
STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 1, 1999

PARALLEL PROGRAMS DESCRIPTION WITH POWERLIST,
PARLIST AND PLIST

VIRGINIA NICULESCU

Abstract. Data structures PowerList, ParList and PList are efficient tools
for functional descriptions of parallel programs, that are divide and conquer
in nature. J. Misra and J. Kornerup have introduced these theories. This
paper presents these theories by suggestive examples, taken from numerical
analysis. A case study - Fast Fourier Transformation - illustrates the power
of this method for correct parallel programs developing.

1. Introduction

PowerList, ParList and PList are data structures that can be successful used in
a simple functional description of parallel programs, that are divide and conquer
in nature. They allow working at a high level of abstraction, especially because
the index notations are not used. To assures methods to verify the correctness of
the parallel programs, algebras and induction principles are defined on these data
structures.

1.1. Notations and Types. The following basic data types are used: natural
numbers (Nat(≥ 0)), positive natural numbers (Pos(> 0)), real numbers (Real),
complex numbers (Com), and booleans (Bool). These types are called scalar types.
A type is generally denoted by X. The type of a function is specified by giving
the name of the function, its domain and its range.

Function application is written by an infix, left associative, dot operator (f.x).

2. PowerList

A PowerList is a linear data structure whose elements are all of the same type.
The length of a PowerList data structure is a power of two. The type constructor
for PowerList is:

PowerList : Type×Nat → Type

and so a PowerList with 2n elements of type X is specified by PowerList.X.n. A
PowerList with a single element a is called singleton, and is denoted by < a > .
If two PowerList structures have the same length and elements of the same type,
they are called similars.

35

36 VIRGINIA NICULESCU

Two similar PowerLists can be combined into a PowerList data structure with
double length, in two different ways:

• using tie operator p | q; the result contains elements from p followed by
elements from q

• using zip operator p \ q; the result contains elements from p and q,
alternatively taken.

Therefore, the constructor operators for PowerList are:

< . > : X → PowerList.X.0
.|. : PowerList.X.n× PowerList.X.n → PowerList.X.(n + 1)
.\. : PowerList.X.n× PowerList.X.n → PowerList.X.(n + 1).

PowerList algebra is defined by these operators and by axioms that assure the
existence of unique decomposition of a PowerList, using one of tie or zip operator;
and the fact that tie and zip operators commute [1].

On PowerList data structures an induction principle is defined, that allows func-
tion definitions, and the proving of PowerList properties. If Π : PowerList.X.n →
Bool is a predicate, the induction principle is:

((∀x : x ∈ X : Π. < x >)
∧((∀p, q, n : p, q ∈ PowerList.X.n ∧ n ∈ Nat :

Π.p ∧Π.q ⇒ Π.(p | q))
∨(∀p, q, n : p, q ∈ PowerList.X.n ∧ n ∈ Nat :

Π.p ∧Π.q ⇒ Π.(p \ q)))
⇒

(∀p, n : p ∈ PowerList.X.n ∧ n ∈ Nat : Π.p).

Reduction function is an example of higher order function, a function that takes
a function as an argument:

reduce : (X ×X → X)× PowerList.X.n → X

The first argument is an associative binary operator on X type. The reduce
function is defined by:

reduce.¯ . < a > = a
reduce.¯ .(p | q) = reduce.¯ .p ¯ reduce.¯ .q.

The sum function is an example of a reduction. It calculates the sum of all
elements of a PowerList, and sum = reduce.(+).

Numerical Integration Using Recursive Romberg Formula
Let f : [a, b] → < be a function. The integral I =

∫ b

a
f.xdx can be approximate

with Romberg formula by [4]:

QTk
.f =

1
2
QTk−1 .f +

h

2k

2k−1∑

j=1

f.(a +
2j − 1

2k
h),

PARALLEL PROGRAMS DESCRIPTION WITH POWERLIST, PARLIST AND PLIST 37

where h = b− a, k = 1, 2,
When k converge to ∞, the sequence (QTk

.f) converge to value I.
For a fix k, a division on [a, b] interval is taken:

[x0, . . . , xk] = [a, a + h
2k , . . . , a + 2k−1

2k h].

We define a function Rom on PowerList, that calculate the (QTk
.f) value, for

a fix k. This function has as argument the PowerList of the values of function
f on the division points: p = [f.x0, . . . , f.xk]. It can be noticed that the even
positions elements intervene in the second term of the sum that give the value of
(QTk

.f). Therefore, in the structural definition of function Rom will be used the
zip operator.

Rom : Real ×Real × PowerList.Real.k → Real.

The first argument, hk = h
2k , is the division step, the second argument is the

value of function f in b, and the third is the PowerList that contains function
values.

Rom.hk.fb. < x > = 1
2 ∗ hk ∗ x + 1

2 ∗ hk ∗ fb
Rom.hk.fb.(p \ q) = 1

2 ∗Rom.(2 ∗ hk).fb.p + hk ∗ sum.q

To prove the correctness of this algorithm the predicate Π.p ≡ Rom.hk.fb.p =
QTk

.f is chosen.
Some observations can be made about PowerList notation.

• The parallelism is implicitly introduced by constructors operators, tie
and zip.

• The correctness for an algorithm can be proven using the induction prin-
ciple.

• The PowerList function can be efficiently implemented on hypercube
architectures [2]. If we label each element of a PowerList of length 2n

with a bit string (of length n), representing the position of the element
in the PowerList, this element can be mapped to the node with the same
label on a hypercube of size 2n. By the construction above, it follows by
induction that the zip(tie) of the representation of two PowerList can be
implemented efficiently by combining the representing cubes in the low
(high) order bit.

3. ParList

The ParList data structure is analogue with PowerList, with the difference that
the number of the elements is not a power of two.

The type constructor for ParList is:

ParList : Type× Pos → Type

and a ParList with n elements of type X is specified by ParList.X.n.

38 VIRGINIA NICULESCU

It is necessary to use other two operators: cons(.) and snoc(/); they allow to
add an element to a ParList, at the beginning or at the end of the ParList.

The constructor operators are:

< . > : X → ParList.X.1
. . . : X × ParList.X.n → ParList.X.(n + 1)
. / . : ParList.X.n×X → ParList.X.(n + 1)
.|. : ParList.X.n× ParList.X.n → ParList.X.(2n)
.\. : ParList.X.n× ParList.X.n → ParList.X.(2n)

Axioms of ParList algebra express like those from PowerList algebra, the ex-
istence of a unique decomposition of ParList, using constructor operators, the
commutativity of tie and zip operators, and some axioms that make connection
among operators [1].

An induction principle is also defined for ParList. But, in this case, a proving
has three stages: the base case, the odd inductive stage and the even inductive
stage. The rule of structural decomposition for ParList is as follows: when the
number of the elements is even is used tie or zip operators, and when this number
is odd is used cons or snoc. This way, the decomposition is unique.

The ParList function definition must contains definitions corresponding to these
three stages.

For example, the map function

map : (X → Y)× ParList.X.n → ParList.Y.n

is defined by:
map.f. < a > = < f.a >
map.f.(p|q) = map.f.p | map.f.q
map.f.(a . q) = f.a . map.f.q.

where the first argument is a scalar function on X type.
Operators on type X can be extended over ParList.X in the following way. Let

¯ be a binary associative operator on type X, ¯ : X ×X → X.
The extended operator:

¯ : ParList.X.n× ParList.X.n → ParList.X.n

is defined by:

< a > ¯ < b > = < a¯ b >
(p | q)¯ (u | v) = (p¯ u) | (q ¯ v)
(a . p)¯ (b . q) = a ¯ b) . (p ¯ q).

It is possible to consider another inductive principle, which excludes tie and zip
operators. Even if, using such a principle seems to not lead to a good parallelisa-
tion, there are cases for which the parallelism is quite appreciably.

Divided Differences

PARALLEL PROGRAMS DESCRIPTION WITH POWERLIST, PARLIST AND PLIST 39

Let X = {x0, . . . , xm} be a set, and f : X → < a function. The kth order
divided difference of function f in xr is [4]:

(Dkf).xr =
(Dkf).xr+1 − (Dkf).xr

xr+k − xr

where r, k ∈ Nat, r < m ∧ 1 ≤ k ≤ m− r.
We consider two ParList data structures p and q, with elements the division

points, and the values of function f in the division points:

p = [x0, . . . , xm] and q = [f.x0, . . . , f.xm]

The function

dif : ParList.Real.n× ParList.Real.n → Real

that calculate Dm−1f , is defined by:

dif.[a b].[x y] = (y − x)/(b− a)
dif.(a . p / b).(x . q / y) = (dif.(p / b).(q / y)− dif.(a . p).(x . q))/(b− a).

4. PList

The PList data structure was introduced in order to develop programs for the
recursive problems which can be divided into any fixed number of subproblems.
It is a generalization of PowerList data structure.

PLists are constructed with the n-way | and \ operators; for the positive n,
the n-way | takes n similar PList and return their concatenation, and the n-way \
return their interleaving.

It will be used square brackets to denote ordered quantification in PList algebra.
The expression [|i : i ∈ n : p.i] is a closed form for the application of the n-way
operator |, applied to the PList p.i in order. The range i ∈ n means that the terms
of the expression are written from 0 trough n− 1 in the numeric order.

Formally, the PList constructors have the following types:

< . > : X → PList.X.1
[|i : i ∈ n : .] : (PList.X.n)n → PList.X.(n ∗m)
[\i : i ∈ n : .] : (PList.X.n)n → PList.X.(n ∗m)

where m is the length of the arguments, which are n similar Plist.
The PList axioms, also define the existence of unique decomposition of PList

using constructors operators [1].
Functions over PList are defined using two arguments. The first argument is

a list of arities: PosList, and the second is the PList argument. Functions over

40 VIRGINIA NICULESCU

PList are only defined for certain pairs of these input values; to express the valid
pairs, it is require that the specification of the function defines the predicate:

defined : ((PosList× PList) → X)× PosList× PList → Bool

to characterize where the function is defined.
We illustrate this, by defining the function sum. This function computes the

sum of all elements of a PList over a type where + is defined:

defined.sum.l.p ≡ prod.l = length.p
sum.[]. < a > = a
sum.(x . l).[|i : i ∈ x : p.i] = (+i : 0 ≤ i < x : sum.l.(p.i))

where prod.l computes the product of the elements of list l, length.p is length of
p, and [] denote the empty list.

Numerical Integration with Rectangle Formula
For a function f : [a, b] → <, the integral I =

∫ b

a
f.xdx can be approximate by

[4]:

QDk
.f =

1
3
QDk−1 .f + h

2m∑

i=1

f.xi,

where h = b−a
3k , m = 3k−1, k = 1, 2, . . . and the xi values are computed by

formulas:

x1 = a + h
2

x2 = a + 5
2h

x2j+1 = x1 + 2jh
x2j+2 = x2 + 2jh, 1 ≤ j < 3k−1.

We want to define a PList function drept, that computes (QDk
.f), for a fix k.

Let consider a division on interval [a, b] with n = 3k points:

[x0, . . . , xn−1] = [a0, a0 + h
3k , . . . , a0 + 3k−1

3k h], where a0 = a + h
2 .

It can be notice that 3k−1 points are used for computation of (QDk−1 .f) and
2 ∗ 3k−1 intervene in computation of the second term, in the sum which computes
(QDk

.f).
The function

drept : Real × PosList× PList.Real.n → Real

defined by:

defined.sum.l.p ≡ prod.l = length.p
drept.[]. < x > = hk ∗ x
drept.hk.(3 . l).[\i : i ∈ 3 : p.i] = 1

3 ∗ drept.(3 ∗ hk).l.(p.1) + hk ∗ sum.(2 . l).(p.0 \ p.2),

have three arguments; the first hk = b−a
3k is the division step, the second is a list

form by k values equal with 3, and the third is the PList that contains the function
values.

PARALLEL PROGRAMS DESCRIPTION WITH POWERLIST, PARLIST AND PLIST 41

5. Fast Fourier Transformation

The Discrete Fourier Transform is an important tool used in many scientific ap-
plications. By this transformation, the polynomial representation with coeficients
(ai, 0 ≤ i < n) is changed to another. New representation consists of a set of values,
which are the polynomial values in the nth order unity roots n, (wj , 0 ≤ j < n).
The polynomial degree n leads to the three cases.

A scalar function will be used in all the cases. The function root : Nat → Com
applied to n returns the nth order unity root :

root.n = e
2∗π∗√−1

n .

5.1. The case n = 2k. The formula that computes the polynomial value in wj is:

f.wj =
2k−1−1∑

m=0

a2m ∗ e
2πijm

2k−1 + e
2πij

2k

2k−1−1∑
m=0

a2m+1 ∗ e
2πijm

2k−1 , 0 ≤ j < n.

It can be used PowerList data structure, for the parallel program specification,
in this case. The function fft : PowerList.Com.n → PowerList.Com.n can be
written as:

fft. < a > = < a >
fft.(p \ q) = (r + u ∗ s) | (r − u ∗ s)

where
r = fft.p
s = fft.q
u = powers.z.p
z = root.(length.(p \ q)).

The function powers : Com × PowerList.Com.n → PowerList.Com.n is de-
fined by:

powers.x. < a > = < x0 >
powers.x.(p \ q) = powers.x2.p \ map.[x∗].(powers.x2.q))

where [x∗] : Com → Com is the scalar function that multiplies its argument by x:
[x∗].y = x ∗ y.

The function powers.x.p returns a PowerList of the same length as p, containing
the powers of x from 0 up to the length of p.

5.2. The case n prime. In this case, it is necessary to compute directly the
polynomial values. The fft will have two ParList arguments, one formed by
unity roots, and one formed by polynomial coeficients:

fft : ParList.Com.n× ParList.Com.n → ParList.Com.n

fft. < z > .p = vp.z.p
fft.(u | v).p = fft.u.p | fft.v.p
fft.(z . u).p = vp.z.p . fft.u.p,

42 VIRGINIA NICULESCU

where
vp : Com× ParList.Com.n → Com
vp.z.p = sum.(p ∗ u), u = powers.z.p.

It has been used the extended operator (∗), for multiplies the ParList p and q.
The function vp computes the polynomial value in one point and use the powers
function, that is an extension of that presented in the first case, defined on ParList:

powers.x. < a > = < x0 >
powers.x.(p \ q) = powers.x2.p \ map.[x∗].(powers.x2.q))
powers.x.(a . q) = < x0 > . map.[x∗].(powers.x.q)).

5.3. The case n = r1 ∗ · · · ∗ rk. If n is not a power of two, but is a product of two
numbers r1 and r2, the formula from the first case can be generalized in this way:

f.wj =
r1−1∑

k=0

{
r2−1∑
t=0

atr1+ke
2πijt

r2 }e 2πijk
n , 0 ≤ j < n.

The inner sum represents the value in wj mod r2 , of the polynomial with degree
equal with r2 and the coeficients {ak, ak+r1 , . . . , ak+r1(r2−1)}. This value is com-
puted by FFT for this polynomial. So, a recursive algorithm, that combines r1

FFT, can be used.
[5] The best factorisation n = r1 ∗ r2 for FFT (from the complexity point of

view) is to chose r1 from the prime factors of n.
Therefore, for the specification of the parallel program, we consider the decom-

position in prime factors n = r1 ∗ · · · ∗ rk. The PList data structures will be used.
The arities list of the function is form by the prime factors of n.

fft : PosList× PList.Com.n → PList.Com.n

defined.fft.l.p ≡ (prod.l = length.p)
fft.[x].[\i : i ∈ x :< a.i >] = [|j : j ∈ x : [+i : i ∈ x : a.i ∗ exp.z.(i ∗ j)]]
fft.[x . l].[\i : i ∈ x : p.i] = [|j : j ∈ x : [+i : i ∈ x : r.i ∗ u.j]],

where we used notations:
r.i = fft.l.(p.i)
u.j = map.[exp.z.(j ∗ n

x)∗].powers.z.l
z = root.n,

and the functions:
exp : Com×Nat → Com
exp.x.i = xi

powers : Com× PosList → PList.Com(prod.l)
powers.z.[] =< z0 >
powers.z.(x . l) = [\i : i ∈ x : map.[exp.z.i∗].q]

where q = powers.(exp.z.x).l.

PARALLEL PROGRAMS DESCRIPTION WITH POWERLIST, PARLIST AND PLIST 43

Some observations can be made:
• The base case represents the algorithm presented in the case n prime.
• If the list of arities contains, just values equal with 2, the program is

maped to that in the case n is a power of two.

[|j : j ∈ 2 : [+i : i ∈ 2 : r.i ∗ u.j]]
=

(r.0 ∗ u.0 + r.1 ∗ u.0) | (r.0 ∗ u.1 + r.1 ∗ u.1)
=

(r.0 + r.1 ∗ powers.z.l) | (r.0 + r.1 ∗ [exp.z.n
2 ∗].powers.z.l)

=
(r.0 + r.1 ∗ powers.z.l) | (r.0− r.1 ∗ powers.z.l).

6. Conclusions

The three data structures presented are useful in expressing parallel computa-
tions succinctly.

Using PowerArray theory presents some advantages such as: a layer of abstrac-
tion that is higher than that of the indices of elements, simplicity and correctness
in developing parellel programs (Application 2).

The ParList theory provides an alternative extension of the PowerList theory to
allow inputs of arbitrary lengths. This is done by using the PowerArray operators
| and \ to work with even lengths inputs and by using linear list operators . and
/ to break a single element off an odd length list.

The PList notation is very rich. It includes the PowerArray theory as a special
case. While this generality is not always needed in order to describe parallel
computations, it may be useful when the problem is stated in a different radix
than 2 (Application 4), or in a mixed radix as in the case of FFT with degree
different from a power of two.

The correctness of the algorithms specified with these notations can be formally
demonstrated, using the induction principles [1].

The three data structures can be extended to more than one dimension by
replicating the constructors for each dimension. This allows to describe matrix
computations, using a similar approach.

The examples presented illustrate the power of these notations.

References

[1] Jacob Kornerup, Data Structures for Parallel Recursion, Ph thesis, University of Texas at
Austin, 1997.

[2] Jacob Kornerup, PLists: Taking PowerLists Beyond Base Two, First International Work-
shop on Constructive Methods for Parallel Programming, MIP-9805, May 1998.

[3] Jacob Kornerup, Mapping a functional notation for parallel programs onto hypercubes, In-
formation Processing Letters, 53:153-158, 1995.

[4] Gh. Coman, Numerical Analysis, Editura Libris, Cluj-Napoca, 1995 (in Romanian).

44 VIRGINIA NICULESCU

[5] H.S. Wilf, Algoritmes et complexite, Mason & Prentice Hall,1985.

“Babeş-Bolyai” University, Department of Computer Science, Cluj-Napoca, RO 3400
E-mail address: gina@cs.ubbcluj.ro

