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A GENERAL CLASS OF NONPRODUCT QUADRATURE
FORMULAS

PETRU P. BLAGA

ABSTRACT. Abstract. A general class of fifth degree approximate integra-
tion formulas for hypercubes is constructed. If the integrand is a real function
of n independent real variables, then a 2™ + (Z) 2k 41 point class nonproduct
quadraturae is obtained. A lot of known multiple quadrature formulas are
included in this class. In the particular cases n = 2, 3, comparative numerical
examples are considered.

1. INTRODUCTION

Here we consider an approximate evaluation to the multiple definite integral

1 1
(1) In[f]:[1...[1f(x1,...,xn)dx1...dxn.

A very wide class of 2"+ (Z) 2% +1 point nonproduct quadrature rules of 5th degree
is obtained. The evaluation points of integrated function f are symmetrically
placed inside of the domain S, = [—1,1]" of the integral I, [f]. As such the
rule is required to be exact for the monomials of degree 0, 2, 4. Constructed
approximate integration formulas extend the 2" +2n+1 point quadrature presented
in [2] and 2" + 2""'n + 1 point quadrature considered in [3], and also that of
Das and Pradham [5] (see also Blaga [1]). For n = 2 and n = 3 other known
multiple quadrature formulas are obtained: Blaga [1],[2],[3], Burnside [4] (see also
Stroud [9], p. 248), Hammer and Stroud [8] (see also Stroud [9], p. 231), Mustard,
Lyness, Blatt [7], and product Gauss formula (see Stroud [9], p. 249).

2. FIFTH DEGREE INTEGRATION FORMULA

Let us take the following N = 2™ + (’;)2”C + 1 points: (B1,...,06n), (V1s---37n)
and (0,...,0), where each §; (1 < ¢ < n) is either —Aa or +Aa, i.e. the corners
of the hypercube [—Aa, +Aa]”, and n — k (and only n — k) of the v; (1 <i < n)
are zero and all the others k of +; equal either —a or a (1 < k < n). On the
one hand we have that the number of (f1,...,8,) type points is 2", on the other
hand the number of (v1,...,7,) type points is (Z) 2% and the last type of points
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are situated at the corners of hypercubes [—a, oz]”C from the hyperplanes given by
zj, =0(s=1n—-k), 1 <ji < -+ < jo—k < n, respectively. Taking into
account that the center of the hypercube S,, is also considered it results that
N =2" 4+ (’;)2”C + 1. In order to all evaluation points belong to the hypercube
S, the real positive parameters A and « must satisfy the conditions @ < 1 and
Aa < 1.

We shall construct an approximate rule to I, [f] of the following type

Qui[fl=Aof 0,00+ A1)y flmn )
+A222f(615"'5ﬂﬂ)'

As we have seen, in the formula (2) the the first sum, ), has (’;)2”C terms, and the
second sum, » ,, has 2" terms. Such that the quadrature (2) will be a 2"+ (Z) 2F+1
point (generally) nonproduct formula.

The coefficients Ay, A1, As and the parameters o and A will be determined
such as to make the rule exact for all monomials of degree less or equal to five, i.e.

(2)

(3) Qnlfl=1n1[f],
for
(4) f:a:]fl...mfl", where 0< ki +---+k, <5.

We remark the exactness of the formula (3) for all monomials (4) containing at
least one odd power k;. On the other hand, taking into account that the formula
(2) has the evaluation points of the function f symmetrically situated over the
integration domain S,, (if @ € (0,1) and Aa € (0, 1]), we have to require that (3)
to be exact only for the monomials

(5) f = 15 x%? m%5m%xg)

to obtain a fifth degree exactness quadrature formula.
The exactness conditions of the formula (3) for the monomials (5) give the
following nonlinear algebraic system in Ag, A1, A2 and a, A:

Ao +(p)2rA +2" 4, =2"
(2:1)216042141 +2"A20% A, = %2”
(7 D2katA; +2mMatd4, = Llom
(2:5)2’“&4141 +2"A1at4, = 527,

(6)

with (") = 0.
To obtain the solution of system (6), we must remark the special case 5n — 9k +
4=0,1ie. (nk)e { (9+1,50+1) | £=1,2,... } . In this case, from the last
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two equations of (6), it is obtained that A; = 0, and the system (6) is equivalent
with

Ap +(})2k4, =27
(7) (i1)2fe®4r =527
~1\ok 4 _1
(h2tatay o

From the last two equations of (7) results that a? = %, and then

5 27171@ 2n+2
Al = F—— and Ag=——-
9 (kfl) 9%k
So, in this case we obtain the following (Z) 2% 1+ 1 point 5th degree formula
2n—k 2k+2
n = 0, ceey 0
Quilf) =25~ |5 00
(8) 5 \/§ \/§
0,....014/ = ...,/ =,...,0].
+(n—1) ‘ Z f( ) ) 57 ’ 57 ’ >:|
k—=1) 1<ii<--<ip<n T 1

i1 i
One remarks that the smallest n dimensional formula is obtained for n = 10
(k= 16), and it is a 13341 point 5th degree formula.
In the following we consider that 5n — 9%k + 4 #£ 0.
From the fourth and third equations of (6) we get

_ n—9k+4
45 (n — k) Mot

and then taking into account the second equation of (6) we obtain the following
equivalent relations between the parameters A and a:
a2_4(n—1)/\2+5n—9k+4 32 5n — 9k +4
B 15 (n — k) A2 ’ S 15(n—k)a2—4(n—1)
Finally, we get the solution of the system (6)

LBk (n—k) (ON*at —1) —4dn(n — 1) M + 4k (k— 1)

Az

Ay =2
0 45k (n — k) Mot
_ _2n+245k(/€— Da*—30k(n—1)a?+ (n—1) (5n+4)
45k (5n — 9k +4) ot ’
(9) 2n7k+2
Ay

~ Bt
e [15(n—k)a>—4(n-1)]"
T 45 (n—k) (5n — 9k + 4) ot
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Thus we have obtained the following quadrature rule

1 o 45k (k—1) a* =30k (n—1) a*+(n—1) (5n+4)
Qnilfl =ggoz| =2 k (5n — 9k + 4)
n—k+2
(10) Xf(oa"'70)+%Zl.f‘(’ylv"'v’yn)

(15 (n — k) a2 — 4 (n — 1)]?
e ) DAL

In the following table we resume the conditions for a? and A2 such that all eval-
uation points in the quadrature formula (10) are placed inside of the domain S,,.

a? A2

2(n—1) .1> (5n—9/€—|—4 5n—3k—2]

B+ 4> Ok :
nes [5n—3k—2’ 1n 15kt 4 2(m_1)

2(n—1) 9k —5n—4 5n—3k—2
4 S R '
Sn+4 < 9k (075n_3k._2:| ( 4(TL—]-) ’ 2(TL_]-) :|

For the first two values of n (n = 2,n = 3), the coefficients of quadrature
formula (10) and the relation between the parameters o and A are given in the
following table

Ay A Ay
2

o b1 32 (15a%—7) 8  (15a*—4) a2:4/\2—|—5
’ 22507 450t 22504 152

g g 32(300°-19) 16 (15a2—4)° N5
’ 22507 450t 22507 152

2 2

ey 2 [1-50322-2)"] g5 (1502-8) o 8A+1

’ 4507 450t 4bat 152

3. PARTICULAR CASES

1. Generalized Das-Pradham quadrature formula [5] (see also [1],[2] and [3]).

This quadrature is obtained considering o = 5721(1L?;€122 or equivalently \? = 5’21(_11 :’fl_)z
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(Aa=1). In this case from (9) we get
5n (5n — 9k — 4) + 4 (9% + 1)
45k (n — 1) ’
gn_ (5= 3k — 2)°
45 (n — 1) (k 1)

Ay = —2"

)

A — 5n—9k +4
T 45 (n—k)
and the corresponding quadrature formula is
[1] l aon(5n —9k +4) +4(9k + 1)
= -2
g (DT — 3k 2)?
(11) 49 k((n Z F e m)
on—9k+4
+szf(ﬁlvaﬂn):|

This formula has been constructed in [1].

We also remark that formula (11) gives the Das-Pradham quadrature formula
(see [5] and [3]), in the case k = n — 1, and Mustard-Lyness-Blatt quadrature
(see [7] and [2]), in the case k = 1.

2. Quadrature formula with the same coordinates of evaluation points. This
quadrature is obtained considering A? = 1 or equivalently a? = % In this case

from (9) we get

5+ 9k —5n 5 Qn—hk+2 5 bn—9k +4
Ag=2on2 T A= A= —
’ T T T TR
and the corresponding quadrature formula is
5+ 9k —5n
gnt2Z T 7
Qn k [f] 81 L f (07 70)
(12) +2n TR 7 Yo Fnm)
(k V
5(5n — 9k +4)
+?Z2f(ﬁlw'wﬂn):|'

Cases k = 1 and k = n — 1 are presented in [2] and [3] respectively. In the case
n = 2 the product Gauss quadrature formula is obtained (see [9], p.249) which
is also a particular case of Hammer and Stroud quadrature formula (see [6] and
[9], p. 231).

Here is also included the quadrature formula (8) (5n — 9k +4 = 0).
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3. Quadrature formula with Ay = 0. This quadrature is a nonproduct [Zk + (Z)} on—k
point of 5th exactness degree formula. From the condition Ay = 0, it results the
algebraic equation

(13) 45k (k —1)a* =30k (n —1)a® + (n — 1) (5n +4) = 0.
It must be considered the following two cases:
Case k = 1, when o? = 3244 or equivalently A? = =12 (A\%a? = 3(557:;:44))' One

remarks that only for 2 < n < 5 all evaluation points are inside of S,. Using
formulas (9) we have

2
A1:2n+3# A2: <57’L—4> .
(5n + 4)*’ 5n + 4

The corresponding quadrature has been given in [2].

In the case 1 < k < n, the equation (13) with the unknown o has real solutions
only for bn — 9k +4 > 0,ie. 2<k < [%], and necessarily n > 2.

Using results of the two cases and the formulas (9), in Table 1 we give the
admissible solutions and the corresponding elements of Qf}k [f] for n = 2,9.

Cases n =2 and n = 3 with k£ = 1 lead to the Burnside quadrature formula [4]
(see also [8], [9] p. 233 and p. 248, and [2], [3]), and respectively the Hammer—
Stroud quadrature formula [6] (see also [9], p.263 and [2]).

From the Table 1, we observe there are two formulas when n = 8, k = 4 and
n =9,k =5, and there not exists any quadrature when n =9,k = 2.

One also remarks that in the two cases the coefficients A; and A, are positive.

4. Quadrature with positive coefficients. We observe that all the time the
coefficient A; is positive. Consequently, in order to obtain quadrature formulas of
the type (10) with positive coefficients it must that Ag > 0 and Ay > 0.

Again, it must be considered the following two cases:

Case k = 1, when a? > %. One remarks that only for 2 < n < 5 all
evaluation points are inside of S,,. Using formulas (9) we have

3002 — 5n — 4 1 1
AO:2TL+2W>O’ A1:2n+1w>0, A2:W>O

Such a quadrature has been obtained in [2].

In the case 1 < k < n, from As > 0 and Ag > 0, it must be determined

a? e (%, 1) satisfying the inequality
45k (k — 1) a* =30k (n —1)a® + (n — 1) (5n +4) < 0.

Using results of the two cases, in Table 2 we give the admissible intervals of
parameter a? for n = 2,9.
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4. ERROR ANALYSIS

If the integrated function f € C%(S,,), then the Taylor’s formula is valid:
5 @
1 d 0
0 =33 (w50 + oot one ) 10)

1 d o\

T1—
8%1

Taking into account the error

R g [f] = In [f] = Qui [f] =0,

for all monomials f (z) = 2 .. .2k 0 <k + -~ 4 k, <5, it results that

9 9 (6)
<x18—xl N "'”"aT) f(g)] .

Moreover, having the evaluation points symmetrically situated inside of S, we
obtain that

1
Rn,k [f] = aRn,k

1 0% (€) 0°f (€)
Ry i [f] Zg{Rn,k [x‘ﬂz; 020 + 158y ¢ [2123] ” O} o’
= i i#j
2/ (6)
F90Rn k [#e3e5] D m}
i<j<e vt

and consequently

1
|Rn i [f]] < a{L |Rui [25]] + 15M | Ry i, [2123]| + 90N |Ryy i [272323] |},

where
n aﬁf (3:) a6f (JJ)
L = sup , M = sup ’
reSy, ; ax? TES, Py axfax?
f ()
N = sup 202072 |
z€Sal, 552, Ox70x30x]

It must observe the last term in these formulas is zero when n = 2. The general
error bound of quadrature in this case is given by:

1 /|1 4 1 5
R <— (|2 = —=a? = =X2a?| L+ |1 - =X\2a?| M
Rz /] 180(7 A K el R
1 1
=——— (= |35a*=51a® + 15| L+ |5a® — 3| M
135|15a2—4|<35| of = 51a” + 15| L+ [50® = 3| M | .
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and the corresponding error bounds for the quadrature formulas considered in the
previous section are:

a?

1 1 1
RS} [£1] < <370 <1—75L+M>

<
RELLS 7;75L, (o=

(-

(-

O’Yll\D
—
9]

@
@
o
~__

UYICO
||
ol w
N———

Ry 2M
21 /] < 1215 525 L ) “

Oy L+M
By 1] 2430 (105 *

We also consider the error bounds for n = 3, (k =1 and k = 2).
In the case k =1 we have

(07

wmr—l
' o1|\'
l\’)

I
NN
N~

1 /|1 4 1 4, 5
<_ ———2——)\22[/ 1——2——)\22M
[Ra.1 [£]] 90(‘7 A M R L S
1
+10‘§—)\2a2 N),

and in the particular cases from the previous section we get

RE) [f] s% (5—;5L+ §M+ ?N) , <a2 = % Aa? = 1) :
R 1) <5 (315L+M+130N> <a2=§, X"oﬂ:g),
REY [f) <%85 <1558775L+ 11—959M+40N> <a2 = :1,)—9 Aa? = %) :
R 1] <& (%LJr 5 M+ 10N) <a2 - % Na? = g)

In the case k£ = 2 we have:

1T/ 8 5 1.5,
<—(|z——=a®>— =)

1
L+ }1 ——a?- g)\2a2
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and in the particular cases from the previous section we get

RYL (/) <1_;>5 (315L+;M+2N> (&:%, A2a2:1>,
R <1i58 (;L+ 430N) (a2 =2 Wl = g) |
RE, 1] <635 (28\g1;55 + \/53_5M+4(5—\/5) N>,
<a2:10+\/57 )\2a2:8\/5—15>’
15 15
‘R[;f]z [f]‘ <% (%L+M) <a2 - ; A2a? = %) .

5. NUMERICAL EXAMPLES

To compare the quadrature rules obtained in the previous sections, we have
considered the four quadratures when n =2 (k=1) andn =3 (k=1 and k = 2).

The values of parameters «, A and the coefficients Ay, A1, Ao are given in
Tables 3-5.

Table 6, Table 7 and Table 8 contain the exact and approximate values obtained
by the four quadrature formulas, and also the error bounds, for the following four
integrated functions:

(1) f(zx,y) = m, with I [f] =In2 =1In 1.8,
(2) f = €™, with I [f] computed by series expansion,

(z,y) =
(3) f(x,y) = \/2+m+y,w1th12[f]:%(4—\/5),
(z,y) =

€,y
4) f(z,y 3+$+,Wlth]z[]Z%(5\/——6\/§+1),
respectively
(1) f(z,y,2) = m’ with I3 [f] = 3ln 352,
(2) f(z,y,2) = €™¥*, with I3 [f] computed by serles expansion,
(3) f(z,y, ) \/3+x+y+zw1th13[] (9f 16+\/—)
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n=2 n=3 n=4 n=>5
_ 2 T 19 ES 29
k=1 a 15 30 5 30
a 0.68313 | 0.79582 0.89443 0.98319
Ao || 0.88192 | 0.75879 0.70711 0.67847
A; || 0.81633 | 0.88643 1.11111 1.52200
Ay || 0.18367 | 0.33518 0.44444 0.52438
ke2 2 10+v5 5—/5 20—+/110
= « 15 5 15
a 0.90318 0.74350 0.79632
Ao 0.43883 0.85065 0.74595
Ay 0.26716 0.58179 0.58947
Ay 0.59926 0.12732 0.26316
— 2 30+4/30
k=3 @ a5
a 0.88791
Ao 0.45395
Ay 0.19068
Ay 0.52329
n=6 n="7 n==8 n=9
b2 2 5-2v2 | 10—v35 35—1/455
= « 3 5 15
a 0.85080 | 0.90376 0.95461
Ao || 0.70305 | 0.67850 0.66230
Ay || 0.67858 | 0.85273 1.14174
Ay || 0.36383 | 0.44039 0.50049
o3 2 || 15=v21 | 15—v/30 105—+/1785 60—2v165
= « 18 15 90 45
a 0.76075 | 0.79678 0.83500 0.87317
Ao || 0.81874 | 0.73528 0.69852 0.67680
A; || 0.35384 | 0.35288 0.39008 0.46602
Ay || 0.11539 | 0.22808 0.31736 0.38835
ed 2 20+v10 | 35—v70. 354+70 40—+/130
= @ 30 45 45 45
a 0.87868 0.76932; 0.98168 0.79719
Ao 0.46432 0.79396; 0.50845 0.72625
Ay 0.11929 0.20301; 0.07657 0.20122
Ay 0.47809 0.11185; 0.66501 0.20769
B B 10—v2. 10+v2
k=5 || « 5 5 15
a 0.75656; 0.87232
Ao 0.98850; 0.47210
Ay 0.12403; 0.07018
Ay 0.02327; 0.44736

TABLE

1. Elements of quadrature formulas Qf}k, n=209.
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n k=1 k=2 k=3 k=4 k=5
2 || (5:1)
19. 10+v/5.
3] G| (2850)
4, 5—/5.
1 () | (=8
5 (%;1) (20—15110;1> (301%/%;9
6 (57?/5; 1) (1578¢ﬁ; 1)
10—v/35. 15—/30. 20++10.
7 ( . ,1) ( : ,1) g({_1)
(5=
8 (35— 455.1) (105—\/%,1) 135" 45
15 ) 90 ) U(sr)-:g/%;l)
4.10-V2
9 (6072\/165,1) 407\/ﬁ,1) (w 5
45 ’ 45 ’ U(lo;%x/i’l

Qu} | @5 | @5} | Qo)
S N
Aol 51 & [ o | %
Aol 5 | § | o] %

TABLE 3. Elements of ()21 quadrature formulas

(1] 2] [3] [4]

Q3,1 Q371 3,1 Q3,1

2 2 3 19 2
- 5 5 30 3
2 5 10 5
A 2 1 11 6
56 32 8

Ao || -5 | -5 9 |
A 20 30 320 4
1 9 81 361 5
A 1 25 121 9
2 9 81 361 25

TABLE 4. Elements of ()31 quadrature formulas
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1] 2] 3] [4]
Qs | @3> 3,2 Q3>
o2 4 3 10+v/5 2
7 5 i5 3
2 7 1
A 1 1 V5-2 5
58 128 8
Ao || 35 81 0 5
A 49 40 8(21-4/5) 2
1 90 81 361 5
A 1 5 109+48+/5 1
2 45 81 361 5
TABLE 5. Elements of ()32 quadrature formulas
f(z,y) % ety [2Fz+y 1
! (3+2+y) V3Fraty
I[f] || 5.87787E—01 | 4.22889E400 | 5.51634E-+00 | 2.38405E+00
QUL 1] || 6.06351E—01 | 4.24137TE+00 | 5.48365E+00 | 2.38611E+00
Errl) 1.86 E—02 1.25E—02 3.27E—02 2.06 E—03
QP[] || 5.86676E—01 | 4.22897E+00 | 5.51752E400 | 2.38394E+00
Erri) 1.11E—03 8.05E—05 1.18E—03 1.08E—04
QP (1] || 5.93612E—-01 | 4.23365E+00 | 5.51298E+00 | 2.38477E+00
Erri) 5.83E—03 4.76 E—03 3.36E—03 7.24E—04
QM (1] || 5.85275E—01 | 4.22800E+00 | 5.51830E+00 | 2.38376 400
Errlt) 2.51E—03 8.92E—04 1.96E—03 2.87E—04
. Numerical results (n =2 and k =
TABLE 6. N 1 1t 2and k=1
few?) | o e™? SFeTut: | e
= (4+z+y+z) Vitaty+z
I3[f] 2.06717TE—01 | 8.15085E+00 | 1.36405E+01 | 4.10778E-+00
QULIf || 2.70857E—01 | 8.48274E+00 | 1.35969E+01 | 4.11385E+00
Brrll) 6.41E—02 3.32E—01 4.35E—02 6.07E—03
QYLIA || 2.12208E—-01 | 8.27150E+00 | 1.36385E+01 | 4.10871E+00
Brrl) 5.49E—03 1.21E—01 1.96E—03 9.34E—04
QLIS || 2.10618E—01 | 8.25999E+00 | 1.36390E+01 | 4.10850E+00
Errl) 3.90E—03 1.09E—01 1.41E-03 7.20E—04
QYLIf || 2.09377E—01 | 8.25046E+00 | 1.36395E+01 | 4.10833E+00
Errfl] 2.66 E—03 9.96 E—02 9.78E—04 5.47TE—04

TABLE 7. Numerical results (n =3 and k = 1)
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1

1

f(z,y,z) tatuta) erv® V3+rty+z VAiTatyis
Is[f] 2.06717E—01 | 8.15085E-+00 | 1.36405E+01 | 4.10778E-+00
QULIS || 2.12259E—-01 | 8.09655E+00 | 1.36344E+01 | 4.10788E+00
Brrll) 5.54E—03 5.43E—02 6.07E—03 9.88 E—05
QYLIf || 2.00868E—01 | 8.05430E+00 | 1.36426E+01 | 4.10692E+00
Errl), 5.85E—03 9.65E—02 2.11E-03 8.60E—04
QYLIf || 2.00420E—-01 | 8.01713E+00 | 1.36427E+01 | 4.10692E+00
Errl), 6.20E—03 1.34E—01 2.22E-03 8.64E—04
QYLIf || 1.99127E—01 | 8.02072E400 | 1.36432E+01 | 4.10668E-+00
Erril, 7.59E—03 1.21E—01 2.71E—03 1.10E-03

TABLE 8. Numerical results (n = 3 and k = 2)




