ST A S 1 X .
IC o, LIV, NUMB,R 1,] ()
B}‘ BOIYAI, INI()RM/\ I(A VOI,UML 9()
UDIA UNIV B. P2 b -

TOWARD A FORMAL MODEL FOR COM

IUGA MARIN

< naner is provided a formal notation for th‘c COM’s C()nccpts.'ln [h.ls way
Abstract. In this P“‘f.k-{\\‘ tlbrmull\' the basic concepts of cmnpoﬂncnt, pr()g‘rdmn.'nng as
is possible 10 dcs‘\ l: fl-mm um‘i component objects. Also, the COM’s basllc principles
iertaces Cmm-‘:“rlr<it\‘-;;i(‘\ms. three regarding IUnknown and 1hree.regardmg the class
m;:\pli{::dt n.\\llllbth;\-‘c ‘n.otation and axiom are the start in developing a future formal
factory 00Ject. . N

component calculus.

1 A General Overview of COM

COM (abbr. of Component Object Model) is considered now .to be tjne ba;sm layer oni lt::
ewest Microsoft’s technology. Designed to avoid most of tpe ob?ect orlc?nte program d:
problems (such as reviews of objects in monolithic applicaFlons, mtegr?ltlon qf legacy c(ci) d
versioning and inter-object language neutral communication) COM 1s a bma‘ry stan a;
which is Ieading the software development to OLE, considered in [Brockschmidt93] t.0' e
a unified ex;vironment of object-based services with the capability of botl} cust01.mzmg
those services and arbitrarily extending the architecture through custom services, with the
overall purpose of enabling rich integration between components”. o
COM focuses on components which are reusable piece of code and data in binary formf
that can be used along with other components from possible other vendors. The concept Od
component enlarges the concept of object breaking the language barrier. A component couil
oe developed both in procedural or object oriented languages with no constraints.to 1
internz! implementation. Since the internal implementation of the component is invisible ©

the external environment, it exposes a series of interfaces

i C 1 alld

N Of
ith other components. An interface is practically a declaration of a s.et |
methods signature without regarding to any implementation. An interface can be assimilat¢

10 a mean for accessing the functionality of a component. All components will be accessed
only through its exported interfaces,

As previously scen COM s a model for com
paragraphs these components will be calle
of interfaces, and the interfaces
implemented by all COM objects.

ponent programming. In the fb”owlfli
d as COM objects. All COM objects exports & Mn
Will be browsed using the special interface [Unknov
Similar COM objects are associated with a COM ¢l3%°

“"

TOWARD A FORMAL MODEL FOR COM

. ified by @ class identif}cr whic.h is unique for the COM class. Every COM class should
ide “class factory object which creates instances of COM objects associated to that
ha\ie and implements [ClassFactory interface. |

clabsIt i< important t0 have a formal model for COM because it is possible to express unitary
pts since the components design is still enough empirical. Also a formal model for
y improve the performances of software systems based upon components. In this

pe provided both formal notation for COM components and some axioms for this

its conce
COM ma
paper will
model.

9 Preliminary Notations

Many of these notations are an adaptation of Cardelli’s object calculus, developed in
(Cardelli], to component programming theory.

In order to develop a COM formal notation it is necessary to provide a formal notation
for interfaces. An interface has its name prefixed with letter I (e.g. Iname). The interface
«ariables' will be denoted using first letters of the alphabet and IA:INT ERFACE means [A
is an interface. To specify an interface it is necessary to specify its methods as follows:

Iname :

signature of methodl

signature of methodn
A COM class will be referred through its COM class identifier, identifier which has its

name prefixed with letter C (e.g. Cclassname). The COM class variables will be denoted
using the last letters of the alphabet. The fact that an item CX is a COM class will be
expressed using notation X:COMCLASS, and the literal COMCLASS is identified with the

setof all COM classes.
If the COM class CX exports the interface 1A then this is denoted:

CX=>IA.

.COM objects can be instantiated from their classes and accessed via their exposed
Mterfaces,

fthe COM object X exports the interface IA then this is denoted:

, X=2>I1A. .
ref Since all CoMm object can be accessed only by their interfaces, a COM object may be

trred ag;

Pri—

X IR

"Mal not programatic sense
89

M. TUGA
90

IA(CX)
where CX is the COM object’s COM class and [A is the interface used to access g,
comI")rc;]nerslte't of all COM objects will be denoted with COMOBJECT and if X js Coy
object telzlen it can be written as X:COMOBJECT. As previously an ﬂObJCCt c':an be instaniy
from a COM class using the class factory object for that class. For CX:COMCLASs N
class factory will be designated using the operator:

ClassFactory: COMCLASS—COMOBIJECT

where the ClassFactory(CX) means the CX’s associated ClassFactory.

If the COM object X was instantiated from COM class CX, that will be noted:

X:CX.

The call of a method implemented by an object X:CX using an interface IA is denoted

by:
IA(X).method(parameter list).

The practice of COM programming uses widely the HRESULT type as a return type for
a method call. The value S_OK means that the call was successful, any other value means
failure. Since the success of a method call can be determined by comparing the return value
of the call with S_OK it is possible to define predicates SUCCESS and FAIL:

SUCCESS(IA(X).method(parameter list)) when the call was successful

FAIL(IA(X).method(parameter list)) when the call has failed
and consider the return value for all methods as void.

3 IUnknown axioms

All COM objects must implement the interface IUnknown and all interfaces exposed b_)’
a COM object must have the [Unknown’s methods. The behavior of these methods i

identical in any other interfaces. The [Unknown interface can be specified as in [MSDNO]:
Interfuce IUnknown:

Querylnterfuce(IA: INTERF A CE, X:CX) where CX:COMCLASS
AddRef()

Release()
The last two methods are strop

: | o

; A gly related to Implementation, ensuring the rcferenCﬂ
tcountmg mechanism, Thege methods succeeds always so the SUCCESS predicate is always
rue.

The Querylnterface. by f, ~ . e
. . by far one of the most important met all ces. allows !
browsing of interfaces p hod of all interfaces,

exposed by a COM object. For a COM object, the call;

TOWARD A Formay, MODEL ror conm
]Uknown(X).QueryInterface(IA,Y)

make, in case of success, the.Y object variable to be the COM object X ac d vi
ce IA. If X does not expose interface [A the call will fail el v

be three axioms related to [Unknown:

91

will
inteffa
Thcre can

Axiom 1: IUnknown implementation
CX :COMCLASS

CX - [Unknown

Axiom 2: Interface browsing

X:CX CX:COMCLASS Cx — /A
SUCCES(1Unknown(X) Querylnterface(I4, Y) whereY : CX

Axiom 3: Independent interface browsing

X:CX CX:COM CX—>I4 CX —IB
SUCCES(IA(X).QuerylInterface(IB,Y)) where Y : CX

4 ClassFactory axioms

Normally, every COM class can be instantiated using a COM object called the class
factory object for that class. Its role is to make instance of a class, eventually setting a
default interface for every new instance. The main interface implemented by a class factory
is IClassFactory which can be described as follows [MSDNG]:

Interface IClassFactory:

Createlnstance(outer: IUnknown(aggr-COMOBJECT),

interface:INTERFACE, object: COMOBJECT),

LockServer(BOOL flock), o l

Since LockServer is strong related to software implementatlor‘l (it is a way to conqt‘r}z)
“IVer unloading), the relevant method from IClassFactory is C.reatelnstanceci 't;
Createlnstance’s fundamental role is to create the object COM object accesse | ;wa
"erface interfuce and inside the aggregate aggr COM object. The aggr object may be
"ull object 5o the new created instance is not aggregatable.

First axijom concerned to ClassFactory objects is:

Axiom 4; ClassFactory universal definition

v CX : COMCLASS ’
Y COMOBJECT Y =ClassF actory(CX)

91

- 'fm‘

A
9 M. UG/

This means that for every COM class CX it’s class factory object always exists.

The second axiom can be formulated as:
Axiom 5: IClassFactory universal implementation

V CX:COMCLASS Y =ClassFactary(CX)
Y — IClassFaciory

which means that every class factory object must implement IClassFactory .
Finally, the last axiom is:
Axiom 6: Instance creation

VCX:COMCLASS CX —I4 Y =ClassFactary(CX)
SUCCESS(IClassFctary(Y).Createlnstan ce(IUnknown(aggr), I4, object))

where aggr can be a null object.

| This axiom specifies that the class factory operator for class CX which exports [A
interface should always create new instances of CX accessed with IA interface (depending
eventually on nullity or non-nullity of aggr).

5 Conclusions

II} this paper a simple model for formal notations and some axioms regarding COM was
given. It is practically a way to describe COM in a formal way which avoids any empirical
?nd qurmal expressions. Using the provided set of axioms it is possible to conceive COM
In an unitary manner.

Maybe the main usefulness of this model is that it can be the start for a COM objec!
calculus. This calculus could be used to describe aggregation or delegation inside the COM
model, creating thus a formal method for component design.

TOWARD A FORMAL MODEL FOR COM

REFERENCES

(Brockschmidt9 Kraig Brockschmidt, Inside OLE 2nd Edition, Microsoft Press (A Division of Microsoft
) Corporation), 1995

[Cardelli] Luca Cardelli & Martin Abadi, An Imperative Object Calculus, DEC Systems Research Center,
date unknown

[MSDN6] Microsoft Developers Network, Visual Studio 6, Platform SDK: COM and ActiveX Object
Services: COM, 1998

Babes-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, str. M.
Kogalniceanu 1, Roménia.

93

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

