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THE LINEAR NORMED SPACE S(G) OF THE NETWORKS 

ATTACHED TO A GRAPH G 

DANIELA MARIAN 

ABSTRACT. In this paper we define the linear normed space S(G) of all net 

works attached to a graph G. We also define and study several convergence 

in S(G). We adopt the definition of network as metric space introduced by 
P. M. Dearing and R. L. Francis (1974) and the functional representation of 

network introduced by E. lacob in (1997). 

1. PRELIMINARY NOTIONS AND RESULTS 

The definition of network as metric space was introduced in 2] and was used 

in (4, [6], 5], etc. 
We consider an undirected, connected graph G = (W, A), without loops or 

multiple edges. To each vertex w; E W we associate a point v; from the euclidean 
space R", g2 2. This yields a finite subset V of R°, called the vertex set of the 
network. We also associate to each edge (wi, uj) E A a rectifiable arc [vi, v] CR° 
called edge of the network. We assume that any two edges have no interior common 
points. We denote by E = {e1, ..., em), ek = [vi, , Vjl, k = 1,2,.., , the set of all 

edges. We define the network N = (V, E) by 

(1) N {x ¬ R'|3 (wi, uw;) E A so that a e [vi, v]} 
We suppose that for each edge ek ¬ E there exist a continuous mapping 1e 

10,1 lVi,, Vj) so that 

Te, (0) = v,, Te, (1) = vj, and Te. (0, 1|) = {vi,, Vjsl 

As in [5] we functionally represent the network N = (V, E) by 

PN 0, 1> R?Xm 

PN(t) = (Tes (),., lem ()) . 

For every function T, k = 1,2,.., m, we denote the corresponding scalar compo- 

(2) 

nents with Te^1^.. . , Tepq, hence we have 

Te (t) = (Te,1 (t),..., Tea(t) . 
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points v; from the Euclidcan space 
R' and we also can

(, wj) of the grayh G an infinity of rectifiable 
arcs lUi, V| in R?. So to the age 

Gwe can 
associate an infinity of netuworks 

denoted by S(G). 

Definition 1.1. [5] Two networks Ni = (1, Ei), V2 
= (V2, E2) are called home 

ogous if there is a one-to-one application h: Vi V2 30 Uhat if lv1, V2l E E 

h(v), h(v2)] ¬ E2. ln this case the edges v1, v2 E E and |h(v1), h(u2)1e E. 

called homologous. 

Remark 1.1. We can associate to each verter w; E W of the associate graph G to an eac edge 

in R". So to the graph 

then 
Ea are 

Remark 1.2. The set S(G) is the sct of all the homologous networks uith 

network N defined in (1). 

In 5 are introduced the following operations on S{G). We consider two net 

the 

net 

works 

Ni = (Vi, E) , N2 = (V2, Ea), Ni, Nz E S(G), 

functionally represented by 

PN 
0, 1 R?xm 

(3) 
PN, (t) = (T,(),.., T ()), i =1,2 

so that the edges Te,Te are homologous Vk = 1,2,..., m. F'urther on we sup- 

pose that the corresponding edges T, Te are honologous for every two networks 

N1.N2 ¬ S(G) functionally represented as above. 

Definition 1.2. 5]1. The sum of the networks N1, N2 ¬ S(G) is a network 

+Na E S(G), functionally represented byy 
PN1+N2 0,1 R?Xm 

PN+N () = PN() +PN(),t e [0, 1. 

2 The multiplication with a scalar A ¬ R' of the network N i ¬ S(G), is a 

Tuetwork AN E S(G), functionally represented by 

PAN [0,1]-> R° X m 

PAN, ()= ApN, (t),t e [0,1]. 

We define now the null network associated to the graph G. To each vertex wE 
Wwe associate the point 6 = (0,0,... ,0) E R' and to each edge (wi,, wjs) EA 
we associate the function

T, : 0,1+0,Te, (t) = 0, Vt ¬ [0,1). 

Definition 1.3. The application 
Po: [0,1+ R'*", Po(t) = (Te, (),..., Te (t)). 

with 

Te, (t)= 6,Vt E [0, 1], Vk = 1,2,., m is called the null network and is denoted by 0. 
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We denote S(G) = S(G) U0. 

Finally we denote 

Cno [0,1{S: [0,1]- R"|f is continnous on [0, 1]} 

and we recall the tollowing norma in C'R« 0,1]. 

Definition 1.4. |1jThe application 

II-1: Ca [0, 1] -> R,|IS||= max IIS0)|1, 
tE[o,1] 

where lf (t)|| is the euclidean norma of the element f(t) E R', is a norma in 

CR [0.1. 

2. PROPERTIES OF THE OPERATIONS wITH NETWORKS 

Lemma 2.1. The operation of addition of two networks from S(C) defined above 
is associative and commutative, that is 

(+Na)+Na = Ni +(N2 + N3) 

and 

Ni +Na = Na + Ni, VN1, Na, Na ¬ SG). 

Proof. We consider the networks N;(Vi, E), i = 1,2,3, from S(G), functionally 

represented by 

0,1] R?xm, 
PN,)= (T,(),.1T )),i =1,2,3, 

PN 

so that the edges Te,Te., T are homologous Vk = 1,2, .., m.We have: 

PN +Na) +N,(t) = PNi+M; (t) + PN, () = Pn, (t) + Pn(t) + PN (t) 

and 

PN+(Na+Ns) (t) = Pn, () + pNa+Na (t) == pN, () + PN, (0) + 9n () 

Yt E [0, 1J.Consequently 
P(N1+N2)+Ns (t) = PNI+(Na+N,) (t) , Vt E [0, 1), 

hence (N+ N2) + N3 = Ni +(N2 + Ns). 
he other affirmation can be proved in a similar way. U 

Lemma 2.2. For every networkN = (V, E) E S(G), functionally represented by 
(2), we have N + 0 = 0 + N = N. 

Proof. Indeed, 
PN+ot) = pN(t) + Po(t) = pN (t) 

and 

Po+N(t) = Po(t) + PN{t) = pN (t), Vt E [0, 1], 
hence 

N+0 =0 + N = N, VN E S(G). 
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We consider now a network N = (V, E) E S(G), functionally represo 

(2), and we denote with -N the network from S{G),.functionally represent. 
ented by 

p-N : 0,1]> R°*", p-n(t) = (-1e, (t),..,-Tem (0) , Vt E [0. 11 

The network - N is called the opposite network of N. 

Lemma 2.3. For every network N = (V, E) E S(G), fuTctionally epresentel! 

(2), we have 
l by 

N+(-N) = -N+ N = 0. 

Proof. For every N = (V, E) ¬ S(G), 

N+(-N) (t) = 9-N+N(t) = PN{t)+p-N(t) = 

PNt)- PN() = 0,Vt ¬ [0,1]. 

From Lemma 2.1, Lemma 2.2 and Lemma 2.3 we obtain the next theorem. 
Theorem 2.1. The set S(G) is a commutative group related with the first opera tion defined in Definition 1.2. 

Lemma 2.4. For every A E R and for every Ni, N, ¬ S(G) we have 

A(N1 +Na) = AN1 + ANg. 

Proof. Indeed, 

A(N+Na) () = Apn,+N, () = Ap, (t) +Apn, (t), Vt e [0, 1]. 

Lemma 2.5. For every A, u ¬ R and for every N E S(G) we have (A + p) N= AN N. 

Proof. It is clear that 

A+m)N (t) = (A + #) Pn(t) = ApN(t) + upN (t), Vt e [0, 1). 

Lemma 2.6. For every A, j4 ¬ R and for every N E SG) we have X(PLN (Au)N. 
Proof. Indeed, 

PuN) (t) = Apun(t) = (Au)Pn(t), Vt E [0,1 
Lemma 2.7. If 0 and 1 are the null element and the unit element front 

0 N 0 and 1 N = N, VN E S(G). 
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Proof. We have 

0.N (t) =0 pn(t) = po(t), Vt e [0, 1] 
and 

P1-N (t) =l PN(t) = PN(t), Vte [0,1]. 

From the Theorem 2.1l and Lemma 2.4, Lemma 2.5, Lemma 2.6, Lernma 2.7 we 

obtain: 

Theorem 2.2. The set S(G) endowed with the operations from the Definition 1.2

is a real lunear space. 

We will endowed now the set S(G) with a normed space structure. 

We consider a network N E S(G), functionally represented by (2). Because for 
every edge ex = [vi,, Vje), k = 1,2, ..., m of the network N correspond a continuous 

application Te, [0,1] {vi, Vj.) we define the norma of the edge ek as the norma 

of the application 1ex from the Definition 1.4. 

Definition 2.1. The norma of the edge ex, k =1,2,.., m of the network N e S(G) 
S: 

(4) lel= max, ||Te, (t)| 
tE[0,1] 

Proposition 2.1. The application 

(5) - l :S(G) > R, ||NI|| =, max le l|=, max max |Te. (t)|| k=1,2,.., mtE[0,lj k=l,2,.,m 

VN E SG), is a norma in the linear space S(G), that is it satisfy the following 

properties: 
(1) ||NI| 20, VN ¬ S(G) and ||N|| = 0 if and only if N = 0; 

(2) ||AN|| = |A| ||N||, VA E R, VN E S(G); 
(3) ||N + Nall ||N||+ ||Na|ll. VN1, N2 ¬ s(C). 

Proof. 
(1) From the relation (5) it is obviously that ||N|2 0, VNE S(G). We also 

have 

= 0 maxmax ||Te (t)|| = 0 > Te, () = 

k=1,2,..., mtE[0,1 

= 6,Vt E 0,1,Vk = 1,2,.., m N= 0. 

(2) For VA E R and VN E S(G), 

ANI= nax |AT (t)||= Imax 

k=1,2,.., mtE[0,1| 

A maxmax |Te (t)|| = A| ||N|. 
k=1,2,..., mtE[0,l 

= 
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(3) We consider the networks Ni, N2 ¬ S(G) functionally represented as in 

(3). For Vk = 1,2, ..., m we have 

in 

17)+ TO|< ||T.(0O|+|T"(O,VE e j0, 1. 
This inmplies 

max, |T,t) + T, )|| 
te[0,1] 

l + |7201s 
tE[0,1 

ax, (tO|| + max |T (O)|| 
tE0,1] tEl0,J 

and 

max T)+T% +7 (O k=1,2,. , mt¬[0,1] 

m ax, |T,)|| + max |T,(t) max 
k=1,2,m t¬[o,1] tE[O,1] 

max 
k=1,2,... , mtEl0,1] maxT, ()||+max max 

k=1,2,..., mtE[0,1 

that is ||N + Noll l|N||+||Na|i 
Further on we can organize the linear normed space S(G) as a metric space if we 

define the dist.ance between two networks Ni, N2 ¬ S(G), functionally represented 
as in (3). by 

(6 pN1,Na) = ||N1 - Nall =. max||T, (t) - T, (t)||. max 
k=1,2,.. ,mtE|0,1] 

If we consider the metric space (S(G), p with the distance p defined in (6) then it 

is naturally to make a study of convergent sequences of elements from S(G) in the 

sense of the metricp. We will study in the next section several types of convergence 
in S(G). 

3. CONVERGENCE IN S (G) 
Several nathematicians were studying sequences of different mathematical ob- 

jects (see [8], [1, 3, etc. ). We will study now the sequences of networks from 
S(G) 

We consider the networks 

(7) N= (V', E'), N, = (V", E*),.. N, = (V", E"),.. 
of S(G) where V,V,... ,V",.. . are respectively the vertex sets and E',E,., are respectively the edges sets of the networks N1, N2, ..., Na,... We denote this 
sequence of networks by (NA)nCN or simple by (N,a).
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edges e are. homologou for every n > 1. 

sing the notation (2) we fuictionally represent the networks of the sequence 
(7) by: 

PN, 0,l> R7*m", n = 1,2,.. 
PN,(t) = (Te; (),T",(0),.., T (), 

where the functions 

Te(0,1 e = [v,, v,], Vk = 1,2,.., n 

and Vn >1 are continuous so that: 

Tey, 0) = v,T, (1) = » and T,(0, 1)) = [,,] 

Related to the sequence (7) we study different problems of convergence. Thus 
for example for a number t E [0, 1), the sequence 

T (t),T(t), T (),.. 
can be convergent or not in R for some fixed k e {1,2,..,m) or even for every 
kE {1,2,., m}. Moreover these can be happen for every t E [0,1. 

We consider a fixed integer number k e {1,2,., m. 

Definition 3.1. The sequence (N,) of S(G) is k-converyent on the point t E [0, 1] 

if the sequence 

(8) T (t),T(t),.,T (t), 
15 Convergent in R. In this case we denote lim T1 (t) = Te, (t). 

Definition 3.2. 7he sequence (N,) of S(G) is convergent on the point t E [0, 1 

the sequence (8) is convergent in R', for all Vk E {1,2,., m}. In this case 

lim T (t) = Te, (t), Vk E {1,2,., m}. 

ennition 3.3. The sequence (N,) of s(G is k-simple convergent if vt E (0, 1. 

e Sequence (8) is convergent. So we can define the imit function 
t 

Te:0,1]-> R' 
Te. (t) = lim 7(). 

nition 3.4. The sequence (N.) of S(G) is simple converyent if Vk E{1,2,., 7m} 

d Vt E [0,11, the sequence (8) is coVETgEnl. 

this case we obtain m functions 

Te 0, 1> R", k = 1,2, ., m. 
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T0)-T., ()||<e, Vn > r. 
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is 

(9) 
Therefore r depend by e and t. We desire t0 praise those sequences for ths 

Va0 there exist a number r who depend only by e so that the inequality (g) 

satisfied Vn > r, and for any t E [0,1. 

is 

Definition 3.5. The sequence (Na) of S(G) is k-uniformly convergent if for am. 

number e> 0, there erist a number r(e), which do not depend by t, so that the 

inequality (9) is satisfied Vn > r, and for any t E {0,1. 
Remark 3.1. In this case the function Te : [0,1 + R° is continuous On [0, 11 s0 

this function define a edge betuween the points Te, (0) and Te, (1). 

Proof. We consider to E [0, 1]. We proof that the function Te, is continuous 
on to. If the sequence (N,) is k-uniformly convergent then v E> 0,3r{E), which 
do not depend by t, so that the inequalityTt)Te, (t)|| < e/3 is satisfied 

Vn> , and for any t E [0,1]. We consider a fixed number n > r. The function 
Tis continuous on to, hence for the number e considered above there exist a 

neigborhood Vio of to so that for any t E Vin [0,1], |T¢, (t) - Te, (to)|| < E/3. We 

ny 

obtain 

T.(0)-Te. (t%)ll < ||Te. (t)- T (t)||+ ||Te (t) - Te (to)|+ 
+||Te2 (to)-Te, (to)< e/3+ e/3+e/3 = e. 

for everyte Vi,n [0,1, hence the function Te: is continuous on to. The point to was considered arbitrar, so we obtain that the function Te, is continuous on 0,1]. O 

Definition 3.6. The sequence (N,n) of S(G) is uniformly convergent if it is uniformly convergent for any k ¬ {1,2, , m}. in this case, using the Renark 3.1 we obtain m continuous functions Tes 0,1> R, k¬ {1,2,.* , m} and a new network N E S(G). We consider a uniformly convergence sequence (Na) of S(G) Theorem 3.1. The application 
PN 0,1]> R9Xn m 

Pn(t) = (Te, (t), Te,(t),.., Tem(t)) where 

T.()= lim T" (t), Yk e {1,2,.., m}, Vt e [0, 1] functionally represents a network from S(G) called the limit network of th 
quence (N,n). 

se 
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Denaf. The functions Tes [0,1)> R° are continuous on [0, 1], Vk e {1,2, , m). s cansider now two adjacent edges 7e Te, of the networks N1, V> 1, so that T (1) = Te; (0). Conscquently ,im T(0) = lim T" (0). But 

Te (1) = im Te;(1),Te, (0) = lim T" (0) n-o0 

hence Te. (1) = Te, (0). This implies that the edges Te, and Te, are adjacent too. O 
Theorem 3.2. The necessary and sufjicient condition for the sequence (N,) of SIG to be uniformly convergent is that for any e > 0 there erist a number r independent by t so that Vn, p> r, 

(10) T,()-T ()|| <¬, 
Vk = 1,2,.., and vt e [0, 1]. 

Proof. We suppose first that the sequence (N,) is uniformly convergent and it 
have the limit the network V. We consider a real numbere>0. There exist then 
a number r which do not depend by t so that 

(11) T () -T., ()|| < E/2 
for everyl>r, k = 1,2,.., m and t E 0,1]. We apply the inequality (11) for 
l = n and l = p, where n > r and p > r. We have: |T (t) - Te, (t)||<e/2 
and ||T (t) - Te (t)| < E/2 for every k = 1,2,.., m and Vt e {0, 1), consequently 
TE)-Te (t)|<e for every k = 1,2,.., m and Vt E [0, 1]. 

Conversely, we suppose that for every e>0, there exist a number r independent 
by tso that Vn,p > r.|T, (t) -1e, (1)|| < 6, Yk = 1,2,..., m and vt E (0,1. 
For every te [0,1] and k = 1,2, ..., m the sequence Te, (t), Te, t),..., T¢ (t), .. is 

then fundamental and consequently convergent in R°. Hence there exist the limit 

hunction Te, :[0,1] > R', T., (t) = lim T, (t), Vk =1,2,.., m. We fix the number 

n n the inequality (10) and we obtain the following inequality when the number 
n0o 

fo t E 0,1] and k = 1,2,..., m. Consequently the sequence (N) is uniformly

p tend to 0: 

T() -T.C)|| <e 

Convergent. 
ark 3.2. If the sequence (N,) is uniformly convergent then it is also simple 
gErt. The reciprocal is not true as it result from the next erample: 

ple 3.1. (3] We consider the graph G = (W, A), W = {uw1, wa and A = Exar 
(W1, w2)}. To the ver erter wi and w2 of the graph G we associate the points 

Junctio spectave v2 = (1, 1) in R'. We consider the sequence (N,) of S(G) 
Junctionally represented by 

PN, [0, 1> R', n = 1,2,... 
PN,() = (T (1), 
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T0.1 f, v] 
T(0)= (1,1"). 

where 

This sequence of networks is simple convergent because Vt E [0, 1), the sequenre 

Te, (t). T().., T" (t),. 

nce 

is convergent and we obtain the limit function 

Te:(0.1) R2 
(t,0). if 0 t<1 

Te,)= (t,1), ift = 1| 

But this function is not continuous, so using the Remark 3.1 the sequence (N, 

is not uniformly convergent. 
We remark that we can define through continuity a new network N* E S(G 

with the vertex 
= (0,0), v = (1,0), 

functionally represented by 

PN : 0,1 R2 
PN(t) = (;)), 

Where 

T: 0,11 [Vi, v] 
T(t) = (t,0). 

Now we introduce the convergence in the sense of the metricp introduced in 

(6. 
Definition 3.7. The sequence (N,) of S(G) is convergent and have limit tne 
Truetuork N E S(G) if 

lim p(N, N) = 0 
n- 

where p is the distance defined in (6). 
This means: for any e > 0, there exist a number r(e) so that the inequa Tn>r(e) implies the inequality p{Nn, N) < e,that is 

Imax 
k=1,2,. , Tnt¬[0,1 0-7.()|<e. 

That is for any e> 0, there exist a number r(e) which do not depend tE 10,1 and by k = 1,2,.., m so that ||7 (t) - Te.()<E for any t E |U, 4} k = 1,2, .., 111 and n> r{e). 
So the convergence of the sequence (N,) to the network N in the sense Definition 3.7 is equivalent with the uniformly convergence of the sequence (n to N. 
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ition 3.7 then its. limit is unique. 

Devnaf The proof is obviously because S(G),p) is a metric space and in a 

metri sTace the limit of a convergent sequence in the metric sense is unique. O 
Definition 3.8. T he sequence (N») of networks in S(G) is fundamental if for a 0, there eæist a number r(e) so that for any n > r(¬) and p> r(s), the 
follouing inequality is satisfied 

pNp, Nn) <e 
that is 

max max 
k=1,2,.,m \t¬[0,1] 

Theorem 3.4. 1f the sequence (Nn) of networks in S(G) is convergent in the 
sense of Definition 3.7 then it is fundamental. 

Proof. We suppose that the sequence (N,) of networks fromn S(G) is convergent 

and have the limit the network N. Hence for every e > 0, there exist a number 
r(E) so that p(Na, N) < E/2 for every n> r{¬). We consider the index rn and 

p so that n> r(e) and p > r(¬). Consequently there are satisfied the following 

inequalities: p{Nn, N) << e/2, p(Np, N) < e/2. Hence we have 
p(Np, N,) S p(N,, N) + p(N, N,) < e/2 + e/2 = e. 

These imply that for every number e > 0, there exist a number r(e), so that 

d(Np, Nn)<e for every p > r(¬) and n > r(e), hence the sequence of networks 
(N) is fundamental. 0 
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