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THE LINEAR NORMED SPACE S(G) OF THE NETWORKS
ATTACHED TO A GRAPH ¢

DANIELA MARIAN

ABSTRACT. In this paper we define the linear normed space S_(G—') of all net-
works attached to a graph G. We also define and study several convergence
in S(G). We adopt the definition of network as metric space introduced by
P. M. Dearing and R. L. Francis (1974) and the functional representation of
network introduced by E. Iacob in (1997).

1. PRELIMINARY NOTIONS AND RESULTS

The definition of network as metric space was introduced in {2] and was used
in [4], [6], [5], etc.

We consider an undirected, connected graph G = (W, A), without loops or
multiple edges. To each vertex w; € W we associate a point v; from the euclidean
space R4, g > 2. This yields a finite subset V' of RY, called the vertex set of the
network. We also associate to each edge (w;,w;) € A a rectifiable arc [v;, v;] C R?
called edge of the network. We assume that any two edges have no interior common
points. We denote by E = {e1,...,em}, €k = [Vi,, V5], K = 1,2,...,m, the set of all
edges. We define the network N = (V, E) by

(1) N = {z € R?| 3 (w;,w;) € A so that z € [v;,v;]}.
We suppose that for each edge e, € E there exist a continuous mapping T, :
[0,1] = [v4,,v;,] so that
2 (0) = vy, Te, (1) = v, and T, ([0, 1]) = vy, vj, ] -
As in [5] we functionally represent the network N = (V, E) by

(2-) . [0 1] Rqu’
(pN(t ( €1(t) "'aTem(t))-

For every function T.., k=1,2,..,m, we denote the corresponding scalar compo-

nents with T, 4, ... s Lexgs hen(c we have

Too (t) = (Tey1(t), - Terq(t)) -
e
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1. We can associate 10 cach verteT Wi € W of the grqp hG an nfing;
. iuclidean SPACe RY and we also can associate to each quy
rectifiable arcs [vi, v;] im R So to the gmbz
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Remark 1.

points vi from the} ity ’

g'u ZZ;:)JC)W?fa:’:)(Z:;f ’(m infinity of networks denoted by S(G). 1

Definition 1.1. orks N1 = (V1 By), N2 = (Va, bz) are called homy.

ogous if there is ao Vi = Vf SOtlh'a}t i [U‘ V2] € E then,

[h(m\.h(z'g)] c k. | € By ane [h(v1), h(v2)] € By 4,

called homologous.

Remark 1.2. The set S(@) is the set of all the homologous networks with th,

network N defined in (1 i
In [5] are introduced the

[5] Two netw
ne-to-one
In this case the edge

application h
s [v1, 02

following operations on S(G). We consider two net.

works

‘\71 = (‘/13 El) ,N2 = (V2, E2) )N17N2 € 5'(G)’
functionally represented by
3) on. : [0,1] =R,

\

‘pNi(t) = i(Teil(t),... ,Teim(t)) ,i1=1,2
gous Vk = 1,2,...,m. Further on we sup-

<o that the edges T ,TZ are homolo
2
Tz are homologous for every two networks

pose that the corresponding edges T, e
N;. N, € S(G) functionally represented as above.

I\)veﬁnjﬁon 1.2. [5]1. . The sum of the networks N1, N2 € S(G) is a network
N, = N, € S(G), functionally represented by
oni+n, ¢ [0,1] = R,
YPN1+N2 (t) = ¥mM (t) + PN (t)vt € [07 1] :
2. The multiplication with a scalar X * /
, € R* of the network N 1 € ]
network AN € S(G), functionally represented by 1 S(@), v
oy, ¢ [0,1] = RTX™,

. panv: (B) = Apn, (8),t € [0,1].

o Wf i:fl(icl :;(:vi }fhe ngll r;etwork associated to the graph G. To each vertex w; €
> associate the point 8 = (0,0, ... '

we associate the function ( ) ,0) € R? and to each edge (w’ik7wjk) €A
- ‘ Te, :[0,1] = 0,T,, (t) = 6,Vt € [0,1].

inition 1.3. The application

po: [0,1] —» RI*™ ) = (7

with J 7900(“ - (Fel (t)’ ceey Tem (t)) )

Te () =0,V € (0,1],Vk = 1,2,....,m

15 C(LHL Lll( ~ v « ‘;l[ “l ().
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We denote S(G) = S(GHuo.
Finally we denote
Cra [0, 1]={f:[0,1] - R | f is continnous on [0, 1]}
and W€ recall the following norma in C'ra [0, 1].
Definition 1.4. (1] The application

I Cra [0, 1] = R, [|f]] = max || f(1)]],

tef0,1]

where ||f(DIl s the euclidean norma of the element f(t) € RY, is o norma in
Cre (0. 1]-

2. PROPERTIES OF THE OPERATIONS WITH NETWORKS

Lemma 2.1. The operation of addition of two networks from S(G) defined above
is associative and commutative, that is

(N1 + Na) + N3 = Ny + (Na + N3)

and
N1+ N2 = N3 + N1,VNy, N, N3 € S(G).

Proof. We consider the networks N;(V;, E;),i = 1,2, 3, from S(G), functionally
represented by

YN; : [0,1] — qum’

pn.(t) = (T4@),....TL, (1) i =1,2,3,
so that the edges T} , T2 ,T2 are homologous Vk = 1,2, ...,m.We have:

P(N1+N2)+N3 (t) = N 4N (B) + ©ny (E) = v, () + 0N, (B) + o, (B)
and

PNy +(N2+N3) () = ON, (1) + ONo -85 (B) == 0N, (B) + o, (B) + @ (8),
vt € [0,1].Consequently

PNy +Na)+ N3 (8) = PN (Vo) (1), VEE [0, 1],
hence (Ny + Ny) + Ny = Ny + (N2 + Ns).
The other affirmation can be proved in a similar way. O
Lemma 2.2, por every network N = (V, E) € S(G), functionally represented by
(2), we have N + 0 = 0 + N = N.
Proof. Indeed,

| eno(t) = on(t) + @o(t) = en(t)
anc

Yo+ N([,) — (p()(l‘) -+ SUN({) - ‘PN(’))VL € [(), lJ )
hence

N40=0+N=NVNecSG).
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’ We consider now a network N = (V,E) € S(G) functionally represente b

(2), and we denote with — N the network from S(() functionally Tepresente
,a

Q_I\' . [0~ 1] =y R(].\m,@_,N(t) = (—"rl‘pl (t), vy "‘Y(zm (t)) ,Vt E [(), ]]

by

Ji i of V.
The network — N is called the opposite network o

Lemma 2.3. For every network N = (V, E) € 9’( ), functionally Tepresente,

by
(2), we have

N+ (=N)=-~N+N =0.
Proof. For every N = (V, E) € S(G),

ON+(-N)(B) = ponen(t) = on(t) + p-n(t) =
= on(t) —en(t) =06,Vt €]0,1].
0
From Lemma 2.1, Lemma 2.2 and Lemma 2.3 we obtain the next theorem.

Theorem 2.1. The set S(QG)

15 a commutative group related with the first operu-
tion defined in Definition 1.2.

—_——

Lemma 2.4. For every A € R and for every N1, Ny € S(G) we have

/\(Nl + Nz) = /\Nl + )\Nz
Proof. Indeed,

PAN+N;) (B) = Mony v, (8) = Ao, (8) + Apn, (t),Vt € [0,1].
O

Limma 2.5. For every A\, € R and Jor every N ¢ (G) we have (A +p)N =
AN T /ﬂ\

Proof. Tt is clear that

P N () = (A + p) PN (t) = Apn(t) + won(t),Vt € [0,1].
0
Lemma 2.6, f,, o

Proof. | ndeed,
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Pon(t) =0-pn(t) = po(t),Vt € [0,1]
and

P (1) =1-on(t) = pn(t),Yt € [0,1].
O

From the Theorem 2.1 and Lemma 2.4, Lemma 2.5, Lemma 2.6, Lemma 2.7 we
obtain:

Theorem 2.2. The set S(G) endowed with the operations from the Definition 1.2
is a real linear space.

We will endowed now the set S(G) with a normed space structure.

We consider a network N € S(G), functionally represented by (2). Because for
every edge ex = [vi,, V5, ], K = 1,2, ..., m of the network N correspond a continuous
application T¢, : [0,1] = [v;,,v;,] we define the norma of the edge e; as the norma
of the application T, from the Definition 1.4.

Definition 2.1. The norma of the edge ey, k = 1,2, ...,m of the network N € S(G)
i8:

4 || = max ||Te, ()|l -

(4) llex ] trél[g};]ﬂ @l

Proposition 2.1. The application

|~ T . —

(5) I1:8(G) = R, [INll = _max flexl] = _max (e [[Te (DIl

VN € g—(—G)—, is a norma in the linear space S(G), that is it satisfy the following
properties:
(1) [|N]| > 0, VN € 5(G) and ||N|| = 0 if and only if N = 0;
(2) [IAN]| = |Al IN]|, VA € R, VN € S(G);
(3) [INy + Naf| < ||Nyf| + [|N2|l, VN, N2 € 5(G).
Proof.

(1) From the relation (5) it is obviously that ||N|| >0, VN € S(G). We also
have

IN|]| = 0« max max IT., (®)]] =0 & Te, (t) =

k=1,2,...,mt€[0,1]

~ gvte[0,1],Yk=1,2,..,m& N=0.
(2) For VA € R and VN € S(G
IAN|| = ,lmax max IAT., ()] =

=1,2,...,mt€[0,1]

= |A| max max | Te. (DI = IALIV]

k=1,2,...,mt€[0,1
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(3) We consider the networ ks Ny, Ny € S(G) functionally represented as i
(3). For Vk = 1.2,...,m we have
2 r v]
1T (1) + T, ( I

This implies

T2 ()|, vt € [0,1].

’f.:fk(t)Il} <

. 2 ‘
< max Hl,j'k ) H + max “[%(t)”
otelo,n] 1e[0,1]

max, |[1( () + T (”H S nm\ {“/' )” +
te

e[0,1)

and

max { max || T3, (t) + Ter(t)”}

k=1.2,...om | te[0,1]

< max { max “ “ + _max ||T62,c (t)”} <
k=1,2,....m | t€[0,1] te[0,1]

< max max ll | + max max ”Te2,c (t)“>

k=1,2,...,mt€[0,1] k=1,2,...,mte€[0,1]

that is [|[N1 + Naof| < |[Ng|| + || Na2f.

Further on we can organize the linear normed space S(G) as a metric space if we

define the distance between two networks Ny, Ny € S(G), functionally represented
as in (3), by

6 PN N2) = [Ny = Nell = | _max  maxc |7, (8) = T2, (8)]|

If we consider the metric space (S (@), ) with the distance p defined in (6) then it

is naturally to make a study of convergent sequences of elements from S S(G) in the

sense of the metric p. We will study in the next section several types of convergence
in S/(

3. CONVERGENCE IN S (G)

Several mathematicians were studying sequences of different mathematical ob-

J:;k (see (8], 1), [3]; ete. ). We will study now the sequences of networks from
7).

g .
We consider the networks

(7) N, = (VJ,/’}I),NZ — (V‘z’ E‘Z)’ N, = (V“, E”),
of S(G) where VI V2 iy e spectively the vertex sets and BY, B2, ..., E™ - |

are respectively Lhr uipn sets of the networks Ny, N, iy Ny o... We denote this
sequence of networks by (N)neNe or simple by (N, ).




THE NORMED SPACE S(G) OF THE NETWORKS ATTACHED
Nt JHED TO A G

For any n > 1 we denote the edges of the networks N, by en
AY hy n

E" = {e}, €5, .., em}. We suppose that for every k= i 27;, y el el ....em  hence

cdges ej are homologous for every n > 1, ' 14y ...;m the corresponding

Using the notation (2) we functionally represent the ne

(7) by:

RAPH ¢ 57

tworks of the sequernce

©N, 1 [0,1] = RIxm 4 1,2, ...
ona (1) = (TR0, T2 (1), ., T2 (1)),

where the functions
m . n
](‘k : [O’ 1] — e;; b [vﬁv’vﬁ] ) Vk = 1,2,...,7'7;
and Vn > 1 are continuous so that:
T,, (0) =vi,, Tg, (1) = vj, and T2 ([0,1]) = [l o7 ].
Related to the sequence (7) we study different problems of convergence. Thus
for example for a number ¢t € [0, 1], the sequence

T, (t),T2(t),.... T (t), ...

can be convergent or not in R? for some fixed k € {1,2,...,m} or even for every
k€ {1,2,...,m}. Moreover these can be happen for every ¢ € [0, 1].
We consider a fixed integer number & € {1,2,...,m}.

Definition 3.1. The sequence (N,) of S(G) is k-convergent on the pointt € 0, 1]
if the sequence

(8) TL (8), T2 (8), -, T (8), -

is convergent in RY. In this case we denote lim T3 (t) = Te, (2).
n—oo

Definition 3.2. The sequence (Ny,) of S(G) is convergent on the point t € [0,1]
if the sequence (8) is convergent in RY, for all Vk € {1,2,...,m}. In this case

lim T, (t) = Tk, (t),Vk € {1,2, ym}.
n—r o0

R

(N,) of S(G is k-simple convergent if Vt € [0,1],

Definition 3.3. The sequence '
, e can define the limit function

the sequence (8) is convergent. So w
T., : [0,1] = R?
Tek (t) = lim Teri (t)

n—oo }
fVk € 2, ...,Mm
e convergent if Vk € {12

—_—

Definition 3.4. The sequence (Nn) of S(G)
und Vit € [0, 1], the sequence (8) is convergent.
In this case we obtain rn functions
7. 0,1 = ROES 1,2,
2k " ’

is simpl
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.,m}, and for t € [0, 1] the sequence (g)
, means: Ve > 0, Ir(e,t) so that
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The fact that for some k € {1,2,.
RY, its limit being T.,.(t)

HT,,"k(f) — Tek(t)” <e,Vn>r.

I
convergent in

(9)
and t. We desire to praise those sequences for that

Therefore r depend by €
lepend only by € 80 that the inequality (9) i

Ve > 0 there exist a number 7 who ¢
satisfied Vn > 1, and for any ¢ € [0, 1].

Definition 3.5. The sequence (Ny) of S(G) is k-uniformly convergent if for gy
number ¢ > 0, there exist a number r(€), which do not depend by t, so that t};y
inequality (9) is satisfied Vn > r, and for any t € [0,1]. ‘
Rgmark 3.1. In this case the function Ty, : [0,1] = RY is continuous on [0,1] s
this function define a edge between the points Te, (0) and Te, (1). I

}t)rooIff. ;1’\'0 consider ty € [O, 1]. We proof that the function 7, is continuoys
Zg 1;)t dt e sequence (N,,) is k-uniformly convergent then V € > 0,3r(e) Whic};
do >O,§ ;rlfsnfd by t, so that the inequality ”Te’}c (t) — T, (t)” < eg/3is s’atisﬁod
U (;ontinuc;r any t € [0,1]. We consider a fixed number n > r. The functioln
né;gborhood Vuso fotn to,t};encfe for the number ¢ considered above there exist a
o) t SO t > :
negborhood T, of f so that for any ¢ € Vign [0, 1}, |2 () = T2 )] < /3. We
(1 Tex (t) = T, (20| < ||T
k € s e t - 1 ' 1
+ H%n (to) —“T () Tek(t)“ + “Terl(t) - Terz (tO)H +
e (t0 ek(tO)” <e/3+¢/3+¢/3 =¢.

for every t € V,
’ toN [0,1], hence the functi :
to was conside el € tunction T, is continuou : ¢
0,1}, 0 red arbitrar, so we obtain that the functi Sion tg, ".fhe pomt £
: unction 7, is continuous on

Definition 3.6. T}
. D¢ € sequenc , 72N
uniformly convergent for any I: E(A{lrll);f 5(6)

In thiS case :
) , using th :
0,1] » R7, f ¢ 0 28“ e Remark 3.1 we obtain m contin :
»40+,m} and a new network N ¢ (\G)uous functions T, :

ly conver
Tgence sequence =
ication (Na) of S(G).

is uniformly |
convergent if it is k-
-, m). gent if it is k

Theorem 3.1, The appl

PN :[0,1] — Raxm
ON(t) = (Te, (t),Te?_(t), o Te, (8))

AR

e (t) = 1 ol
| 0= i 7 (),
functzonally renn &M}V € (0,1]

i

called the lim;s network of the s& |
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Proof. The functions T, : [0, 1] 5 R are

: continuous on [0, 1, Vk € {1,2,.:. m}.
We conmde)r now two adjacent e(.iges T2, T2, of the networks Ny, ¥n > 1, s0 that,
Q) = T7:(0). Consequently lim T2 (1) = lim 7' (0). But

n-+00 N-+00
Tei(1) = lim T2(1),7,,,(0) = Jim 77 (0)
n—oo 7

nence Tt (1) = Te; (0). This implies that the edges T,, and T,; are adjacent too. [

Theorem 3.2. The necessary and sufficient condition for the sequence (Ny) of

3—(?’—) to be uniformly convergent is that for any € > 0 there ezist o number r
independent by t so that Yn,p > r,

(10) T2 () =12 (1) <,
Vk=1,2,..,m and Vt € [0, 1].

Proof. We suppose first that the sequence (Ny) is uniformly convergent and it
have the limit the network N. We consider a real number € > 0. There exist then
a number 7 which do not depend by ¢ so that

(11) | T2, () - T, (t)|| < e/2

foreveryl > r, k =1,2,...m and t € [0,1]. We apply the inequality (11) for
I=nand! = p, where n > r and p > r. We have: T () - Te, (8)]| < €/2
and “Tg’k (1) — Tek(t)“ <¢e/2forevery k=1,2,...,m and V¢t € [0, 1], consequently
|IT2 () - T (t)“ < ¢ for every k =1,2,...,m and V¢t € [0, 1].

Conversely, we suppose that for every e > 0, there exist a number r independent
by t so that Vn,p > r, ||T% (t) = T2 ()| < ,Yk = 1,2,..,m and Vt € [0,1].
For every t € [0,1] and k = 1,2,...,m the sequence T, (), T2 (t),...,; TR (t),... is
then fundamental and consequently convergent in R?. Hence there exist the limit
function T, : [0,1]] > RY, T, (t) = nli_r)rgng:_ (t),Yk =1,2,...,m. We fix the number

n in the inequality (10) and we obtain the following inequality when the number
P tend to oo:
T2 () = Te, ()] <&

forevery ¢ ¢ [0,1] and k = 1,2, ...,m. Consequently the sequence (IV,,) is uniformly
Convergent,
Remark 3.2. If the sequence (Ny) is uniformly convergent then it is also simple
“Onvergent. The reciprocal is not true as it result from the next ezample:
Example 3.1. [3]We consider the graph G = (W, A), W = {w13w2} and 4 -

Ywa)}, Ty the vertexr w, and wo of the graph G we associate the points
J(i’1 = (0,0) respective vy = (1,1) in R2. We consider the sequence (N,,) of S(G)
“Netionally represented by

on, :[0,1] » R*n =12
o (t) = (L2 (D),
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' .\ ‘n“
uhere T - [0, 1] = [vf, vz
Tn(t) = (t.t").
Py ,
! ()9 ]- the Seqien
This sequence of networks 15 s:mph’. convergent because ¥t € |0, ], rience
This se )

T. (). T2 (1), TR,

€1

is convergent and we obtain the limit function
13, &0, 1fi=* R?
\ (¢,0). ifo<t<l1

But this function is not continuous, S0 using the Remark 3.1 the sequence (X,

is not uniformly convergent. o
We remark that we can define through continuity a new network N* € S5(G
with the vertex
v} = (0,0),v3 = (1,0),
functionally represented by
YN= - }O 1} — R?
on-(t) = (T2 (1),
where
Te*’l‘ : [07 1] - [’Uf,’l);]
T2 (t) = (t,0).

Now we introduce the convergence in the sense of the metric p introduced in
(6).
Definition 3.7. The sequence (Ny) of S(G) is convergent and have limit the
network N € S(G) «f
lim p(N,,N) =0

n—0o00

where p is the distance defined in (6).

\T h:s means: for any ¢ > 0, there exist a number r(¢) so that the inequality
= riz) implies the inequality p(N,,, N) < g,that is

A%ﬁi&ﬁﬂﬂw*”hm”<&

That is for any £ > (), the
te0,1) and by f — 1,2, ..
k=1,2,....m and 1, > 1(e).

‘O }“ ((J 1V( I'fr¢ ( ( ( ]
D) L . - ] - 1— nc - )' ‘ll 3¢ ( n

o I uniformly convergence of the sequence (N’”)

re exist a number r(e) which do not depend by
o1 so that [T (6) =T, (t)|| < e for any t € [0,1)
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Theorem 3-3. If the sequence (N,,) of 5
pition 3.7 then its limit is unique.
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'8 convergent in the sense of Defi-

Proof. The proof is obviously becange (S(G}, p) i$ a metric space and in a
in the metric sense is unique. 0

Definition 3.8. The sequence (Nw) of networks in m 18 fundamental if for
any € > 0, there exist a number r(¢) so that Jor any n > r(e) a'r;() pl;;ér’) the
following inequality 1s satisfied ' U

metric space the limit of a convergent sequence

p(NpaNn) <eg
that s

P

k=13 m {t?[g,)f] 1750 -1z, (t)”} =

Theorem 3.4. If the sequence (Ny) of networks in S(G) is convergent in the
sense of Definition 8.7 then it is fundamental.

Proof. We suppose that the sequence (Ny) of networks from W is convergent
and have the limit the network N. Hence for every ¢ > 0, there exist a number
r(e) so that p(Nn, N) < €/2 for every n > r(e). We consider the index n and
pso that n > r(e) and p > r(¢). Consequently there are satisfied the following
inequalities: p(Nn, N) < e/2, p(N,, N) < €/2. Hence we have:

P(Np, Nn) < p(Np, N) + p(N,Np,) <e/2+¢/2=¢.

These imply that for every number £ > 0, there exist a number r(¢), so that
d(Np, N,,) < € for every p > r(e) and n > r(¢), hence the sequence of networks
(N,) is fundamental. O
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