
STUDIA UNIV. BABE^-BOLYAI, INFORMATICA. VoLUME XLIV, NUMBER 1, 1999

THEOREM PROVING AND DNA COMPUTING

DOINA TATAR AND MIHAI OLTEAN

Abstract. We start from sticker systenms as language generating devices for DNA

computing ((3])) and we define the sticker systems associate with a set of clauses. The

Robinson's theorem is stated in terms of the language generated by this sticker

system

1. Introduction

A DNA (dezoxyribose nucleic acid) is a large double-stranded (helicoidal) structure
that contains, in order form, all information needed to generate proteins for living

organisms. This coded information is a sequence of four nucleotides, A (adenine), T

(Thymine), C (Cytosine), G (Guanine) paired A-T, C-G according to the so-called

Watson-Crick complementarity [3].
One can think DNA as a program interpreted by a complex biological machinery

that generates sequence of aminoacids (proteins). There are precisely 20 aminoacids

(prote ins) that can be generated from 64 possible triplets (codons) of nucleotides, and

each of them can be represented by multiple triplets[2]. For example, the aminoacid Ala

can be formed by the following triplets: GCA, GCC, GCT,GCC. In a simplified manner
the generation of proteins form DNA proceeds in four phases: transcription, splicing,
aminoacid generation and protein folding.

In [3). [4] the authors present a language-theoretic model of DNA splicing. This
model will be adopted for resolution method in automated theorem proving. In the

following section we will present the sticker operation and the sticker systems as
introduced in [3].

In section 3 we will present the resolution method as a complete computation in a

stiker system.

In section 4 the corresponding justifications in propositional caleulus are

introduced.

2. Sticker operation and sticker system
If we have single stranded sequence of A, C, G, T nucleotides, together with a

Single stranded sequence composed of the complementary nucleotides, the two
sequences will be glued together (by hydrogens bounds), forming a double stranded

DNA sequence. What [3] extracts from here is the operation of prolonging to the righta

THEOREM PROVING AND DNA cOMPUTING 63

cequnce of (single or double) symbols by using given single stranded strings, matching
hem with portions of the current sequence accordind to a complementary relation.

In the following we willl present the sticker operation and the sticker system asin

Let V be an alphabet endowed with a symmetric relation p (of complementarity), p
VxV. Let # be a special symbol not in V, denoting an empty space (the blank

symbol).

Using the elements of V u {} one construct the composite symbols of the

following sets:

a
a,beV,(a,b) E p

)-(C aeV

Now the set:

(V w,=S),
where

sV)= +)
is introduced and the elements of this set are called well-started sequences. S

Stated otherwise, the elements of W» ((V) start with pairs of symbols in V, as

selected by the complementarity relation, and end:

a) either by a suffix consisting of pairs
a

(b # (b
b) or with a suffix consisting of pairs for a,be V (the symbols are

a

S(V)t lV) definde as follows: for x e W,(V). y e S(V), z e Wp(V), one write

not mixed).

ne sticker operation, denoted by u, is a partially defined mapping from Wp(V) x

H(x.y) = z

and only if one of the following cases holas:

D. TATAR AND M. OLTEAN
64

4.a,.a..rtG

arp

y
C

: # #

for k 2 0, r21, p2 1,
a, e V, 1Sisktr+p, b, e V, 1si sk c; e V, l3isr,

and (a C) E p. 1sis;

y=
(# * H
(4) (aa # #

for k 20, r21, p2 1,

a e V, 1Si sktrtp, b, e V, ISiSk, c; e V, Isiar,
and (a-C) E p, Isi ar;

r= 3 #) (#

(-

a # #

for k 2 0, r21, p2 1,
a, E V, Isisk bj e V, ISisk+r+p, c, E V, ISiar and (ac) E p. lsiSr;

THEOREM PROVING AND DNA cOMPUTING 65

4.

C+P
y= #

(a #

Cp
...*#,

for k 20, r20, rtp2 1,
a e V, 1siak, b e V, 1si sk+r, c, E V, I1si artp,

and (ak-,c) E p, 1siar;

In the case 1 one add complementary symbols on the lower level without

completing all the blank spaces. In case one we complete the blank spaces on the lower

Cases 3 and 4 level of x and possibly add more composite symbols of the form

are symmetric to cases 1 and 2, respectively, completing blank spaces on the upper level

of the string.
Note that in all cases the string y must contain at least one composite symbol and

that cases 2 and 4 allow the prolongation on of "blunt" strings in W,(V): when r = 0

there is no blank position inx.
For strings X, y which do not satisfy any of the previous conditions, H(x.y) is not

defined.
Using the sticker operation in [3] the authors define a generating/computing

mechanism, sticker system, as follows:

Y=(V.p, A, Bi, Bu),
where V is an alphabet, p c VxV is a symetric relation on V, A is a finite subset of

WV) of axioms, and Bas

B are finite subsets of , respectively. and

ne idea behind such a machinery is the following. One start with the sequences in

and one prolong them to the right with the strings in Ba, Bu acording to the sticker

aon (the elements of B, are used on the lower row, and those of B, are used on the

66 D. TATAR AND M. OLTEAN

upper row). When no blank symbol is present, we obtain a string over the alphah

.The language of all such strings is the language generated by y.

Formally, [3] defines this language as follows:

For two strings x, z e W,(V) one write x-3z iff'z u(x.y) for some y e B4 UB

One denote by »* the retlexive and transitive closure of the relation , like

usually
A sequence NiN...N, X1 E A is called a computation in y (of length k - 1). A

(V
computation as above is complete if X, E| (no blank symbol is present in the last

string of composite symbols).

The language generated by y, denoted by L(Y), is defined by

L(y) ={we x w, x¬A
V),

Therefore, only the complete computation are taken into account when defining
L(y).

3. Resolution method as a sticker system
One of the most largely used refutation method in automated theorem proving is

resolution method. It can be introduced as a formal system [S]:

R=(,FRAp, Rg)
where:

{p, 9, r,..Pi. 9, ri} U{ kv}.
variables.

P, 9. r, ...Pi» qi» ri are propositional
Fr is a set {1, g,...fi, gi,..} of clauses and they have the following fornm:

Pvv... V p
where

if a =1

P ifa = 0
The constructs p or p are called literals. A special clause is the empty clause whien

is free from literals. It is noted as

AR . (The resolution system has no axioms.)

THEOREM PROVING AND DNA COMPUTING 67

RR {res}, so the only deduction rule is called res, and it is defined as

follows:
fv p. gv Ffvg f,ge Fe

It is known that any problem as u2 v is equivalent with
u.un. V unsatisfiable. Moreover each formula u..., u,,v can be reduced as a

set of clauses. So, to verify U, 2 Fv is equivalent with to verify if a set of clauses is

unsatisfiable.

Theorem (JA. Robinson)
A set of clauses from propositional computation is unsatisfiable (or contradictious)

if and only ifCF

What we will explain here is applicable if original disjunctions have the length at
most 2 (contain at most two variable). In 4 we'1l show that any refutation by resolution

can be reduced at the clauses with the length at most 2.

We codify each clause of C by a single stranded DNA formed by the sequence of

the variables in that clause. For each clause pvq we put in the test tube two kind of

sequences: pq and qp.

Due to the complementarity, through the application of the resolution rule between

two DNA sequences it will be fonned a new DNA sequence of higher length.

Example:
C=\gvp,rv p}

t is clear that the obtaining of the empty clause means a complete DNA sequence

uble stranded. In the terms of sticker systems, the deduction of the empty clause

ans a complete computation (no blank symbols is present in the last string of

Ompagite symbols). In the previous example, if we have also the F and q clauses, we

Obtain the empty clauses, which means a DNA sequence without blank symbols:

Example:
C=lqv p,rv p.9,rj

D. TATAR AND M. OLTEAN

68

P

Definition
The sticker system asociated with a set C of clauses is:

Y (V.p, A, Ba, B,),
where:

Vis Vis the set of propositional variables in clauses,
is the complementarity relation in propositional calculus,

B is a set of elements of,constructed as:

#Y# #
ba EB. bp::P)

if pvp V...vp EC

B is a set of elements of constructed as:

if p v p v... v p EC

A= BaUB.
(Let us remark that k<2, see section 4). In this sticker system, for two strings x, z E Wp(V) we have: xz (or z =H(x,y) for some y e BaUB,) ifx is a string, y is a string from B or B, (a clause) and z is a string obtained resolution between y and x (more exactly, between y and the suffix of x). A part of the Robinson's theorem can now be stated as:

by

Theorem
A set of clauses C, with at most two variables, is unsatisfiable if L(Y) * ¢. where

the sticker system associated with C.
y is

THEOREM PROVING AND DNA COMPUTING 69

4. Propositional calculus considerations.

In this section we will justify on limitation at clauses with at most two literals and
he formulation as a sutficient conditions, of Robinson's theorem, in terms of sticker

systems.

Let us consider the four posibilities for a formula:

a) with A in conclusion

b)with v in premise

c)with v in conclusion

d) with A in premise.

a) For this case, we consider the theorem:

Kp-9) (P>r) {p-Ar)

This theorem says that, to prove a theorem as "p->qnr" is enough to prove "p->qq
and p->r'. Both formulae, "p>q" and "p->r" ,(or, as clauses pvq, pvr, . .

have a number of literals less than "p->qnr".

b) For this case let us consider the theorem

Kp-)a (q->r) +{pvq-)

SO, to prove a theorem as "pvq is enough to prove "p->r" and "q->r.

Both these formulae have a number of literals less than "pvqr
The cases a) and b) provide the following observation:

If one of formulae from the set {u,.., Un, V} , let say u, is of the form:

then this formulae will introduce kl clauses with two literals of the form:

P VgP va,Pi v4
lt the set of these clauses (for u,) in union with the rest of clauses

(for or i.,Ur js..,) is unsatisfiable, then we conclude that {us., Ug. V is

unsatisfiable AND conversely
C)For this case we have the implication:

Kp-q) a (p->r) >(p->qvr)
G ODserve that the reverse implication is not a valid formula. As clauses, this
formula can be rewriten as

Fpvg)apvr)>(Pvqvr) By the equivalence:

70 D. TaTAR AND M. OLTEAN

Ku->F)a(>F}>(uvvF)

(or Fua *>UVv)
we can deduce that if a set of clauses:

C={pvq. pvr,...
is unsatisfiable, then the set of clauses

C'=pvqvr,..
is also unsatisfiable.

In this case we have the implication:

Hp-)qNr)>{p^q->*)
d)

Or

vr)a(Gvr)>(pv�vr)F
Similar with the case c), we can deduce that if a set of clauses:

C pvr,qvr,...
is unsatisfiable, then the set of causes

C-vgvr,..
is also unsatisfiable.

The cases c) and d) provide the following observation:

If one of formulae {u,s., U,, V}, let say u;, is the form:

P AP A..A P>4 v9v..vg
then this formula will introduce kel clauses with two literals of the form:

if the set of these clauses (for u,) in union with the set of clauses for

Ui, ui-1,lj+l5-.,Uas V

is unsatisfiable, then we conclude that {u,.., u,,V} is unsatisfiable (but not AND

conversely).

REFERENCES

Adleman, Molecular Computation of Solutions to Combinatorial Problems, Science. Vo
266, 1994, pp 1021.

Jacques Cohen: Computational Molecular Biology: a promissing application uing LP anu

its extensions.The LP paradigms, a 25-ycar perspective, ed. K. Apt, Springer, 1999.

2.

3.

and

L. Kari, Gh Páun, G. Rozenberg, A. Salomaa, Sheng Yu, DNA computing, sticker syoen tems,

and universality, Acta Informatica 35, 1998, pp 401-4
4 57, Gh. Påun: Splicing, A challenge Jor formal language theorist, Buletin of EATCS, "

1995, ppl83-194.

THEOREM PROVING AND DNA cOMPUTING 71

nTatar: The mathematical bases of computer science, Univ Babe_-Bolyai, Cluj-Napoca,

1993 (in romanian).

Tlniversity
* Babes- Bolyai", Cluj-Napoca, Romania

Faculty of Mathematics and Computer Science

Department of Computer Science

Fmail address: dtatar@cs.ubbeluj.ro, moltean@cs. ubbeluj.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

