
STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

F-BOUNDED QUANTIFICATION AND THE MATCHING

RELATION

SIMONA MOTOGNA

Abstract. The introduction of F-bounded polymorphism had proved to
have great benefits in specification of object oriented languages, and the most
important one, concerning binary methods and recursion definition, is also
presented here. Then many other systems had appeared, such as PolyTOIL,
based on the matching relation, and we prove that F-bounded quantification
and the matching relation are equivalent.

1. F-bounded polymorphism

The extension proposed by the Abel group [CHC90] is based on introducing
recursive types. The specification of polymorphic functions over objects cannot be
done correctly through bounded quantification, and the recursive functions give a
suitable solution. That’s why we will study their behaviour in the next paragraph.

1.1. Subtyping and recursion using bounded quantification. The bounded
quantification was introduced in the language Fun [CW85] in order to type poly-
morphic functions, that were defined over ”simple” objects, represented as records.
But in most cases, class definitions include the so called binary methods, namely
methods with parameters of type representing that class. This situation imposes
the condition that objects should be described as recursive records[CHC90], de-
stroying their ”simplicity”. We will see what happens with the behaviour of the
polymorphic functions over recursive objects and we will show that, in this case,
bounded quantification fail to produce a correct answer [Ghel93].

When describing the recursive types, the two possible situations can be specified
using the notion of polarity, that is ”borrowed” from logic [CCHOM89].

In a type expression s → t, the subexpression s occurs negatively, and the
subexpression t occurs positively.

Let’s consider a recursive type SortList, representing a sorted chained list,
whose elements are of an arbitrary type t. We have also defined a method for
inserting elements in the list, and the list is described as having a head (an element

1991 CR Categories and Descriptors. D.3.1 [Programming Languages]: Formal Defi-

nitions and Theory – Semantics; D.3.3 [Programming Languages]: Language Constructs and
Features – Recursion.

16



F-BOUNDED QUANTIFICATION AND THE MATCHING RELATION 17

of type t) and the rest of the list, the tail of type SortList. In addition, in order
to have a sorted list, it is necessary to have a total order relation defined between
the list elements, so the type t will be a subtype of the type:

TotalOrder = λσ.{smaller : σ → Bool, equal : σ → Bool}

(the method insert will be written knowing that each element is comparable with
the others).

So, the sorted chained list will have the following form:

SortList = ∀t ≤ TotalOrder.µsl.{insert : t → sl, head : t, tail : sl}

If we want to have such a list of integer numbers, than the parameter t must
be replaced with Int:

SortIntList = µsil.{insert : Int → sil, head : Int, tail : sil}

that seems to be intuitively correct.
But, if t was replaced by Int, then the following condition must be satisfied:

Int ≤ TotalOrder

and the type Int is, in general, defined as:

Int = µn.{smaller : n → Bool, equal : n → Bool, ...}

and if we decompose under the recursion variable, we obtain:

{ smaller : Int → Bool, equal : Int → Bool, ...} ≤

{smaller : TotalOrder → Bool, equal : TotalOrder → Bool}

In order to satisfy this equation, each common component from the two records
must obbey the subtyping rule for functions:

s ≤ s′, t′ ≤ t

s′ → t′ ≤ s → t

and we obtain:

TotalOrder ≤ Int

which represents a contradiction of what we really want.
So, we notice that the only valid substituion for t is TotalOrder. We can end

with the following conclusion: bounded quantification does not specify correctly
the behaviour of the polymorphic function defined over recursive objects.



18 SIMONA MOTOGNA

1.2. F-bounded quantification. Definition 1.1: We say that a universal quan-
tified type is F-bounded if it has the following form:

∀t ≤ F [t].σ

where F [t] is an expression that, in general, contains the type variable t.
The F-bounded polymorphic types differ from the ordinary bounded types in

the sense that both the result type σ and the bound F [t] of the type depend upon
the type variable t.

If F [t] is a type of the form F [t] = {ai : σi[t]}, then the condition A ≤ F [A]
says, in fact, that A must contain all the methods ai and these methods should
have the arguments specified by σi[A], that are defined depending on A. In con-
clusion, A will often be a recursive type, suggesting that the functional bounded
quantification is strongly connected with type recursivity.

Intutively, F-bounded quantification characterizes the types that have a ”re-
cursive structure” similar to the type µt.F [t]. The type F [A] describes a set of
operations, which can accept values of type A as arguments and may return such
values as results. The elements of type A have these operations, if we consider
each element of type A as an element of type F [A], namely A ≤ F [A].

A type that always satisfies A ≤ F [A] is the recursive type A = µt.F [t]. More
generally, if G[t] is a type expression and G[t] ≤ F [t] for any t, then the recursive
type A = µt.G[t] satisfies A ≤ F [A].

The F-bounded quantification has a major impact upon the relation between
inheritance and subtyping in object oriented programming: two types t1 and t2
can satisfy a F-bound (t1 ≤ F [t1] and t2 ≤ F [t2]) but may not be in a subtyping
relation (t1 6≤ t2 and t2 6≤ t1). This means that a F-bounded function can be
applied to (or inherited by) an object with incomparable types, proving that the
inheritance hierarchy is different from the subtyping hierarchy.

The F-bounded polymorphism will allow, in general, to write functions that
work in the same time on objects belonging to classes that are in an inheritance
relation, in the same way in which bounded polymorphism allows to write functions
that work in the same time on types and their subtypes.

1.3. Subtyping and recursion using F-bounded polymorphism. In the first
paragraph we noticed that Int is not a subtype of the type TotalOrder. However,
the types Int and TotalOrder have the same binary operations: smaller and
equal. So, the expression x.smaller(y) is correctly typed if x and y have both one
of these two types and incorrectly typed if they have different types.

In the following, we will see that for such a behaviour the subtyping relation
between the two types is not necessary, and we can introduce another relation that
guarantees the desired behaviour.

This common structure of the two types can be described through a functional
type, derived from the recursive definition of the type TotalOrder. This functional



F-BOUNDED QUANTIFICATION AND THE MATCHING RELATION 19

type represents a F-bound. The ”F-” notation before the type indicates that it
represents a F-bound:

F − TotalOrder[t] = {smaller : t → Bool, equal : t → Bool}

Applying this function for Int we obtain:

F − TotalOrder[Int] = {smaller : Int → Bool, equal : Int → Bool}

and

Int ≤ F − TotalOrder[Int]

because the contravariance is respected for each component: Int ≤ Int.
We can now build the F-bounded polymorphic definition of the sorted chained

list:

SortList = ∀t ≤ F − TotalOrder[t].µsl.

{insert : t → sl, head : t, tail : sl}

and then

SortIntList = µsil.{insert : Int → sil, head : Int, tail : sil}

will be a valid definition.
Let’s notice that Int 6≤ TotalOrder, but Int ≤ F − TotalOrder[Int] which is

enough.
As a conclusion we may say that F-bounded quantification allows us to use

generic polymorphism together with inheritance in object-oriented languages: we
have a generic class SortList that can be specialised substituting the parameter,
obtaining, for example, SortIntList. Also, the other operation for creating derived
classes, adding new characteristics, will function correctly. For example, if we want
to obtain a merged sorted list, we have:

MergedSortList = ∀t ≤ F − TotalOrder[t].µmsl.

{insert : t → msl, head : t, tail : msl, merge : msl → msl}

The recursion variable will ensure that the methods always return the desired
type, namely MergedSortList and any object of this class is a member of class
SortList.

2. The matching relation

Kim Bruce’s contribution to object oriented programming specification consists
in the description of the type systems and the semantics of several object oriented
languages, each of them introducing new elements: TOOPLE [Bruc93], TOIL
[BvG93] and the most remarkable one PolyTOIL [BSvG95].

PolyTOIL is an object oriented programming language, polymorphic, with
static typing, and its type system had been proved to be correct.



20 SIMONA MOTOGNA

Bruce’s idea that inovates this domain is the separation of the subtyping from
the inheritance definition, assigning name to the type of self and defining the type
checking rules. Inheritance is no longer expressed as subtyping (the system con-
tains two hierarhies, one for subtypes and one for subclasses) but as a matching
between the object types and is defined as follows:

Definition 2.1 ObjectT ype τ ′ matches (is in a matching relation) with ObjectT ype τ ,
denoted ObjectT ype τ ′ < # ObjectT ype τ , if for each method name m from τ
there exists a corresponding method in τ ′ and m’s type in τ ′ is a subtype of the
method type from τ ;

or (more formally)

ObjectT ype {mj : Sj}1≤j≤m < # ObjectT ype {mi : Ti}1≤i≤n

if and only if

n ≤ m and for every i ≤ i ≤ n, Si ≤ Ti

where ObjectT ype {mj : Sj} represents the type of objects that have methods mj

with type Sj .

We will notice that the definition doesn’t contain instance variables, since it is
assumed that they are not visible from outside and can be accessed only through
the object’s method.

The subtyping relation is denoted as S ≤ T . If SC is a subclass of the class C
then SCType < # CType.

The subtyping relation is defined as follows [BSvG95]:

Definition 2.2 ObjectT ype {mj : Sj}1≤j≤m ≤ ObjectT ype {mi : Ti}1≤i≤n if
and only if
1. n ≤ m and for every 1 ≤ i ≤ n, Si ≤ Ti

2. ∀Ti, 1 ≤ i ≤ n, Ti is NOT contravariant to MyType (there are no parameters
of type MyType, the type of the self variable, in supertypes).

Remark 2.1 : The only difference between subtyping and matching is the
second condition from the definition. So, if two object types are in a subtyping
relation then they are in a matching relation, but the reverse statement is false
[AC95].

3. The equivalence between the matching relation and F-bounded

quantification

Theorem 2.1 [Moto00] If there exists a matching relation between two object
types:

ObjectT ype t′ < # ObjectT ype t



F-BOUNDED QUANTIFICATION AND THE MATCHING RELATION 21

then ObjectT ype t is a F-bound for ObjectT ype t′ and the reverse statement is
also true, namely there exists a matching relation between an object type and its
F-bound.

Proof:

”⇒”
Let ObjectT ype t be the object type with the following form: {mi : Ti}1≤i≤n.

For every 1 ≤ i ≤ n, the type Ti has the following form: σi → τi, so they
are functional types, because mi represent methods (ObjectT ype t is an object
type, and the instance variables are hidden and only the methods are visible). In
addition, σi and/or τi can depend on MyType, which represents the self type of
the object. The self variable can be considered as a recursion variable and then
we can describe the object type as follows:

ObjectT ype t = µMyType.{mi : Ti[MyType]}1≤i≤n

If we create an object of type ObjectT ype t′ of the form: {mj : Sj}1≤j≤m, that
inherits from ObjectT ype t, then the two types are in matching relation and:

n ≤ m and Si ≤ Ti.

On the other hand, if we use F-bounded quantification, any object definition
based on the object type ObjectT ype t must respect the F-bound condition:

(1) ObjectT ype t′ ≤ F − ObjectT ype t[t′]

Using the model described in the paragraph 1.3, the computation of the F-
bound will produce the following result:

F − ObjectT ype t[MyType] = {mi : Ti}1≤i≤n

and the condition (1) is satisfied because ObjectT ype t′ has all the mi methods
(and probably more), and the arguments of these methods are correctly specified,
since Si ≤ Ti.

In conclusion, the proof of this implication consists in noticing that MyType
implies a recursive definition of the type.

”⇐”
According to the definition of F-bounded quantification, we have: if F [t] is a

type of the form F [t] = {ai : Ti[t]}1≤i≤n, then the condition A ≤ F [A] says, in
fact, that: [1] A must contain all ai methods and [2] these methods must have the
arguments specified by Ti[A], which are defined depending on A.

So, from the condition [1] we obtain that ObjectT ype t′ will have the form
{ai : Si, an+1 : Sn+1, ...}, and from [2] we can deduce that the types Si, for
1 ≤ i ≤ n, are obtained substituting the t parameter with the object type, so:

Si = Ti[t/ObjectT ype t′]



22 SIMONA MOTOGNA

and it is obvious that Si ≤ Ti.
So, if

ObjectT ype t′ ≤ F − ObjectT ype t[ObjectT ype t′]

then
ObjectT ype t′ < # F − ObjectT ype t[ObjectT ype t′]

Remark 2.2 : This implication can be proved easier if we use Remark 2.1,
that states that if two object types are in a subtyping relation, then they are also
in a matching relation and noticing that a F-bound respects the structure of an
object type.

References

[AC95] M Abadi, L Cardelli - On subtyping and matching, Proc. 9th European Conf.
Object-Oriented Prog., Aarhus, Denmark, 1995

[Bruc93] K.Bruce - Safe type checking in a statically-typed object-oriented programming lan-

guage, Proc. ACM Symposium on Principles of Programming Languages, 1992, pag.
316-327

[BSvG95] K.Bruce, A. Schuett, R. van Gent - PolyTOIL: A type-safe polymorphic object-

oriented language, ECOOP ’95 Proceedings, LNCS 952, Springer-Verlag, pag. 27-
51.

[BvG93] K. Bruce, R. van Gent - TOIL: A new types-safe object-oriented imperative lan-

guage, Technical Report, Williams College, 1993
[CCHOM89] P. Canning, W. Cook, W. Hill, W. Olthoff, J. Mitchell - F- bounded quantification

for object oriented programming, in Proc. Functional Programming Languages and
Computer Architectures, 1989, pag. 273-280

[CHC90] W. Cook, W. Hill, P. Canning - Inheritance is not subtyping, Proc. 17th ACM
Symp. Principles of Prog. Lang.,1990, pag. 125-135.

[CW85] L. Cardelli, P. Wegner - On understanding types, data abstraction and polymor-

phism, ACM Computing Surveys, 17(4),1985, pag. 471-521.
[Ghel93] G. Ghelli - Recursive types are not conservative over F≤, in Typed Lambda-

Calculus and Applications, ed. M. Dezani-Ciancaglini, G. Plotkin, Springer Verlag,
1993

[Moto00] S. Motogna - Formal approach to object oriented languages, Ph.D. Thesis,”Babes-
Bolyai” University, Cluj-Napoca, Romania, September 2000

Faculty of Mathematics and Informatics, “Babeş–Bolyai” University, 3400 Cluj–

Napoca

E-mail address: motogna@cs.ubbcluj.ro


