STUDIA UNIV. BABES-BOLYAIL INFORMATICA, VoLUME XLIV, NUMBER 1, 1999

GENETIC CHROMODYNAMICS FOR MULTIMODAL
OPTIMIZATION

DAN DUMITRESCU AND ZSOLT MURGU
.

Abstract. An improved Genetic Chromodynamics strategy, with simulated annealing
characteristics is proposed. The main idea of Genetic Chromodynamics is a local
interaction scheme, that forces the formation and maintenance of subpopulations of
solutions. The subpopulations co-evolve and will converge towards different optimal
solutions. Very similar individuals are merged. At convergence the number of
subpopulations equals the number of optimal solutions. A simulated annealing like
heuristic may be considered to conserve population diversity and to prevent premature
convergence of the search process. But the simulated annealing acceptance of worse
offspring causes some loss of the optimum points. To drawback this difficulty the
local interaction scheme is modifying through time by decreasing the interaction
radius.

1.Introduction

Genetic chromodynamics (GC) (see [3],[4],[3][6]) is an evolutionary strategy
designed to prevent premature local convergence and to detect multiple optimal
solutions. GC uses a variable sized population and a local mating scheme. The main
idea of the GC is to force the formation and maintenance of subpopulations of solutions.
Subpopulations co-evolve and converge towards different optimal problem solutions.
The number of individuals in the population decreases with the generations. There is a
high probability that each new generation will contain some individuals better than the
individuals in the previous generation. Only local chromosome interactions are allowed.
The role of the mating scheme can be summarised as follows (see [3]):

(i) to ensure early subpopulation formation and stabilisation;

(i) to avoid massive migration between subpopulationns approximating different
optimum points

(iii) to prevent destruction of some useful subpopulations

(iv) to ensure a high probability of obtaining each optimal solution

Very similar individuals are merged. At convergence the number of subpopulations
equals the number of optimal solutions. Each final subpopulation will contain a single
individual representing an optimum point. Every chromosome in each generation is
sclected for crossover and mutation.

The crossover mate of a given chromosome is sclected from a determined mating
region, this region of a given ¢ chromosome is the closed ball V(c,r) of center ¢ and
radius r. The radius r can be interpreted as the interaction radius of the individual c. Let
m be a chromosome in the interaction domain.

The probability p(m) that the m is selected as the mate of ¢ can be defined as
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each insertion of a chromosome in the new generation. We obtain the number of
optimum points as the number of chromosomes in the population. Each chromosome in
the final population corresponds to a global or local optimum point.

As GC strategy uses solution population of changing sizes, its population dynamics
is more complicated than in usual evolutionary optimisation algorithms. Therefore the
corresponding search process may be also supposed to be more powerful. This feature
makes GC based searching methods appealing for solving difficult tasks, like multi-
modal optimisation problems.

Various termination conditions can be identified. Some of them are formulated
according to the considered particular problem. Other stop conditions are problem
independent. A good general, problem independent heuristics is to stop the search
process if the chromosome population remains unchanged for a fixed number of
generations.

2.GC with controlled migration

In this paper we propose a slight modification of the standard GC strategy. The
goals of the proposed approach is to improve the GC behaviour for multi-modal
optimisation problems. A modified local mating scheme will stabilise the
subpopulations, avoiding massive migrations between subpopulations in the final search
stages. It also prevents the destruction of some useful subpopulations, and ensure a high
probability of obtaining each optimal solution.

2.1 Recombination
Each individual ¢ will have a different radius of interaction 7, :
- ir
il‘c . kl ~ s
(I+Ing)f(c)

where ir, is the starting interaction radius of the system, kl > 0, g the generation

index, and f(c) is the fitness value of c. The mate of ¢ is selected from the closed ball
V(c,r).

This mechanism gives a higher probability that individuals worse than their parents
to generate better offspring, while the ‘purest’ individuals will interact with only the
‘purest’ ones (an individual is pure if it is in the neighbourhood of a peak). Each
population will have a more independent evolution, and the flexibility of the procedure
increases significantly.

2.2 Acceptance scheme

A modified acceptance is introduced. An offspring obtained by crossover will be
accepted only if it lies in a definite acceptance region of the dominant parent ¢. The

acceptance region is a closed ball of center ¢ and radius ¢, . The acceptance radius c¥,

is defined as:
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where ¢r, is the initial acceptance radius of the system, k2 > (), g is the generation
index. and f(¢) is the fitness value of c.
If the offspring resulted from crossover is not in the closed ball V(c,cr,), then it

will not be accepted in the new generation. Otherwise it will be considered for the SA
like acceptance scheme (see section 1).

2.3 Mutation

For the mutation we also consider a similar acceptance mechanism. The mutation
radius of the chromosome ¢ is considered to be:

mr

)

e k : 5
e =B ring) S (©

where mr, is the crossover radius of chromosome ¢, k; > 0, g is the generation index,
and f{(c) is the fitness value of c.

If the offspring resulted from mutation of ¢ is not in the region V(c, mr,), then it

will not be accepted in the new generation. Otherwise it will be proposed for the SA like

acceptance scheme. This mechanism prevents the vanishing of some optimum points in
the final stages of the search process.

2.4 Other heuristics

For some particular problems we may admit migrations between different
interaction domains, leading to better solutions by increasing the population diversity. In
such situations the search time can be longer, and also the accuracy of results could be
affected. Using this mechanism, migrations are allowed only in the first search stages
and possibly can detect new optimum points. In the final stages there will be no losses
of ‘pure’ individuals, as may happen while using the simple SA acceptance scheme. The
use of the proposed mechanism tunes up the search from the first stages.

For speeding up the search process, an offspring can be generated within its
parent’s crossover or mutation acceptance radius.

3.The algorithm

/(\’ écncral outline of the modified genetic chromodynamics algorithm is
«C() {

ke1; initialise( P,{ param);

while (stop criterion has not been met) do
fori—1 ton do

if hasmate( a,) then

a, <selectmate( P, , a,);
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a; «crossover (d,,d ),
(l," «=crossoveracceptance( d, a,' )
else
(I,' «-mutate (d,);
a," «~mutationacceptance( d, (l,’ );
a,'" —SAacceptance( a,” ,a,);
od
mergesimilar( P, );
Ke—k+1;

od
b8
v

crossoveracceptance(a,, a; ) {
. 4
if a; eV(a;,cr,) thenreturn a; else return @, ;
Y
LI
mutationacceptance( q,, a; ) {

if a; € V(a,,mr, ) then return a] else return a,;

For this algorithm we use the following notation. The set P, is the population in
generation k. The set param is the set of  parameters
T,,ir,,cr,,mr,,K,k,k,,k,,k,. The initialise procedure initialises the initial
generation and the parameters. The stop criterion is met, if for a number of generation
the chromosomes does not change. The hasmate function returns true, if the
chromosome has at least a mate. The selectmate function selects one from the mates.
The crossover function performs the crossover. The crossoveracceptance function
accepts the offspring if it is in the crossover acceptance radius of the parent. The mutate
function performs the mutation. The mutationacceptance function accepts the offspring,
if it is in the mutation acceptance radius of the parent. The Saacceptance function
performs the SA acceptance. The mergesimilar function merges all similar

chromosomes in the generation P, .

4.Implementational issues

In this section a study case will be considered to exemplity the effect of parameter
values on the searching process.

Effects of the parameters.

Consider the function
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(sinX)*-0.5

14107 X?)

£:[-100,100]x[~0.55.0.6].

In the speci .
exemplify the effect of the changing tl
values given in Table 1. )

fied domain the function has 64 local optima. For this function we wi]|
he parameter values. We consider a set of standard

similarity radius 0.30517578125
interaction radius 3.125
crossover acceptance radius 3.125

" mutation acceptance radius 3.125
starting temperature 1
starting chromosome number 200
SA acceptance modifier (k) 0.00001.
minimal fitness value (K) 1
interaction radius modifier 1
crossover acceptance radius modifier | 1
mutation acceptance radius modifier | 1
search stop after 10 generation if no change

Table 1. The set of standard parameter values.

The value of a single parameter will be changed at once. The values of changed
parameters and the corresponding results are given in Table 2.

Acceptance modifier Generations until convergence Number of detected
optimal points
0.00001 70 64 |
0.0001 170 64 J
0.001 >3000 64 |
10.01 >3000 62 ]
0.1 >3000 40
Initial temperature Generations until convergence Number of detected#
optimal peints |
E 70 64 |
12 70 64 )
4 110 64~ |
8 130 64~ ]
16 480 e
[ - -
Similarity radius Generations until convergence Number of detected
L g optmal pots
091552734375 |70 2 —]
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Initial chromosome | Generations until kdnvergence Number of detected
number | optimal points

64 |65 S [ R
8 80 [ ]
[T £ 7 2 ]
‘Interaction radius Generations untllco;lvergencef | Number of detected ]
[ R S ____optimal points |
1,562 |80 64 S |
3,125 R B e

625 —les 63 ]
;_1_2,-_5_#_ 85 64 ]
L

Crossover acceptance | Generations until convergence Number of detected
radius optimal points
1,5625 80 64 1
13,125 70 64

16,25 70 64

12,5 75 64~

Mutation acceptance | Generations until convergence Number of detected
radius optimal points
1,5625 120 63

3,125 70 64

6,25 60 62

112,5 50 38

~ ~ = less suitable solution or very rarely an optimum has been lost
Table 2. The effect of changing a parameter.

The similarity radius parameter. The optimal value of this parameter is smaller -
than the minimal distance between two peaks of the function. However, bigger its value
is, longer the search process is, and ‘pure’ individuals may be loosed.

The interaction radius parameter. This parameter controls the formation and
stabilisation of the subpopulations. The optimal value of this parameter is the minimal
distance between two peaks of function. However, bigger its value is, bigger is the
possibility of losing subpopulations, and the search process it is faster.

The crossover acceptance radius. This parameter controls the splitting of
subpopulations. If its value is bigger than the interaction radius, then gives higher
probability of mutation in the next generation. The optimal value of this parameter is the
minimal distance between two peaks of function.

The mutation acceptance radius. This parameter assures, that in the final stages no
individual will be lost. Also leads to detection of new peaks of the function. Its value
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must be sufficiently small to assure these, an optimal value may be the minimal distance

ween two peaks of function. _ . . e
ot Initial le*:nperature. Higher its value is, bigger is the possibility in the search

process to accept offspring worse than their parents. Bigger it is, longer the scarg,

i 3 i lutions is poorer.
rocess is. and the quality of so ns is po . | .
P Initial chromosome number. The initial population must be sufficiently numerqy,

to detect all peaks (generally 2x-2.5X the number (?f peaks). ' .
SA acceptance modifier. Smaller its value is, smaller is the possibility to accept

offspring worse than their parents. Its value is optimalj when Tk = 1.

Minimal fitness value. Must be chosen such that f(c)<K, for every chromosome.
Interaction radius modifier. Bigger its value is, bigger will be the interaction radius iy,
the search process. _ .

Crossover acceptance modifier. Bigger its value is, bigger will be the crossover

acceptance radius in the search process. ' .
Crossover acceptance modifier. Bigger its value is, bigger will be the mutation

acceptance radius in the search process.

5.Experimental results

The proposed method is compared with standard GC and with GC allowing simple
SA acceptance. The considered examples emphasise that the method proposed in this
paper gives better results than the other two methods.

The number of the optimum points as well as their positions are correctly detected.
However the quality of the results depend on the correct choice of the parameters.

Example 1.
Consider the function

£0X) = (sin X)* -0.5
(1+107. x?)
£ :[-100,100]x [~0.55,0.6] .

The values of

parameters are:
Similarity radius 0.30517578125
Interaction radius 3.125
Crossover acceptance radius 3.125
Mutation acceptance radius 3.125

Jﬂial temperature 1

| Initial chromosome number 200

‘S/ﬁceptance modifier (k) 0.00001

_Minimal fitness value (K) 1

Interaction radius modifier 1
Ll’()ss‘(_)ygr acceptance radius modifier 1

- utation acceptance radius modifier | |

B simple Gl e S0P afler 10 generation if no changs
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Figure 3. The 35 chromosomes m generatlon P(20)
The final generation contains the 16 chromosomes depicted in figure 4.
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b) GC with SA acceptance
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After 20 generations the 25 chromosomes dcpct
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Figure 7. The 25 chromosomes in generation P(20).

14 chromosomes depicted in figure 8

Fi .
igure 8. The 14 chromosomes in final generation P(44).
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¢) GC with controlled migrations
The first gcnu atmn populatmn is dcpluul in hgurc 9.
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Figure 10. The 64 chromosomes in generation P(lO)
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s depicted in figure 11 remained.

e AT
Figure 11. The 64 chromosomes in generation P(20).
The final generation contains the 64 chromosomes depicted in figure 12.
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Consider the function

/‘(X) — Sin(2 . Xcm(Z-X))

£:1-6.5.6.5]1%[-2,2].

The values of parameters arc:

similarity radius [ 0,01983642578125 |
interaction radius 0203125
crossover acceptance radius 0,203125

mutation acceptance radius 0,203125 ]
starting temperature 1

starting chromosome number 200

SA acceptance modifier (k) 0.00001

minimal fitness value (K) 1

interaction radius modifier 2

crossover acceptance radius modifier | 2

mutation acceptance radius modifier | 2

search stop after 10 generation if no change

a) simple GC
The first generation population is depicted in figure 13.
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Figure 13. Objective function and initial population.
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The final generation contains the 9 chromosomes as depicted in ﬁaure 15.
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b) GC with SA acceptance
The first generation population is depicted in figure 16.

Figure 16. Objective function and initial population.

Afte

r 10 generations the 31 chromosomes depicted in figure 17 remained

BT Ll e 5 e e

f“igufe 17. Th/e: 31 chromosomes in‘g'eneratiotn P(10).
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The final g
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b) GC with controlled migrations
The first generation population is depicted in figure 19.
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Figure 21, The 16 chromosomes in final generation P(64).
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6. Conclusions

: egy is proposed in this paper. The
A modified Genetic C}"\s:;l‘)dfgr‘a:;;s?n;tﬁtul%iy-modzl optimisation problems. By
method seems 10 Work Vle o d global optima may be detected. . L
using this method. all loca 31?: sgimplc GC finds numerous local optimum points in the
As examples'prf)vct:‘st,hcm will be lost until the final search stages. As. the migrations
first stages., bm'lm;::}ﬁ(x)mal search stages, only the highest local optima W‘l“ 'be deFected.
I"?:z gliecl;liltyuglf‘ sct)lutions is not very good (detected points may not coincide with the
pcak;)}.l: }éccsci:irﬁ? gx)iscse;;iiz finds more optima than the sim.ple GC does. The Sp
acceptance mechanism enables us to df:tect local max1mL}1]m P(fmtss itshiltosvr:r rtlf?ztmvf}i
representative. The quality of solutions is good. The search proces ¢
Slmp{?hggc with controlled migration finds all optimums in t.he first search stages., the
rest of the process can be considered as representing the tuning of the final solutions.
Migration exists, but only in the first search stages. The m}gratlon process 1S c.ontrolled‘
preventing the loss of ‘pure’ populations ( a population is pure, if its individuals are

pure). The quality of solutions is very good. The search process is slower than the GC
with SA acceptance.
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