which the output is different

from zero, assigned to the output F (x)(BF (x) ⊆ B).

The way a component works is described in Fig. 4, or simplified in Fig. 5.
The following definitions are introduced:

(a): The function F is consistent if forx = z ⇒ F (x) = F (z), for any
streams of messages x and z.

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 57

Fig. 5 A simplified scheme of the way a software component works

Fig. 6 A simplified scheme for a deterministic behavior of F

The function F is consistent if for identical inputs, identical outputs
are obtained.

(b): The function F is causal if for any n natural the following condition
is fulfilled: x(n) = z(n) ⇒ F (x)(n) = F (z)(n).[9]

If the function F is causal then it is also consistent. The processing
time for a causal function is τ = 0. Such a component can not be
constructed. We call it ideal.

(c): The function F is strictly causal if for any n natural the following
condition is fulfilled: x(n) = z(n) ⇒ F (x)(n + 1) = F (z)(n + 1).[9]

We consider F (x)(0) = F (z)(0).
A real component is always strictly causal, meaning that the output

at the moment tn+1 corresponds to the input at the moment tn. This
component can be implemented because the processing time is τ > 0.

(d): The function F is realizable if there is a function strictly f : Xn →

Y m such that for any input x we havefx ∈ Fx (the output determined
by f belongs to the set of the outputs determined by F).[9]

We denoted by fx the set of messages assigned by the function f to
the output channels, for the input x.

A function f with fx ∈ Fx for any input leads to a deterministic
behavior of the function F (Figure 6).

(e): The function F is fully realizable if it is realizable and for any input
x there are p functions strictly causal f i

x : Xn → Y m, i = 1, ..., p such
that [9] Fx = ∪

p
i=1f

i
x

This property guarantees that for every output there is a strategy
(a deterministic behavior) that produces this output (Figure 7).

58 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 7 Graphical description of a fully realizable function F

Fig. 8 Two composed components

Fig. 9 Two composed components seen as one

(f): The functionF is time-independent if the timing of the messages in
the input streams does not influence the messages in the output streams
but only their timing. [9]

4.1.2. Composition Rules. Channels are assumed to have a type from a given set
of types T assigned. A type is a name for a set of data elements. We consider the
function type that assigns a corresponding type from the set T to each channel
from the set C (type: C → T).

Definition: Two components that implement the functions F1 and F2, are said
to be composed if output channels of the first component are used as input for
the second one (See Figure 8).

Remarks:

• Finally the two components can be seen as one (Figure 9).

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 59

Fig. 10 Three composed components

Fig. 11 A detailed view of two composed components

• The definition can be restated for more than two components (Figure
10).

We can say that the composition of two components is reduced to the existence
of common elements in the sets B1 and A2, where B1 represents the set of output
channels of the first component A2 represents the set of input channels of the
second component. We can state that two components are composed if B1

⋂

A2 6=
Φ.

Condition. Two channels, one output B1
n and one input A2

m, can be used for
the composition of the components if and only if type (B1

n) = type(A2
m).

Consider two composed components (Figure 11).
The following properties can be stated:
a) A = A1

⋃

(A1B1), B = B2
⋃

(B1A2) , C = A
⋃

B.

b) Considering that the processing time for the first component is τ1 and for
the second one τ2, the processing time of the composed component is, τ = τ1 + τ2,
for the worst case

F =

F1, if Ax ⊆ AA1 and BF (x) ⊆ (BB2);
F2, if Ax ⊆ (AA1) and BF (x) ⊆ B2;
F1 ◦ F2, if AAA − x ⊆ A1 and BF (x) ⊆ B2.

c) Using the notations from the first part of the article we describe the function
that implements the composed component as follows:

60 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 12 A one input-one component

Fig. 13 Synthesis of the proposed visualization model

Remarks:

• F ◦

1 F2 means that for an input x we get: x → F1(x) → F2(F1(x)) ≡ F (x)
• The function described above does not include all cases. For example,

the function is not defined for Ax = A and BF(x) = B. These cases are
solved by decomposition, in order to fit into the given description.

4.2. The Visualization Pipeline Using Components. Consider the case of
one input -one output component. The function F describing the component is
considered to be time-independent (definition (f)). Two working steps can be
revealed: at moment t0 a message is introduced into the input channel and at
moment t1 the result is read from the output channel (Figure 12)

We considered that the implemented services are consistent (definition (a)).
The component is strictly causal (definition (c)) and fully realizable (defini-
tion (e)) because the strictly causal function needed is F .

The reference model introduced to describe the visualization process contains
three distinct steps (Figure 13).

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 61

Fig. 14 A component-based visualization system

Suppose that each step/function is performed by an independent component.
Then the visualization pipeline becomes the one in figure 14. The components
should take into account the scientific visualization criteria, meaning that the
Mat(),Map(),Rep() functions implemented by the components should be injective
and Vis() should be bijective.

A further decomposition can be performed. Each component can be obtained
from the composition of two or more components depending on the visualization
process. A personalized visualization system is obtained at this level.

4.3. Example: Visualization of natural gas reservoir using a component
based visualization system. In order to present a detailed component based
visualization system we consider the example of a natural gas reservoir. A nonuni-
form data set obtained using drills is visualized. The data set is processed using
two paths (Figure 15).

The filter component transforms the nonuniform input data into a uniform
data set using the geological characteristics of the underground and the methane
concentration. The filter also performs the sub-sampling of the data set. One of
the paths includes the intersection of the data set with a plane. The generation
of the isosurfaces represents another step of the modeling level.

The colors, the light, the position of the camera and other properties are set at
the logical visualization level. A human-computer interface (HCI) allows the user
to change the properties without interfering with the data flow.

Finally, two objects that can be rotated, translated and zoomed are obtained
(Figure 16): one used for the dimensional exploration of the deposit and another
for the visualization of the level lines. (The presented images were obtained using
the VTK library, and the components were implemented using Tcl/Tk)

5. Conclusion

The paper addresses the issue of component-based scientific visualization sys-
tems. The visualization process validation criteria are presented in detail and a
reference model for the visualization systems is proposed. The paper supports the
idea that a component- based architecture solves most of the standard/commercial

62 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 15 The architecture of a custom made system used to visualize a natural gas
reservoir

visualization system problems. It should be noted that the introduction of the
component-based technology does not solve lead automatically to the wide spread
of customizable scientific visualization systems unless a critical mass is reached.
The theory is supported by a detailed example of a visualization application of a
natural gas reservoir.

References

[1] Upson C., Faulhaber, Jr. T., Kamins D., Laidlau D., Schelgel D., Vroom J., Gurwitz R.,
van Dam A., The Application Visualization System: A Computational Environment for

Scientific Visualization, Computer Graphics and Applications, vol. 9, nr.4, 1989.
[2] Radoiu D., Roman A., Modelarea procesului de vizualizare, in Tehnologii Avansate Aplicatii

in educatie, Editura Universitatii Petru Maior, 1999, p.86-101
[3] Kaufman Arie, Nielson G., Rosenblum L. J., The Visualization Revolution, IEEE Computer

Graphics, July 1993, p. 16-17.
[4] Hibbard W., Dyer C., Paul B., A lattice Model for Data Display, Proceedings of IEEE

Visualization ’94, 1994, pp. 310 - 317.
[5] Hibbard Williams L., Dyer Charles R., Brian E. Paul, Towards a Systematic Analysis for

Designing Visualizations, Scientific Visualization, IEEE Computer Society, 1997, pp. 229 -
251.

[6] Radoiu D., Scientific Visualization of Experimental Data, Ph.D.Thesis, Universitatea Babes
Bolyai, 1999.

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 63

Fig. 16 The visualization of the natural gas reservoir

[7] Radoiu D., On Scientific Visualization Systems Design, Studia, 1998.
[8] MacKinlay, Automating the Design of Graphical Presentations of Relational Information,

ACM Transactions on Graphics, Vol.5, Nr.2 1986, pp.110-141.
[9] M.Broy, Software Concept and Tools, Springer-Verlag, 1998, 57-59.

[10] D. Radoiu, Vizualizarea Stiintifica a Datelor Experimentale, Editura Universitatii Petru
Maior, 2000.

Petru Maior University of Tirgu Mures

E-mail address: dradoiu@uttgm.ro

Polytechnic University of Bucharest

