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CONCURRENCY-DEGREES FOR PETRI NETS

TOADER JUCAN AND CRISTIAN VIDRAŞCU

Abstract. The goal of this paper is to extend some concepts (about concurrency-
degrees) from the class of Place/Transition Petri nets (PTN) to the class of
jumping Petri nets (JPTN). Also, we will present a simpler definition of
concurrency-degree for PTN. Moreover, we will point out how we can com-
pute these concurrency-degrees.
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1. Introduction

A Petri net is a mathematical model used for the specification and the analysis
of parallel/distributed systems. It is very important to introduce a measure of
concurrency for parallel/distributed systems. What is the meaning of the fact
that in the system S1 the concurrency is greater than in the system S2 ? We
will study the problem of concurrency for Petri nets, but, since the Petri nets are
used as suitable models for real parallel/distributed systems, the results will be
applicable also to these systems.

It is well-known that the behaviour of some distributed systems cannot be
adequately modelled by classical Petri nets. Many extensions which increase the
computational and expressive power of Petri nets have been thus introduced. One
direction has led to various modifications of the firing rule of nets. One of these
extension is that of jumping Petri net, introduced in [TiJ94].

The notion of concurrency-degree for Petri nets was first introduced in [TJD93].
In this paper we will give a simpler definition of concurrency-degree for Petri nets,
and we will extend this notion for jumping Petri nets. Also, we will show how we
can compute these concurrency-degrees.

The paper is organized as follows. Section 2 presents the basic terminology,
notation and results concerning Petri nets and jumping Petri nets. In section 3,
and respectively 4, we present the definition of concurrency-degree for Petri nets,
respectively for jumping Petri nets, and we show how we can compute these
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concurrency-degrees. Finally, in section 5 we conclude this paper and formulate
some open problems.

2. Preliminaries

In this section we will establish the basic terminology, notation, and results
concerning Petri nets in order to give the reader the necessary prerequisites for
the understanding of this paper (for details the reader is referred to [BeF86],
[JuT99], [Rei85], [Rei87]). Mainly, we will follow [JuT99], [TiJ94], [TiM97].

2.1. Petri nets. A Place/Transition net, shortly P/T-net or net, (finite, with
infinite capacities), abbreviated PTN, is a 4-tuple Σ = (S, T ; F, W ), where S and
T are two finite non-empty sets (of places and transitions, resp.), S ∩ T = ∅,
F ⊆ (S × T )∪ (T × S) is the flow relation and W : (S × T )∪ (T × S) → N is the
weight function of Σ verifying W (x, y) = 0 iff (x, y) /∈ F .

A marking of a PTN Σ is a function M : S → N; it will be sometimes identified

with a vector M ∈ N|S|. The operations and relations on vectors are component-
wise defined. NS denotes the set of all markings of Σ.

A marked PTN, abbreviated mPTN, is a pair γ = (Σ, M0), where Σ is a PTN
and M0, called the initial marking of γ, is a marking of Σ.

In the sequel we often use the term “Petri net” (PN ) or “net” whenever we
refer to a PTN (mPTN ) γ and it is not necessary to specify its type (i.e. marked
or unmarked).

Let γ be a net, t ∈ T and w ∈ T ∗. The functions t−, t+ : S → N şi ∆t, ∆w :
S → Z are defined by t−(s) = W (s, t) , t+(s) = W (t, s), ∆t(s) = t+(s) − t−(s)
and

∆w(s) =

{

0, if w = λ,
∑n

i=1 ∆ti(s), if w = t1t2 . . . tn(n ≥ 1),
for all s ∈ S.

The sequential behaviour of a net γ is given by so-called firing rule, which
consist of

• the enabling rule: a transition t is enabled at a marking M in γ (or t is
fireable from M), abbreviated M [t〉γ , iff t− ≤ M ;

• the computing rule: if M [t〉γ , then t may occur yielding a new marking
M ′, abbreviated
M [t〉γM ′, defined by M ′ = M + ∆t.

The notation “[.〉γ” will be simplified to “[.〉” whenever γ is understood from
context.

In fact, for any transition t of γ we have a binary relation on NS , denoted by
[t〉γ and given by: M [t〉γM ′ iff t− ≤ M and M ′ = M + ∆t. If t1, t2, . . . , tn, n ≥ 1,
are transitions of γ, [t1t2 . . . tn〉γ will denote the classical product of the relations
[t1〉γ , . . . , [tn〉γ , i.e. [t1t2 . . . tn〉γ = [t1〉γ ◦ . . . ◦ [tn〉γ . Moreover, we consider the

relation [λ〉γ given by [λ〉γ = {(M, M)|M ∈ NS}.
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Let γ be a marked Petri net, M ∈ NS and M0 its initial marking. The word
w ∈ T ∗ is called a transition sequence from M in γ if there exists a marking M ′ of
γ such that M [w〉γM ′. Moreover, the marking M ′ is called reachable from M in γ.
We denote by TS(γ, M) = {w ∈ T ∗|M [w〉γ} the set of all transition sequence from

M in γ, and by RS(γ, M) = [M〉γ = {M ′ ∈ NS |∃w ∈ TS(γ, M) : M [w〉γM ′} the
set of all reachable markings from M in γ.

In the case M = M0, the set TS(γ, M0) is abbreviated by TS(γ), and the
set RS(γ, M0) is abbreviated by RS(γ) (or [M0〉γ) and it is called the set of all
reachable markings of γ.

The marking M is coverable in γ if there exists a marking M ′ ∈ [M0〉γ such
that M ≤ M ′.

Let γ be a P/T-net, and T ′ ⊆ T a set of transitions, which is called step. The
step-type concurrent behaviour of the net γ is given by so-called step firing rule,
which consist of

• the step enabling rule: a step T ′ is concurrently enabled at a marking M
in γ (or T ′ is fireable from M), abbreviated M [T ′〉γ , iff

∑

t∈T ′ t− ≤ M ;
• the step computing rule: if M [T ′〉γ , then T ′ may occur yielding a new

marking M ′, abbreviated M [T ′〉γM ′, defined by M ′ = M +
∑

t∈T ′ ∆t.

2.2. Jumping Petri nets. Jumping Petri nets ([TiJ94], [TiM97]) are an exten-
sion of classical nets, which allows them to do “spontaneous jumps” from a marking
to another one (this is similar to λ-moves in automata theory).

A jumping P/T-net, abbreviated JPTN, is a pair γ = (Σ, R), where Σ is a PTN
and R, called the set of (spontaneous) jumps of γ, is a binary relation on the set

of markings of Σ (i.e. R ⊆ NS × NS). In what follows the set R of jumps of any
JPTN will be assumed recursive, that is for any couple of markings (M, M ′) we
can effectively decide whether or not (M, M ′) ∈ R.

A marked jumping net, abbreviated mJPTN, is defined similarly as an mPTN,
by changing “Σ” into “Σ, R”.

Let γ = (Σ, R) be a JPTN. The pairs (M, M ′) ∈ R are referred to as jumps
of γ. If γ has finitely many jumps (i.e. R is finite) then we say that γ is a finite
jumping net, abbreviated FJPTN.

We shall use the term “jumping net” (JN) (“finite jumping net” (FJN), resp.)
to denoted a JPTN or a mJPTN (a FJPTN or a mFJPTN, resp.) whenever it is
not necessary to specify its type (i.e. marked or unmarked).

Pictorially, a jumping Petri net will be represented as a classical net and, more-
over, the relation R will be separately listed.

The behaviour of a jumping net γ is given by the j-firing rule, which consist of

• the j-enabling rule: a transition t is j-enabled at a marking M (in γ),
abbreviated M [t〉γ,j, iff there exists a marking M1 such that MR∗M1[t〉Σ
(Σ being the underlying net of γ and R∗ the reflexive and transitive
closure of R);
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• the j-computing rule: if M [t〉γ,j, then the marking M ′ is j-produced by
occurring t at M , abbreviated M [t〉γ,jM

′, iff there exists two markings
M1, M2 such that MR∗M1[t〉ΣM2R

∗M ′.

The notation “[.〉γ,j” will be simplified to “[.〉j” whenever γ is understood from
the context.

The notions of transition j-sequence and j-reachable marking are defined simi-
larly as for Petri nets (the relation [λ〉γ,j is defined by [λ〉γ,j = {(M, M ′)|M, M ′ ∈
NS , MR∗M ′} ).

The set of all j-reachable markings of a marked jumping net γ is denoted by
RS(γ) or by [M0〉γ,j (M0 being the initial marking of γ).

The marking M is coverable in γ if there exists a marking M ′ ∈ [M0〉γ,j such
that M ≤ M ′.

Some jumps of a marked jumping net may be never used. Thus we say that
a marked jumping net γ = (Σ, R, M0) is R-reduced ([TiJ94]) if for any jump
(M, M ′) ∈ R of γ we have M 6= M ′ and M ∈ [M0〉γ,j.

3. Concurrency-degrees for P/T nets

The notion of concurrency-degree for Petri nets was first introduced in [TJD93]
(that definition can be found also in [JuT99]). Here we will give a simpler definition
of this notion.

First, let us recall the definition of a (maximal) step:

Definition 3.1. Let γ = (S, T ; F, W ) be a Petri net and M an arbitrary marking
of γ.
i) T ′ ⊆ T is called a set of transitions concurrently enabled at M (or, briefly, a
step at M) if

∑

t∈T ′ t− ≤ M ;
ii) T ′ ⊆ T is called a maximal set of transitions concurrently enabled at M (or,
briefly, a maximal step at M) if T ′ is a step at M and, for each t ∈ T − T ′,
T ′ ∪ {t} is not a step at M .

Notation 3.1. Let γ = (S, T ; F, W ) be a Petri net and M an arbitrary marking
of γ.
1) We denote by T (M) the set of all transitions enabled at the marking M , i.e.

T (M) = {t ∈ T | t− ≤ M} ;

2) We denote by CT (M) the set of all subsets of transitions concurrently enabled
at M , i.e.

CT (M) = {T ′ ⊆ T |
∑

t∈T ′

t− ≤ M} ;

3) We denote by MCT (M) the set of all maximal subsets of transitions concur-
rently enabled at the marking M , i.e.

MCT (M) = {T ′ ⊆ T |T ′ is a maximal step at M} .
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Generally speaking, there exist more maximal subsets of transitions concur-
rently enabled at a marking M . Moreover, the maximality of sets w.r.t. concur-
rency does not imply the maximality of sets w.r.t. cardinality of sets (i.e. we can
have two maximal steps at M , T1 and T2, with |T1| < |T2|).

Example 3.1. For the marked Petri net γ represented in figure 1, it is easy to
see that the subsets T ′ = {t1, t2, t3, t4} and T ′′ = {t1, t2, t5} are maximal steps at
the initial marking of γ, and, moreover, these are the only ones, i.e. MCT (M0) =
{T ′, T ′′}.
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Figure 1. the net from example 3.1

Definition 3.2. Let γ be a Petri net and M an arbitrary marking of γ. The
concurrency-degree at the marking M of the net γ is defined by:

d(γ, M) = max{ |T ′| | T ′ ∈ MCT (M)} .

Definition 3.3. Let γ =(Σ, M0) be a marked P/T-net.
i) The inferior concurrency-degree of the net γ is defined by:

d−(γ) = min{ d(γ, M) | M ∈ [M0〉γ} ;

ii) The superior concurrency-degree of the net γ is defined by:

d+(γ) = max{ d(γ, M) | M ∈ [M0〉γ} .

Remark 3.1. Directly from definitions we have
1) 0 ≤ d−(γ) ≤ d+(γ) ≤ |T | ;
2) The inferior concurrency-degree of the net γ, d−(γ), represents the minimum
number of transitions concurrently enabled at any reachable marking of γ, and has
the property that there exists at least one reachable marking M ∈ [M0〉γ such that
there exists d−(γ) transitions concurrently enabled at M ;
3) The superior concurrency-degree of the net γ, d+(γ), represents the maximum
number of transitions concurrently enabled at any reachable marking of γ, and has
the property that there exists at least one reachable marking M ∈ [M0〉γ such that
there exists d+(γ) transitions concurrently enabled at M .
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Definition 3.4. Let γ = (Σ, M0) be a marked Petri net. If d−(γ) = d+(γ), then
we denote this number with d(γ), i.e. d(γ) = d−(γ) = d+(γ), and we called it the
concurrency-degree of γ.

Example 3.2. For the marked Petri net γ represented in figure 2, it is easy to
see that transition t1 is fireable from any reachable marking, i.e. t1 ∈ T (M), for
all M ∈ [M0〉γ , which means that the inferior concurrency-degree is at least one:
d−(γ) ≥ 1. Let M1 be the marking produced by the occurence of t2 at the initial
marking, i.e. M0[t2〉γM1 ; M0 = (2, 1, 0, 0, 0) and M1 = (1, 0, 0, 1, 0). Since t1 is
the only transition fireable at M1, i.e. T (M1) = {t1}, we have that d(γ, M1) = 1,
and therefore the inferior concurrency-degree is d−(γ) = 1. Moreover, it is easy
to see that the transition t2 can occur at most one time in any transition sequence
starting from the initial marking, and that the transition t3 can occur also at most
one time, and only after the occurence of t2. This means that the set T = {t1, t2, t3}
cannot be a step at any reachable marking, thus we have d+(γ) < 3. Since the
subset T ′ = {t1, t2} is the only maximal step at M0, i.e. MCT (M0) = {T ′}, we
have that d(γ, M0) = 2. Thus, the superior concurrency-degree is d+(γ) = 2.
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Figure 2. the net from example 3.2

In the sequel, we will show how we can compute the concurrency-degrees of a
Petri net.

First of all, we will present the algorithm for computing the concurrency-degree
at any marking of a Petri net.

Let γ be a Petri net, let M be an arbitrary marking, and let |T | = n. Obviously,
d(γ, M) ≤ n. The algorithm is the following:

Theorem 3.1. The concurrency-degree at a marking, d(γ, M), is computable for
any PTN γ and for any marking M .

Proof. It is easy to prove that the above algorithm is finite (i.e. it always stops)
and it computes exactly the concurrency-degree at the marking M of γ.

The complexity of the algorithm is O(2|T | · |S|).
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procedure concurrency degree at a marking (γ: PTN, M : marking);
begin

for i := n downto 0 do // where n = |T |
begin

// consider all the subsets of T with i elements

for each T ′ ⊆ T such that |T ′| = i do
begin

M ′ :=
∑

t∈T ′ t−; // M
′ is the smallest marking at which T

′ is concurrently

enabled

if M ′ ≤ M then goto STOP;
end;

end;
STOP: d(γ, M) := i ;

return d(γ, M);
end.

Now, we will present the algorithm for computing the superior concurrency-
degree of a marked Petri net. Let γ = (Σ, M0) be a mPTN, and let |T | = n.
Obviously, d+(γ) ≤ n. The algorithm is the following:

procedure superior concurrency degree (γ: mPTN);
begin

for i := n downto 0 do // where n = |T |
begin

// consider all the subsets of T with i elements

for each T ′ ⊆ T such that |T ′| = i do
begin

M ′ :=
∑

t∈T ′ t−; // M
′ is the smallest marking at which T

′ is concurrently

enabled

if is coverable(γ,M ′) then goto STOP;
end;

end;
STOP: d+(γ) := i ;

return d+(γ);
end.

boolean function is coverable (γ: mPTN, M : marking);
begin

Let MCG(γ) be the minimal coverability graph of γ;
if (there exists at least one node M ′ in MCG(γ) such that M ≤ M ′)

then return true else return false;
end.
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Theorem 3.2. The superior concurrency-degree d+(γ) is computable for any
mPTN γ.

Proof. Since the coverability problem is decidable for mPTN ([KaM69]) (the
function is coverable solves this problem by using the minimal coverability graph,
[Fin93]), it is easy to prove that the above algorithm is finite (i.e. it always stops)
and it computes exactly the superior concurrency-degree of the net γ.

The complexity of the algorithm is O(2|T |) · O(CP ), where O(CP ) is the com-
plexity of the coverability problem solved using the minimal coverability graph
(for details, see [Fin93]).

Now, we will show how we can compute the inferior concurrency-degree of a
marked Petri net.

Let γ = (Σ, M0) be a marked Petri net. First, let us remark that if the
reachability set [M0〉γ is finite (this problem is decidable, [KaM69]), then we
can compute the inferior concurrency-degree of γ by using directly the defini-
tion: d−(γ) = min{ d(γ, M) | M ∈ [M0〉γ}, because the minimum is computed on
a finite set and d(γ, M) is computable, for each marking M (theorem 3.1).

Now, let us consider that the reachability set [M0〉γ is infinite. Then, there
exists a finite subset M ⊆ [M0〉γ such that

(∗) ∀M ∈ [M0〉γ , ∃M ′ ∈ M such that M ′ ≤ M.

Indeed, we can consider M as being the set of minimal reachable markings of γ,
i.e.

M = {M ∈ [M0〉γ | ∀M ′ ∈ [M0〉γ − {M} : M ′ 6≤ M}.

Then, we have the result:

Proposition 3.1. The following equality holds:

min{d(γ, M)|M ∈ [M0〉γ} = min{d(γ, M)|M ∈ M}.

Proof. This equality follows easily from (∗) and from the fact that the concurrency-
degree at a marking is a monotone increasing function, i.e. M1 ≤ M2 ⇒
d(γ, M1) ≤ d(γ, M2).

The following result about the usual quasi-ordering (i.e. the quasi-ordering on

components) on Nk is well-known:

Lemma 3.1. (Dickson’s lemma, [Dic13])

The usual quasi-ordering on N
k is a well quasi-ordering (i.e. from every infinite

sequence of elements from N
k, we can extract an infinite increasing sequence).

Proceeding from Dickson’s lemma, it follows that any subset of Nk contains
only finitely many incomparable vectors. Since, by its definition, the elements of
M are incomparable, it follows that M is a finite set. Thus, since the set M of



CONCURRENCY-DEGREES FOR PETRI NETS 11

minimal reachable markings of the P/T-net γ is computable, from proposition 3.1
it follows that:

Theorem 3.3. The inferior concurrency-degree d−(γ) is computable for any mPTN
γ.

4. Concurrency-degrees for jumping Petri nets

A jumping Petri net is a classical net Σ equipped with a (recursive) binary
relation R on the markings of Σ. The meaning of a pair (M, M ′) ∈ R is that the
net Σ may “spontaneously jump” from M to M ′ (this is similar to λ-moves in
automata theory).

We presented the definitions regarding jumping Petri nets in section 2. Now,
we will present first an example of a jumping Petri net.

Example 4.1. Let us consider a system consisting of a producer and a consumer,
and a buffer with unlimited capacity, used for storing the products produced by the
producer and consumed by the consumer. Moreover, we assume that the producer
may take a break in any moment, and the consumer may take a break only when
the buffer is empty (i.e., only when there are no products to consume).

Such a system cannot be modelled by a classical Petri net ([JuT99]). A mod-
elling by an inhibitor Petri net was presented in [JuT99]. Here we will present a
modelling of this system by a jumping Petri net.

Let γ = (Σ, R, M0) be the marked jumping Petri net represented in figure 3.
The place s1 models the unlimited buffer, the transition t1 models the producing of
a product by the producer, and the transition t2 models the consuming of a product
by the consumer. The place s2 models the active state of the consumer, and the
place s3 models the inactive state of him (i.e., the consumer is in a break). The
fact that the consumer may take a break only when the buffer is empty, is modelled
by the jump of this net, from the initial marking M0 = (0, 1, 0) to the marking
M ′

0 = (0, 0, 1), and the resuming of its activity by the transition t3.

t1

- l

s1

-

t2

?ls

s2

6

t3
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s3

-

R = {((0, 1, 0), (0, 0, 1))}

Figure 3. the jumping net from example 4.1
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Now, we will extend the notion of concurrency-degrees from P/T-nets to jump-
ing Petri nets.

Definition 4.1. Let γ = (Σ, R) be a jumping Petri net, Σ being the underlying
P/T-net of γ, and let M be an arbitrary marking of γ. The concurrency-degree
at the marking M of the net γ is defined by:

d(γ, M) = max{ d(Σ, M ′) | MR∗M ′ } .

Definition 4.2. Let γ = (Σ, R, M0) be a marked jumping Petri net.
i) The inferior concurrency-degree of the net γ is defined by:

d−(γ) = min{ d(γ, M) | M ∈ [M0〉γ,j} ;

ii) The superior concurrency-degree of the net γ is defined by:

d+(γ) = max{ d(γ, M) | M ∈ [M0〉γ,j} .

Moreover, the remarks about concurrency-degrees of P/T-nets (remark 3.1) hold
for jumping Petri nets as well.

Definition 4.3. Let γ = (Σ, R, M0) be a marked jumping Petri net. If d−(γ) =
d+(γ), then we denote this number with d(γ), i.e. d(γ) = d−(γ) = d+(γ), and we
called it the concurrency-degree of the net γ.

Example 4.2. Let us recall the mFJPTN γ from example 4.1. We denote by
Mn, M ′

n the following markings: Mn = (n, 1, 0) , M ′
n = (n, 0, 1), for all n ≥ 0.

Thus, the set of jumps is R = {(M0, M
′
0)}, and it is easy to see that transition t1

is fireable from any j-reachable marking, transition t2 is fireable from all markings
Mn, n ≥ 1, and transition t3 is fireable from all markings M ′

n, n ≥ 0. Therefore,
the j-reachability set is [M0〉γ,j = {Mn|n ≥ 0}∪{M ′

n|n ≥ 0}, and the j-reachability
graph of γ, RG(γ) (defined in [ViJ99]), is shown in figure 4.

More precisely, M0RM ′
0 is the only jump in γ, and T (M0) = {t1}, with M0[t1〉ΣM1,

which means that d(Σ, M0) = 1. For all n ≥ 1 we have that T (Mn) = {t1, t2}, with
Mn[t1〉ΣMn+1 and Mn[t2〉ΣMn−1; moreover, Mn[{t1, t2}〉ΣMn and MCT (Mn) =
{{t1, t2}}. Therefore, d(Σ, Mn) = 2, ∀n ≥ 1. Also, for all n ≥ 0 we have that
T (M ′

n) = {t1, t3}, with M ′
n[t1〉ΣM ′

n+1 and M ′
n[t3〉ΣMn; moreover, M ′

n[{t1, t3}〉ΣMn+1

and MCT (M ′
n) = {{t1, t3}}. So, d(Σ, M ′

n) = 2, ∀n ≥ 0.
Now, let us compute the concurrency-degrees of the jumping net γ. Since

M0RM ′
0 is the only jump in γ, we have that d(γ, M0) = max{d(Σ, M0), d(Σ, M ′

0)} =
2, d(γ, Mn) = d(Σ, Mn) = 2, ∀n ≥ 1, and d(γ, M ′

n) = d(Σ, M ′
n) = 2, ∀n ≥ 0.

Therefore, d(γ) = d−(γ) = d+(γ) = 2, so the concurrency-degree of γ is 2.
Let us notice that the inferior, respectively superior concurrency-degree of the

underlying P/T-net of γ is d−(Σ) = 1, resp. d+(Σ) = 2; moreover, d(Σ) is
undefined, and the reachability set is [M0〉Σ = {Mn|n ≥ 0}.

In the sequel, we will show how we can compute the concurrency-degrees of a
jumping net.
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Figure 4. the j-reachability graph of the net γ

First of all, let us notice that the concurrency-degree at any marking of a JPTN
γ can be computed if γ has the property: {M ′ | MR∗M ′} is finite, for each marking
M (this follows easily from the definition 4.1 and the theorem 3.1, because we have
to compute a maximum on a finite set). Let us observe that any finite jumping
net has this property. Therefore, we have the result:

Theorem 4.1. The concurrency-degree at a marking, d(γ, M), is computable for
any FJPTN γ and for any marking M .

Now, let us notice that the algorithm for computing the superior concurrency-
degree of a marked Petri net from section 3 works also for marked finite jumping
Petri nets, because the coverability problem is decidable for mFJPTN ([TiJ94])
(the function is coverable from section 3 solves the coverability problem for mFJPTN
by using the minimal coverability graph, [ViJ99]). As a consequence, we have the
result:

Theorem 4.2. The superior concurrency-degree d+(γ) is computable for any
mFJPTN γ.

Now, we will show how we can compute the inferior concurrency-degree of a
marked finite jumping Petri net.

Let γ = (Σ, R, M0) be a mFJPTN. First, let us remark that if the reachability
set [M0〉γ,j is finite (this problem is decidable, [TiJ94]), then we can compute
the inferior concurrency-degree of γ by using directly the definition: d−(γ) =
min{ d(γ, M) | M ∈ [M0〉γ,j}, because the minimum is computed on a finite set
and d(γ, M) is computable, for each marking M (theorem 4.1).
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Now, let us consider that the reachability set [M0〉γ,j is infinite. Then, there
exists a finite subset M ⊆ [M0〉γ,j such that

(∗) ∀M ∈ [M0〉γ,j , ∃M ′ ∈ M such that M ′ ≤ M.

Indeed, we can consider M as being the set of minimal reachable markings of γ,
i.e.

M = {M ∈ [M0〉γ,j |∀M ′ ∈ [M0〉γ,j − {M} : M ′ 6≤ M}.

Then, we have the result:

Proposition 4.1. The following equality holds:

min{d(γ, M)|M ∈ [M0〉γ,j} = min{d(γ, M)|M ∈ M}.

Proof. This equality follows easily from (∗) and from the fact that the concurrency-
degree at a marking is a monotone increasing function, i.e. M1 ≤ M2 ⇒
d(γ, M1) ≤ d(γ, M2).

Proceeding from Dickson’s lemma (lemma 3.1), it follows that any subset of
Nk contains only finitely many incomparable vectors. Since, by its definition, the
elements of M are incomparable, it follows that M is a finite set.

Let us show how the set M can be constructed. Let γ = (Σ, R, M0) be a
mFJPTN, with R 6= ∅, i.e.

R = { (M ′
i , M

′′
i ) |1≤ i≤n}, n ≥ 1,

such that M ′
i ∈ [M0〉γ,j (this can be done, see [TiJ94]). As in [TiJ94], we associate

to γ the following mPTNs:

γ0 = (Σ, M0) and γi = (Σ, M ′′
i ), for each 1≤ i≤n,

and then, let Mi be the set of minimal reachable markings of γi, for each 1≤ i≤n.
These sets are finite (it follows from Dickson’s lemma) and we have that:

M = {M ∈ M′ | ∀M ′ ∈ M′ − {M} : M ′ 6≤ M},

where M′ = ∪{Mi|1≤ i≤n}. Thus, since the sets Mi, 1≤ i≤n, are computable,
the set M is also computable, and from proposition 4.1 it follows that:

Theorem 4.3. The inferior concurrency-degree d−(γ) is computable for any mFJPTN
γ.

5. Conclusions

In this paper we have extended some concepts (mainly, concurrency-degrees)
from the class of Place/Transition Petri nets (PTN) to the class of jumping Petri
nets (JPTN). Also, we have presented a simpler definition of concurrency-degree
for PTN and we have shown how we can compute concurrency-degrees.

Many problems remain to be studied, for example:

• finding an efficient algorithm for computing the set M for Petri nets;
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• finding better algorithms for computing the concurrency-degrees for Petri
nets;

• extending the computability results regarding concurrency-degrees for
FJPTN for the larger class of jumping Petri nets.
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