
STUDIA UNIV. BABE^-BOLYAI, 
INFORMATICA, 

VOLUME XI.IV, NUMBER 1, 1999 

TOWARD A FORMAL MODEL FOR COM 

IUGA MARIN 

Abstract. In this paper is provided a formal notation for the COM's conccpts. In this w 

is possible to deseribe tormally the basic concepts of component programming as 

interfaces. component classcs and component objects. Also, the COM's basic principles 

are expressed trough six axioms, three regarding 1Unknown and three regarding the class 

factory object. All these notation and axiom are the start in developing a future formal 

way 

component caleulus. 

1 A General Overview of COM 

COM (abbr. of Component Object Model) is considered now to be the basic layer of the 

newest Microsoft's technology. Designed to avoid most of the object oriented programming 
ems (such as reviews of objects in monolithic applications, integration of legacy code, 

versioning and inter-object language neutral communication) COM is a binary standard 
which is leading the software development to OLE, considered in [Brockschmidt95] to be 

a unified environment of object-based services with the capability of both customizing 

those services and arbitrarily extending the architecture through custom services, with the 

overall purpose of enabling rich integration between components". 

COM focuses on components which are reusable piece of code and data in binary form 

that can be used along with other components from possible other vendors. The concept of 

component enlarges the concept of object breaking the language barrier. A component could 
be developed both in procedural or object oriented languages with no constraints to 

internal implementation. Since the internal implementation of the component is invisible 
the external environment, it exposes a series of interfaces through it can communicate al collaborate with other components. An interface is practically a declaration of a set 
miethods signature without regarding to any implementation. An interface can be assim to a mean for accessing the functionality of a component. All components will be ac only through its exported interfaces. 

* 

ted 

sed 

As previously seen COM is a model for component programming. In the ro parayraphs these conponents will be called as COM objects. All COM objects exp0 

owing 

exports a sel 
of interfaces, and the interfaces will be browsed using the special interface DI implemented by all COM objects. Similar COM objects are associated with a O 

nown 

lass 



entified by a class identifier which is unique for the COM class. Every COM class should 

It is importa to have a forn model for COM because it is possible to express unitary 

ToWARD A FORMAL MODEL FOR COM 

have a "class factory 
" object which creates instances of COM objects associated to that 

class and implements IClassFactory interface. 
class and 

its concepts 
since the 

COM may 
improve the 

paper 
ar will be provided both formal notation for COM components and some axioms for this 

model. 

. concepts since the components design is still enough empirical. Also a formal model for 

the performances of software systems based upon components. In this 

2 Preliminary Notations 
2 

Many of these notations are an adaptation of Cardelli's object calculus, developed in 

Cardelli), to component programming theory. 
In order to develop a COM formal notation it is necessary to provide a formal notation 

for interfaces. An interface has its name prefixed with letter I (e.g. Iname). The interface 

variables' will be denoted using first letters of the alphabet and IA:INTERFACE means IA 

is an interface. To specify an interface it is necessary to specify its methods as follows: 

name 

signature of methodl 

signature of methodn 

A COM class will be referred through its COM class identifier, identifier which has its 

name prefixed with letter C (e.g. Cclassname). The COM class variables will be denoted 

uSing the last letters of the alphabet. The fact that an item CX is a COM class will be 

Cxpressed using notation X:COMCLASS, and the literal COMCLASS is identified with the 

set of all COM classes. 
If the COM class CX exports the interface IA then this is denoted: 

CXIA. 

Objects can be instantiated from their classes and accessed via their exposed 

interfaces. 
If the object X exports the interface IA then this is denoted: 

Since all COM object can be accessed only by their interfaces, a COM object may be 
X>IA. 

referred as 

In formal not programatic sense 

89 



M. IUGA 
90 

TA(CX) 

the 
where CX is the COM object's COM class and TA 1S the intertace used to accon. 

The set of all COM objects will be denoted with COMOBJECT and if x is a ce 

ntiate 

component. 

COM 
object then it can be writen as X:COMOBJECT, As previously an object can be instantiate 

its 
from a COM class using the class factory object for that class. For CX:COMCLASS 

class factory will be designated using the operator: 

ClassFactory:COMCLASS-COMOBJECT 

where the ClassFactory(CX) means the CX's associated ClassFactory. 
If the COM object X was instantiated from COM class CX, that will be noted: 

X:CX. 
The call of a method implemented by an object X:CX using an interface IA is denoted 

b 
IA(X).method(parameter list). 

The practice of COM programming uses widely the HRESULT type as a return type for 

a method call. The value S_OK means that the call was successful, any other value means 
failure. Since the success of a method call can be determined by comparing the return value 
of the call with S_OK it is possible to define predicates SUCCESS and FAIL: 

SUCCESS(IA(X).method(parameter list)) when the call was successful 
FAIL(LA(X).method(parameter list)) when the call has failed 

and consider the return value for all methods as void. 

3 IUnknown axioms 

All COM objects must implement the interface IUnknown and all interfaces exposea o a COM object must have the IUnknown's methods. The behavior of these methods identical in any other interfaces. The IUnknown interface can be specified as in [MSDNO Interfuce IUnknown: 
Querylnterfuce(lA:INTERFACE, X:CX) where CX:COMCLASS 
AddRefo 
Release) 

counting mechanism. These methods succeeds always so the SUCCESS predicate is a 

rence 

The last two methods are strongly related to implementation, ensuring the 

true. 

the 
The Querylnterface, by far one of the most important method of all interfaces, allo 

s browsing of interfaces exposed by a COM object. For a COM object, the call: 



ToWARD A FORMAL MODEL FOR COM 
IUknown(X).Querylnter face(1A, Y) 

in cASe of success, the Y object variable to be the COM object X accessed via 

91 

will make,in 

interface IA. If X does not expose interface IA the call will fail There can be three axioms related to IUnknown: 

Axiom 1: IUnknown implementation 

CX:COMCLASS 
CX > 1Unknown 

Axiom 2: Interface browsing 

X:CX CX:COMCLASS CX-> IA 
SUCCES(IUnknownX)Querylnteface(1A, Y)) where Y: CX 

Axiom 3: Independent interface browsing 

X:CX CX:COM CX -> IA CX -> IB 

SUCCES(IA(X).Querylnteface(IB, Y)) where Y : CX¥ 

4 ClassFactory axioms 

Normally, every COM class can be instantiated using a COM object called the class 
actory object for that class. Its role is to make instance ofa class, eventually setting a 

detault interface for every new instance. The main interface implemented by a class factory 

Class Factory which can be described as follows [MSDN6]: 
Interface 1ClassFactory: 
Createlnstancefouter: 1Unknown(aggr:COMOBJECT), 

interface:1INTERFACE, object:COMOBJECT); 
LockServer(BOOL flock); 
Since LockServer is strong related to software implementation (it is a way to control 

Server unloading), the relevant method from IClassFactory is Createlnstance. The 

nstance's fundamental role is to create the object COM object accessed with C 

uiT terface and inside the aggregate aggr COM object. The aggr object may be a 

ODject so the new created instance is not aggregatabie. 
Frst axiom concerned to ClassFactory objects is 
AXIOm 4: ClassFactory universal definition 

V CX:COMCLASS 

3:COMOBJECT Y=ClassFactory(CX) 

91 



M. IuGA 
92 

This means that for every COM class CX it's class factory object always exists 

The second axiom can be formulated as: 

Axiom 5: IClassFactory universal implementation 

VCX:COMCLASS Y=ClassFactary(CX) 
Y IClassFactory 

which means that every class factory object must implement IClassFactory
Finally, the last axiom is: 

Axiom 6: Instance creation 

CY:COMCLASS CX>IA Y=ClassFactary(CCX) 
SUCCESS(IClassFetary(Y).Createlns tan ce(IUnknownaggr), IA, object)) 

where aggr can be a null object. 
This axiom specifies that the class factory operator for class CX which exports IA 

interface should always create new instances of CX accessed with IA interface (depending 
eventually on nullity or non-nullity of aggr). 

5 Conclusions 

In this paper a simple model for formal notations and some axioms regarding COM was 

given. It is practically a way to describe COM in a formal way which avoids any emp1rica and informal expressions. Using the provided set of axioms it is possible to conceive COM 
in an unitary manner. 

Maybe the main usefulness of this model is that it can be the start for a COM oDJe calculus. This calculus could be used to describe aggregation or delegation inside the c model, creating thus a formal method for component design. 
OM 



ToWARD A FORMAL MoDEL FOR COM 

REFERENCES 

Brockschmid9 Kraig Brockschmidt, Inside OLE 2nd Edition, Microsoft Press (A Division of Microsof 
Corporation), 1995 

Luca Cardelli & Martin Abadi, An Imperative Objecet Calculus, DEC Systems Research Center,

date unknown
[Cardclli 

Microsot Developers Network, Visual Studio 6, Platform SDK: COM and Activex Object 
Services: COM, 1998 

[MSDN6] 

Babe_-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, str. M. 
Kogalniceanu 1, România. 

93 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

