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BLIND SIGNATURE AND BLIND MULTISIGNATURE

SCHEMES USING ELLIPTIC CURVES

CONSTANTIN POPESCU

Abstract. Blind signature schemes and blind multisignature schemes are
useful in protocols that guarantee the anonymity of the participants. In this
paper we propose an elliptic curve blind signature scheme and an elliptic
curve blind multisignature scheme. The proposed schemes are described in
the group of points on an elliptic curve because it offer equivalent security as
the other groups but with smaller key size and faster computation times.

1. Introduction

The concept of blind signature schemes was introduced by Chaum in 1982 [2]. A
blind signature scheme allows to realize secure electronic payment systems protect-
ing customer’s privacy [1], [3], [5]. Recent anonymous prepaid electronic payment
systems, based on the blind signature technique, emulate physical cash. In these
systems, the users withdraw electronic coins which consist of numbers, generated
by users, and blindly signed by an electronic money issuer. Each signature repre-
sents a given amount. These coins are then spent in shops which can authenticate
them by using the public signature key of the bank. The users retain anonymity
in any transaction since the coins they use have been blindly signed.

In a blind multisignature scheme [8], [10] we have one owner Alice, who wants to
obtain a digital signature from several signers, so that each signer doesn’t know a
relationship between the blinded and unblinded message and signature parameters.
This means they cannot recognize the signature later, even if they all collude. A
blind multisignature scheme can be used as a building block in cryptographic
applications, e.g. in electronic voting schemes [4].

In this paper we propose an elliptic curve blind signature scheme and an elliptic
curve blind multisignature scheme. The schemes proposed are described in the
group of points on an elliptic curve defined over a finite field. Elliptic curve groups
are advantageous because they offer equivalent security as the other groups but
with smaller key size and faster computation times.
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2. Elliptic Curves over Finite Fields

Many researchers have examined elliptic curve cryptosystems, which were firstly
proposed by Miller [15] and Koblitz [12]. The elliptic curve cryptosystems which
are based on the elliptic curve logarithm over a finite field have some advantages
over other systems: the key size can be much smaller over the other schemes since
only exponential-time attacks have been known so far if the curve is carefully
chosen [13], and the elliptic curve discrete logarithms might be still intractable
even if factoring and the multiplicative group discrete logarithm are broken.
Elliptic Curves over GF (2n): A non-supersingular elliptic curve E over GF (2n)
can be written into the following standard form

E : y2 + xy = x3 + ax2 + b, b 6= 0, a, b ∈ GF (2n).

The points P = (x, y), x, y ∈ GF (2n) that satisfy this equation, together with
a “point at infinity” denoted O form an abelian group (E, +, O) whose identity
element is O.

Let P = (x1, y1) and Q = (x2, y2) be two different points on E and both P and
Q are not equal to the infinity point. Addition law for E non-supersingular is as
follow: For 2P = P + P = (x3, y3), if x1 6= 0

x3 = δ2 + δ + a

y3 = (x1 + x3)δ + x3 + y1, where δ = x1 + y1/x1.

If x1 = 0, 2P = O. For P + Q = (x3, y3), if x1 = x2, then P + Q = O. Otherwise,

x3 = λ2 + λ + x1 + x2 + a

y3 = (x1 + x3)λ + x3 + y1, where λ = (y1 + y2)/(x1 + x2).

Elliptic Curves over GF (pn): A non-supersingular elliptic curve E over GF (pn),
p > 2 can be written into the following standard form

E : y2 = x3 + ax + b, 4a3 + 27b2 6= 0, a, b ∈ GF (pn).

For the addition law, for the elliptic curve E over GF (pn), see more details in [15].

3. Elliptic Curve Blind Signature Scheme

In this section we describe the elliptic curve blind version of the Harn’s signature
scheme [7]. We will use the same setup as suggested in IEEE P1363 standard form
[11].

3.1. Key Generation. Firstly, we choose elliptic curve domain parameters:

(1) Choose p a prime and n an integer. Let f(x) be an irreducible polynomial
over GF (p) of degree n, generating finite field GF (pn) and assume that
α is a root of f(x) in GF (pn).
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(2) Two field elements a, b ∈ GF (pn), which define the equation of the
elliptic curve E over GF (pn) (i.e., y2 = x3 + ax + b in the case p > 3),
where 4a3 + 27b2 6= 0.

(3) Two field elements xp and yp in GF (pn), which define a finite point
P = (xp, yp) of prime order in E(GF (pn)) (P 6= O, where O denotes the
point at infinity).

(4) The order q of the point P .
(5) The converting function c(x) : GF (pn) → Zpn which is given by

c(x) =

n−1∑

i=0

ckpi ∈ Zpn , x =

n−1∑

i=0

ckαi ∈ GF (pn), 0 ≤ ci < p.

The operation of the key generation is as follows:

(1) Select a private key d, a random integer, from the interval [1, q − 1].
(2) Compute the public key Q, which is a point on E, such that Q = dP .

3.2. Blind Signature Protocol. The following protocol is a blind version of the
Harn’s elliptic curve signature scheme.

(1) Alice generates a one-time key pair (k, R) in the following way: randomly

chooses k ∈ [1, q − 1] and compute R = kP = (x
k
, y

k
). She computes r

such that

r = c(x
k
) =

n−1∑

i=0

c
ik

pi, where x
k

=

n−1∑

i=0

c
ik

αi, 0 ≤ c
ik

< p.

and sends r and R to Bob.
(2) Bob chooses blind factors a, b ∈ [1, q − 1], computes the point R on E

such that R = aR + bP = (xk, yk) and computes r = c(xk). He also
computes m = (H(m) + r)a−1 − r, where H(·) is a hash function, and
sends m to Alice.

(3) Alice computes s = d(m + r) + k (mod q) and sends s to Bob.
(4) Bob computes s = as + b.

The pair (r, s) is an elliptic curve signature of the message m.

Theorem 3.1. The pair (r, s) is a Harn elliptic curve signature of the message

m and the above protocol is an elliptic curve blind signature scheme.

Proof: The validity of the signature (r, s) of the message m follows from the
next steps:

(1) Compute a point on E such that sP − (H(m) + r)Q = (xe, ye).
(2) Use the converting function to compute the integer c(xe) and check if

r = c(xe)(mod q). If this equation is true, then (r, s) is accepted as a valid
signature of the message m. It is easy to verify that sP −(H(m)+r)Q =
R.
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To prove that the above protocol is blind we show that for every possible signer’s
view there exists a unique pair (a, b) of blind factors, with a, b ∈ [1, q − 1]. Given
any view consisting of R, k, r, m, s and any valid elliptic curve signature (r, s) of a
message m, we consider

a = (H(m) + r)(m + r)−1(mod q)

b = s − as(mod q).

We have to show that R = aR + bP . We have aR + bP = akP + sP − asP =
akP + sP − aP (dm + dr + k) = sP − adP ((H(m) + r)a−1 − r) − adrP = sP −

dH(m)P − drP = sP − (H(m) + r)Q = R. 2

4. Elliptic Curve Blind Multisignature Scheme

In this section we describe the elliptic curve blind version of the Harn’s mul-
tisignature scheme [8].

4.1. Key Generation. The elliptic curve domain parameters are the same as in
Section 3. We assume there are t signers Ui, i = 1, ..., t. The operation of the key
generation is as follows:

(1) Each signer Ui randomly selects his private key di, an integer, from the
interval [1, q − 1].

(2) The public key of the signer Ui is the point

Qi = diP = (xdi
, ydi

), i = 1, ..., t.

(3) The public key for all signers is

Q = Q1 + ... + Qt = dP = (xd, yd),

where d = d1 + ... + dt(mod q).

4.2. Blind Multisignature Protocol. The following protocol is a blind version
of the Harn’s elliptic curve multisignature scheme.

(1) The user Ui generates a one-time key pair (ki, Ri) in the following way:
randomly chooses ki ∈ [1, q − 1] and computes Ri = kiP = (x

ki
, y

ki
).

The user Ui computes ri, i = 1, ..., t, such that ri = c(xki
) and sends ri

and Ri to the clerk.
(2) The clerk chooses the blind factors a, b ∈ [1, q − 1], computes the point

R on E such that R = aR + bQ = (xk, yk), where R = R1 + ... + Rt

and Q = Q1 + ... + Qt. The clerk computes r = c(xk)(mod q) and
m = (H(m) + r + b)a−1 − r, where H(·) is a hash function, and sends
m and r to each signer Ui.

(3) The user Ui computes the signature si = di(m + r) + ki (mod q), i =
1, ..., t and sends si to the clerk.
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(4) The clerk computes siP − (m + r)Qi = (xei
, yei

) and check ri = c(xei
)

(mod q), i = 1, ..., t. The elliptic curve blind multisignature of the mes-
sage m can be generated as (r, s), where s = s1 + ... + st(mod q) and
s = sa(mod q).

The pair (r, s) is a elliptic curve multisignature of the message m.

Theorem 4.1. The pair (r, s) is a Harn elliptic curve multisignature of the mes-

sage m and the above protocol is an elliptic curve blind multisignature scheme.

Proof: The validity of the elliptic curve multisignature (r, s) of the message m
follows from the next steps:

(1) Compute a point on E such that sP − (H(m) + r)Q = (xe, ye).
(2) Use the converting function to compute the integer c(xe) and check if

r = c(xe)(mod q). If this equality is true, then (r, s) is accepted as a
valid elliptic curve multisignature of the message m. It is easy to verify
that sP − (H(m) + r)Q = R.

To prove that the above protocol is blind we show that for every possible signer’s
view there exists a unique pair (a, b) of blind factors, with a, b ∈ [1, q − 1]. Given

any view consisting of Ri, ki, ri, si, m, r and any valid elliptic curve multisignature
(r, s) of a message m, we consider

a = ss−1(mod q)

b = (m + r)a − H(m) − r(mod q).

We have to show that R = aR + bQ. We have aR + bQ = a(R1 + ... + Rt)+ ((m +

r)a−(H(m)+r))Q = a(
∑t

i=1 siP−
∑t

i=1(m+r)Qi))+a(m+r)Q−(H(m)+r)Q =
asP − (H(m) + r)Q = sP − (H(m) + r)Q = R. 2

5. Security Considerations

Our elliptic curve blind signature and multisignature schemes are as secure as
the Harn schemes [7], [8]. But, our schemes is more efficient than Harn schemes
because the group of points on an elliptic curve offer smaller key size and faster
computation times. The signature schemes in [9] can provide similar elliptic curve
blind signature schemes and elliptic curve blind multisignature schemes. In order
to avoid the Pollard-rho [19] and Pohling-Hellman [18] algorithms for the elliptic
curve discrete logarithm problem, it is necessary that the number of Fq-rational
points on E, denoted #E(Fq), be divisible by a sufficiently large prime n. It is
commonly recommended that n > 2160. To avoid the reduction algorithms of
Menezes, Okamoto and Vanstone [14] and Frey and Ruck [6], the curve should be
non-supersingular. To avoid the attack of Semaev [20] on Fq-anomalous curves,
the curve should not be Fq-anomalous (i.e., #E(Fq) 6= q).

A prudent way to guard against these attacks, and similar attacks against spe-
cial classes of curves that may be discovered in the future, is to select the elliptic
curve E at random subject to the condition that #E(Fq) is divisible by a large
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prime - the probability that a random curve succumbs to these special purpose
attacks is negligible. A curve can be selected verifiable at random by choosing
the coefficients of the defining elliptic curve equation as the outputs of a one-way
function such as SHA-1 according to some pre-specified procedure.

6. Conclusion

In this paper we proposed an elliptic curve blind signature scheme and an
elliptic curve blind multisignature scheme. The proposed schemes are described
in the setting of the group of points on an elliptic curve because it offer equivalent
security as the other groups but with smaller key size and faster computation times.
Our elliptic curve blind signature and multisignature schemes are as secure as the
Harn schemes. These schemes are practical, requiring just a few exponentiations
or integer multiplications over a group.
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