
STUDIA UNIV. "BABES-BOLYA", INFORMATICA, Volume XLIV, Number 1, 1999

JC-NETS

MIHAI ROTARUJ

1. INTRODUCTION

By switching from input-boxing to output-boxing and by allowing sharing in

the T-nets of Milner we obtain a formal model of concurrency, the jc-nets, which
significantly reduces the original T-nets, while preserving the computational power.
We use our model to provide a faithful graphical representation for a Turing com-

plete fragment of the join-calculus of Fournet and Gonthier.

2. CONTROL STRUCTURES

We review here the control structures as far as it is necessary for the following
sections. The presentation of the control structures uses the notion of symmetric

strict monoidal category. We suppose the reader has a little familiarity with this
notion. However, since we work with the control structures in a rather algebraic

than categorical style, no further knowledge of categories is needed.
Most of the ideas on the control structures we present in this subsection can be

found in the introductory paper [MMP95|. The reader can also find there detailed
poofs for all the background results we state in this review. A detailed account of
the control structures may be found in M96.

From an algebraic point of view, a control structure consists in a set of terms
together with an equational theory and a reduction relation, called reaction, upon

terms.
A control structure can be also seen as a symmetric strict monoidal category

SSme for short) with additional structure.
a, 6, C,. , correspond to the terms of the control structure (in the algebraic set-
ting). They are called actions. The ssmnc objects, denoted by m,n, k,... , are
called arities. The monoid of the arities (M,®, e) is assumed to be freely gener-
ated by a set P. The elements of P, denoted by p, q, ... , are called prime arities.
l1 the arities n and n are the domain and respectively the codomain ofa, we write

:m T; with some abuse of terminology, we say that a has the arity m> n.
we write a b: m -> k for the ssmc composite of a : m n and b: n >k, and

&b: m k -> n l for the ssme tensorial product of a: m>n and b: k1.
Dy 1dn m>1n we denote the ssinc identities, and by Pu,n m ®n nm the
SSInC symmetries.

The ssmc morphisms, denoted by

3

MIHAI ROTARU

A control structure uscs a denumerable set & of names denoted by z, 4. z. .

and is completely determined by several information as follows. To define the

terms, it is needed a signature (P,A), where P 1s the set of prime arities, and K

is a set of control operators. Each name * E & must be equipped with a prime

peP, written æ : p. A control is used to construct complex terms from more

simple ones. Each control K EX must be equipped with an arity rule of the form:

(x)
K(a1,.. ., ar): m -> n

where x may constrain the value of the integer r and the arities m;, nj, m, n.

When fixed, r is called the rank of K. To define the reaction, it is needed a set

of reaction rules R. A reaction rule is an ordered pair of terms having the same

arity. The equational theory needs not specific information, it is common to all

control structures.
Besides the ssmc and control operators, every control structure contains a datum

operator (r) : ¬> p where x :p, a discard operator wp : p->¬, and an abstractor

operator ab a :p®m > p®n where a : p and a : m-T.

Notation We omit the arity subscripts when apparent. We suppose al terms
used are well-formed, and all equations are between terms of the same arity.

Definition 2.1. The action terms are constructed by the following grammar:

a ()|u idm | Pn,na:b| a®b| ab, a K(41..ar)

Definition 2.2. The following derived operator is a new kind of abstractor

()aab a (w, ® id) (: p, a: m> n)

Definition 2.3. The equational theory of a control structure is the congruence

upon the terms generuted by the ssmc azioms:

a idn = a

idm a =a
(a: m n)
(a: m n)

(a b) c=a (b.c)

aide a
id, a =a
(a b) c = a® (bc)

idn id, = idn@n
(a 6) (c d) = (a®c)- (b8 d)
Prn,n Pn,n1dn@n
Pkomn (1dk G Pnm,n) (Pk.n ®idn)
Pmn ba) = (a 0b) *Pk, (a: m k,b:n -> 1)

together with the following ucioms:

JG-NETSs
ab (r) (wp® id,) = idp
ab (u = id, ® (y)

ab id, ® wa
ab idm= idp@m
abr Pm,n = 1d, ®Pm,n

ab (a b) = ab, a aba b
ab (a ® idm) = ab, a ® idm

ab ab a = idp ® ab» a

abg aby a (Pp. idn) = (Pp,a ® idm) aby ab, a

(: P)
(:p,y # *)
: P)
: p)

(a:p)

(: P)

((r) 8idm) (r)a = a
() (v)((») ® (y)) = (z) ® (a)
((a) ® idm) (u)K(a1, . ..) = K(((r) ® idm,) (y)a1,...)(,y: P)

(:p,a: m>n)
(,y P)

Notation We use the equality = between two actions a and b, if the equation
a=b can be proved using the above axioms together with the rules of a congruence.
Otherwise, we write a # b.

Definition 2.4. Each action a possesses a surface defined to be the following set

surf(a) = {z E X | ab, a # id @a}

Proposition 2.1. We have the follouing properties of the surface:

(1) surf(«)) E {z}
(2) surf(w) = 0
(3) surf(id) = 0

(4) surf(P) = 0

(5) surf(a b) C surf(a) U surf(b)
(6) surf(a® b) C surf(a) U surf(b)
(7) surf(ab, a) = surf (a) - {«}

(8) surf(K (a1,...,ar,) C surf(a1) U...U surt(a,)

Definition 2.5. We define now second derived operator by

/yla(ar) ® idm) (u)a ,y :p, a : m> n)

The next two lenmas motivate the substitution-like notation chosen for this
derived operator. The first shows a kind of a-conversion, and the second shows

properties verified by any standard capture-avoiding substitution (with the surface

understood as the set of the free names). Note that, with this abbreviation, the

last tree axioms in definition 2.3 are simple substitution properties.

Proposition 2.2. 1f g surf(a) then (y)a = («)]l=/uja.

Proposition 2.3. The following are provable in any control structure:

MIHAI ROTARU

x/l(u) = ()
/2) = ()

1.
ifzfu 2.

r/ulw= w

a/ylid = id

5. /yp =p
l/](a -b) = lr/yla - |=/ujb

/la b) = {*/yla ® ["/ylb
6.

if z 4 {z,y} /y](:)a = (:)*/yla

T/y](y)a = (y)a
8

9
10 /l(7]a = (w)[=/y|[uw/a]a ifw g surf(a) U {z,v} and a fy

11. /y]K(a1,. . .) = K{/yla1,...)

Proposition 2.4. The following hold in any control structure whenevert z

surf(c):

Pa,eidn

2
1.

(z)(c. b) = (id, ® c). (r)b
(r)(¢® b) = c® (r)b

5

a b= a ®b

3.
(a,b:e ¬)
(: p)
(c:en)

(T)(a ® c)= (7)a® c

6. ()(ya = (Pp.®idm)-()(=)a
Definition 2.6. Reaction y is defined to be the smallest relation pon the ac-
tions which satisfies the reaction rules R, and is closed under composition, tensor,
abstractio7, and equality.

(p,y : q,a: m >n)

3. JCNET: THE cONTROL STRUCTURE OF THE jc-NETS

3.1. Hypergraphs. In this section we recall the definition of the hypergraphs
together with some standard related concepts such as isomorphism, graphical rep-
resentation, and contraction on nodes or edges.

Definition 3.1 (Hypergraph). A rooted hypergraph is a tuple H = (S, V, E, s)
where S is a set of hyperedges, V is a set of vertices, E C Sx V is a relation,
called the incidence, and s E S is the root hyperedge
The components of a hypergraph H are denoted by SH, Va, EH, and sf 4,v) E E11 for a hyperedge tE SH and a vertex vE VH, we say "v lies on t".

The graphical representation of a hypergraph H is as follows. Hyperedges tE
S are represented as unfilled ovals with the name t outside. Vertices vE VH
are represented as points carrying the name v. Incidences (t, v) E EH are

represented as tentacles from the oval named by t to the point named by v (the
length of such a tentacle is often taken to be zero). Finally, the root is emphasized

by a red flash pointing to the oval naned by sH

JC-NETS 7

t

FIGURE 1. Exampie of a hypergraph.

Example 3.1. We show in Fig. 1 the graphical representation of a hypergraph H.
Here SH = {s,t,t'}, VH = {v,w, w'}, EH = {(s, v), (t, v), (t, w), (t', v), (", w')}, and sH = {t}. The left picture represents H using only tentacles of nonzero length,
and the right one only tentacles of zero length. We often use the representations
as in the middle picture when one makes a compromise between size and clarity of
visualization.

Definition 3.2 (Contraction). Let H be a rooted hypergraph. A nonempty subset
of nodes WC VH gives rise to a contraction on vertices H/W which is the rooted
hypergraph defined by

SH/W = SH
VH/w = (V» \ W)U (v}

Bu/w= (E# \ Su x W)u{ (t,v) | {t} x Wn Eu #0}
SH/W= SH

A nonempty subset of hyperedges T C SH gives rise to a contraction on hyperedges
H/T which is the rooted hypergraph defined by

SHyr= (S» \T)U{t}
VH/T = Va

En/T =(Eu \Tx Vw)u{ (t,v) |Tx {u}n Ea 40}
8H/T= if sH ET thent else sH

Given a hypergraph H, two vertices v, w E VH, and two hyperedges s,t E SH, we
write Hy=u for the contraction on vertices H/{v, w}, and = for the contraction
on hyperedges H/{s, t}.
Example 3.2. If we take H to be the hypergraph used in Erample 3.1 then we
show in Fig. 2 a contraction on vertices Hu=u and a contraction on hyperedges
H=
Definition 3.3 (Isomorphism). Tuo hypergraphs H and H' are isomorphic if
here erist two bijective functions ds: Sn * S and ov: Va > Va satisfy
ng os(su) = s and for all s E SH and v ¬ V#, (8, v) ¬ E# if and only if

(s(s),ov (v)) E Epr.
t course, the relation of isomorphism is an equivalence over hypergraphs. Since
1Or the present purpose, the names of hyperedges or vertices have no significance,

MIHAI ROTARU

S

W

FIGURE2. Example of contractions on vertices and hyperedges.

we do not distinguish between isomorphic hypergraphs. In accordance with this

convention, if H and H are isomorphic hypergraphs then we simply write H = H

So we work with the equivalence classes of hypergraphs. For the equivalence classes

of hypergraphs we use the same graphical representation as for hypergraphs; we

have only to eliminate all names of vertices and of hyperedges.

3.2. Actions. In this section we define the control structures JCNET of the jc-

nets. The arity monoid of JCNET is considered to be the additive monoid (N, +,0)

of the natural numbers. We let m, n, k,... range over natural numbers. By |n| we

denote the first n naturals, i.e. n = {1,2,... , n}. Given a function f:in> Y

and a natural k, we denote by k e f : {k+1,. . .k+n}>Y the function defined

by (k f)) = f(i - k).
JCNET is defined over the set X = {z:li ¬ N} of names of the join-calculus. We

let c,y,u,.. . range over ar bitrary names. The unique prime arity 1 is associated

with each name c E X.

Actions of JCNET are enriched hypergraphs, called nets.

(H,) of arity m >n consists of a hypergraph H together with decoration

= (I,0, A, 7, 4) of H consisting in an injective function I: m VH, a func-

tion 0 n> Va, an injective function A : Z > VH, where Z C X, a relation

TE VH X VH, and a function u: Si -N\ *V

Concepts of isomorphism and contraction introduced for hypergraphs extend in
a quite straightforward way to nets. Let aj = (H;, E;) with E; = (I;, Oi, Ai, Ti, i)

where i E 2. We say a1 and az are isomorphic if there exists a hypergraph isomo

fisn (s,Ov) between Hi and H2 such that oyol1 = I2, dyo01 = O2, ov oA = 2

and for alls ¬ SH, and v, v' E V,, (v,v') ¬n if and only if (ov(v), ov("))E
and i(s, v, v') = u2(ds(s), ¢v (v), dv (v')). As for hypergraphs, we do not aisu

guish between isomorphic nets.

An action a

We now explain the graphical representations of nets. Let a = (H, 2) be a u

with 2= (I,0,A, T, M). Represent the hypergraph H as explained in the prev1

section.

ou

Only for exposition, suppose all tentacles in H are of length zero
I(i) = v, O(k) = v, and A(r) = w then assign an input label (i) to the ver

named by v, an output label (k) to the vertex named by v, and a name lavet
to

9 JC-NETS

the vertex named by w. If (v, v') E r then draw an arc outside any oval from the
vertex named by v to the vertex named by '. If p(s, v, v') = k then draw k arcs

inside the oval nanmed by s from the vertex named by v to the vertex namedby
'. Note that, in general, the last. roquirement as arcs to be inside an oval might
not be satisfied. Nevertheless, in the jo-nots this situation could not appear since
(s, 0, ')> 0 implies (3, v), (s, v') E E1. As in the case of the hypergraphs, for

the isomorphism classes of nets we use the sane graphical representation as for

nets; we have only to eliminate all names of vertices and of hyperedges.

Definition 3.4 (Datum). The datum (r)7 = (H, 2) :0>1 is defined by

H = ({s},{v}.{(s, v)}, s)
Y= (0, {1 H v},{rH v},0,0)

Definition 3.5 (Discard). The discard w = (H, 2):1>0 is defined by

H = ({s}, {v}, {(6, 0)},s)
= ({1 H v},0, 0,0,0)

Definition 3.6 (Controls). JCNET is generated by three control operatorTs:
- = (H, D) :0-> 1 is defined by

H ({s}, {v}, {(3, v)},s)
= (0,{1 Hv},0,0,0)

- out = (H,2) :20 is defined by

H = ({s}, {v, v'}, {(8, v), (s, »)}, s)
= (0, {1 H,2v'},0,0, {(s,v', v)})

- Ifa = (H, 2) : 1> 0, E = (I,0, A, 7, 4) then def a = (H', E') : 1 0 with

(2)

H'= (S#U{t}, V»Ü{v}, Ey U {(t,v)}, ¢)
= ({1 v},0, A,T U {(w, I(1))},.4)

Definition 3.7 (The ssmc operators). Consider a; = (H, 2;) with
= (Ii, 0i,Ai, Ti, 4;) and A;: Z; > Vi,, where i e 2]. W.lo.g. we suppose

SH= SH = s and (SH, - {s#,})n (SH2 -{sHa}) =0, as well as A1 (z) = A2(z),

VzE Z1n Z2 and (VH, - A1(Z1 n Z2)) n (VH,- A2(Z1n Z2)) = 0.

Identity id = (H, 2) : m > m is defined by

H= ({s}, {vsli e fm)}, {(8, v,)li e m)}, s)
ivli e n)}, {i vuli e þn)}, 0,0, 0)
Symnetry p = (H, 2) : n +n> n + m is defined by

T,T

H = ({»}, {v,li e m + n}}, {(s, v,)li e n + n]}, »)
= ({i> v,li e [m + l}, {i > Vm+ali E [n]} u {n tivili e m|}, 0, 0, 0)

10 MIlHAI ROTARU

Tensorial product a a2 : m +k -* n + of a m -> n and a2 : k > l is
obtained by combining aj and az as follows. Increment uith m the input labels,

and with n the outyput labels in a2. Contract the two roots, as well as vertices in

a and in a2 bearing the same name label. Formally, a a2= (H, 2) where

H = (SH U SH2, Vu, UVH,, Eu U BH,, 8)

= ({I1 Ume I3,01 Un 902, A U A2, y U T,/ a)

Composition a a2: m k of a : mn and ug nk is obtained by
combining aj and a2 as follows. Contract the two roots, as well as vertices in a
and in a bearing the same name label. For each i e n] contruct the vertes in a
output labeled by (i) with the verter in a2 input labeled by (i). Remove these labels
) and (i). Formally, a1 a2= (H,2)0,(1)=I(1),..01 (n)=Ia(n) erE

H (SH, U Sia. Va, U V,, EH, U EHa)
= ({I1,02,A1 U A2, Ti UT2, 41 pa)

Definition 3.8 (Abstractor). Let a = (H, 2) : m n with = (I,0, A, T, H)
Then ab a: 1+m > 1+n is obtained froma as follows. Increment with 1 all
input and output labels. Assign to the vertes labeled by x the input label (1) and

utput label (1). Remove the label z. Formally, ab! a = (H, E) where

= ({1 A(2)} U1eI,{1> A(r)} U1® 0,A - {z A(«)},7, p)
One easily see that the above introduced operators over nets are well-defined,
except the abstractor. Indeed, ab? a is not defined if the net a does not contain a

vertex labeled by t. The completion we propose in the following definition is on
one hand dictated by the need to have all operators well-defined. On the other,
one may not have satisfied the axiom ((z)® idm) (z)a = a of control structures
which, in absence of a similar completion, could introduce new name labels.

Definition 3.9 (Completion). We complete the definition of the above introduced
operators, where op stands for each of these operators, as in the following

op(a,...) op(a® i,...) ®"i where i = (H, 2) is the net defined by
H = ({s}, {vsli e N}, {(s, vi)li e N}, s)
2 = (0.0, {ziv,li EN},0,0)

Proposition 3.1. The operators (r), w, v, out, def, id, p, *, ®, and abr introduced in Definition 3.9, define a control structure which we call JCNET. Definition 3.10. We define in the following two derived control opeators: out ((u) (u) id) out
def,a (u) def a

Lemma 3.1. We have

JC-NETS 11

(1) surf(out) C {u}
(2) surf(def, a) C {u} U surf(«)

Lemma 3.2. Let o = {z/y} a name substitution. The

(1) [x/y]out, = outou

(2) [7/y]def, a = defgu t/y]a.

3.3. Reaction.

Definition 3.11 (Reaction). The reaction y in JCNET is the smallest relation

over jo-nets closed under tensorial product, composition, abstraction, and equality,
which satisfies the following control rule

outu defs a ya ® defua

Lemma 3.3. fa yb then there ezists b s.t. b=8 and surf(b) E surf(a).
Lemma 3.4. We have (v) out ® def, (y)a yb iff u = w and b = {v/yja.

Lemma 3.5. We have aj ® a2 ® a3c iff either there exists i E |3] s.t. a b
and c = b a; ® ak, or there eæist i, j E 3] s.t. a; ®a; b and c =b a, where

ij, k} = [3].

Lemma 3.6. fu g surf(b), then b ® def, a yc iff b & and c = b defu a.

Lemma 3.7. We have v (T)a yb iff a yd andb = v. (x)a'.

4. ExPRESSIVENEss OF THE jc-NETs

4.1. The Join-Calculus. In this subsection we recall the definition of the join-

calculus [FG96]. A detailed account may be found in [Fou99]. Our presentation is
based on Lev98].

We consider a restriction of the join-calculus where only single input patterns

and monadic messages are allowed.
Let be an infinite countable set of names. We let a, y, z, u, v, w,... range

over names. We denote by P the set of the join-calculus terms which are called

processes. We let P, Q, R,... range over processes.

Definition 4.1. The processes are constructed from the following gramnar:
P

empty process

u(u)
PIQ
def u(y) DP in Q

message
parallel composition

definition
n the above syntax, only the definition binds names. So u and y are considered

to be bound. The scope of y is P, whereas the scope of u extends to the whole

aelinition. a-convertibility among processes is defined in the standard way. We
Write /y}P to denote the usual capture-avoiding name substitution.

Definition 4.2. The free names of processes ure defined inductively by:

MIHAI ROTARU
12

fn(0)=0
fn(u(u)) = {u, v}
fn(P | Q) = fn(P) Ufn(Q)
fn(def u(y) » P in Q) = (fa(Q)u(fn(P) - {v})) - {u}

Definition 4.3. Structural congruence =C P x P is the smallest congruenoe

relation uhich satisfies the follouing arioms:

A1: def u(y) » P in Q = def u{t) D {t/y}P in Q, ift g fn(P)

A2: def u(y) » P in Q= def w(y) D {w/u}P in {w/u}Q
ify g {u,w} and w g fn(P) U fn(Q)

Pl: P|0= P
P2: P1Q =Q|P
P3: (P|Q) |R= P|(Q|E)
Dl: Q1 def u(y) P in Q2 = def u(y) » P in (Q1 |Q2) if u g fn(Q1)
D2: def u(y) D Pi in def w(t) » P in Q = def w(t) » P2 in def u()» Pi in Q

if u #w, uf tn(Pa), and w g in(Pi)
Lemma 4.1. P= Q implies oP = oQ.
Definition 4.4. Reduction -GPxP is the smallest relation which satisfies:

R1 def u (1)»Q1 in def ua(v2)DQ2 in ... def un(yn)>Qn in P|u,(v) -
def i (1)DQ1 in def ua (2)bQa in ... def un(vn)>Qn in P| {v/y:}Q:

f tu+l,... , un} n (fn(Q;) U {u:}) = 0 where i E n] and n 21.
R2 P Pa implies def u(y) DQ in P - def u(y) DQ in P
R3 P E Q1, Q1Q2, and Qa EPh implies P+ Pa.

Remark that, in the definition of the reduction, we have not a rule for parallel composition. The next proposition shows that such a rule is a consequence. A
preliminary lemma useful in the proof of the proposition is introduduced first.
Lemma 4.2. P1> P implies aPi + aPa.
Proposition 4.1. P+ Pa implies Q | P Q|P2.
4.2. Semantics of the join-calculus.
Definition 4.5. The encoding [-]:P>T(v, out, def) is. defined by: (1) 0 = ido

(2) [u(v)) = (v) out,u
(3) [P|Q] = {P® [Q (4) def u(u) » P in Q] =v- (u)([Q) ® defu (u)[P)) Lemma 4.3. (P:e>¬

Proof. A simple induction on the structure of P. 0 Lemma 4.4. fn(P) 2 surf([P) PToof. Induction on the structure of P. The proof is imediate using Len
3.1.0 ma

13 JC-NETS5
Lemma 4.5. [{r/y}P] = {r/y]|P]

Proposition 4.2. f P = Q then [P] = [Q

Proof. Since both = and equality in CS are congruence relations, it will be

suficient to check the statement of the proposition only for the axioms in Dcfinition

4.3 which generate =. For Pl and P3, the result is trivial since the associativity
of tensor ® and the fact that ido is neutral for tensor are assured by two axions

of CS. Likewise, for P2, the result follows directly by Proposition 2.4(2).
AI. Suppose t g fn(P). By Lemma 4.4, we have t g surf (|P).

def u(t) b {t/v}P in Q

= v. (u)(Q® defu ()[{t/y}P}) by Lemma 4.5

(u)(Q]8 defu (t)|t/v||P) by Lemma 2.2
= def u(y) D P in Q

A2. Suppose u # y and w tn(P) U fn(Q) u {y}. By Lemma 4.4, we have
w surf(P) U surf([Q]). If u =w then the result is trivial. Suppose u # w.

def w{y) D {w/u}P in {w/u}Q)

(w){u/u}Q]® def w (v)l{w/u} P)) by Lemma 4.5

v (w)([w/u][Q]® defu (y)[w/u|P)
v (w)[w/u]([Q]® defu (v) [P])
def u(y) P in Q]

by Prop. 2.3(8, 7) and Lem. 3.2

by Lemma 3.1 and Lemma 2.2

D1. Suppose u f fn(Q1). By Lemma 4.4, we have u g surf(|Q1).

def u(y) bP in (Q1 |Q2)]
= v(u)([Ql® [Q2]® def. (y)|P) by Lemma 4.3 and Proposition 2.4(4)
= Q1def u(y) b P in Q2]

D2. Suppose u # w, u g fn(P2), and w f tn(Pi). By Lemma 4.4, we have u g
surf([Pa]l) and w g surf([PL]). Furthermore, by Lemma 3.1, w g surf(defu (v)[Pi].

def u(y) D P in def w(t) » Pz in Q

v (u)(v. (w){[Q]® defu (t)[P)) ® def, (u)[RI)
V (u)((w)([QJ ® defu (t)|P2l® defu (v)|PAD)

= (v®v) (u)(w)([Q) ® defu ()1P]® defu (v)[Pi])) = X

by Lemma 2.4(5)
by Lemma 2.4(3)

Similarly we obtain
def w(t) D Pz in def u(y) » Pi in Q

(8v) (w)(u)([Q]o def. (v)[P]® defu ()P]) =Y

Showing that X = Y will complete the proof
by Lemma 2.4(6)
by Lemma 2.4(2)

X

(Vv) pi.1 (w)(u)([Q] ® defu (t)[Pa] ® def, (v)|[P])
Po,0 (v) (w)(u) ([Q] ® def. (y)[P] defw (t)[P2]) by Lemma 2.4(1)

Y

Theorem 4.1. P -> Q implies [P] » 1Q|

MIHAI ROTARU
4

Proof. By induction on the definition of P Q.

R1: P Q is

def (/) » Qi in def u2(/2) D Q2 in... def un (n) Qn in R| u,{v) +

def u () > Qi in def u2(/2) b Q2 in ... def un (Un) Qn in R| {v/y:}Q

where {u+ls..., Un} n (fn(Q,) U {ua}) = 0, i ¬ |7], and n 2 1. By Lemma 3.1
and Lemnma 4.4 one has {uj+1,. .., Un}Nsurf(defu (Ui)|2:|) = 0. Using this with

Proposition 2.4, and also using the compatibility of with composition, tensorial

product, and abstraction, one has

P

v (u)(def,u, (V)[Q] ®

v(4,)(def, (vn)[Qn] ® [R]® (») out,u)..)...)

u1) (defu, (n)[Q] ® by Lemma 3.4

v (u-1)(defu- (Vi-1) Q:-1]®

v(i+1) defui+ (i+1)Q+1] ®

v (un)(defu, (vn)[Qn] ® [E|® (v) outu, ® defu (v:)[Q:])...)...)

(u1)(def., (n)[Q1] ® by Lemma 4.5

v-(u)(defu, (yi)[Q:] ®8

(u)defu, (Un)[Qn] ® [R] ® p/yi|Q:])...)...)

R2: P> Q is def u(y) D R in P def u(y) D R in Q' with P Q. By induction, [P] Q'). As y is closed under composition, tensor, and abstractiol, we have [P}=v- (u)([P']@ def, (y)\R) v-(u){[Q]® defu (y)[R)) = [Q1 R3: P>Q with P= P', P »Q, and Q = Q. By induction, [P"] Y [Q). By Proposition 4.2, [P] = {P'] and (Q| = [Q1. Since y is closed under equality, follows that [P]jQI. o
Lemma 4.6. (v) out,, [P] ya iff [P] b and a = (o) out, ®b. Proof. () Trivial as the reaction is closed under tensorial product and equallty

15 JC-NETS

() Induction on the structure of P
- If P is the empty process or a message, then (v)

statement of the lemma is obviously true as its premise is not satisfied.

- If P is a parallel composition P | Pa, then (v) out ® [P] Pl ya. As
(u outu it follows from Lemma 3.5 that one of the following cases remains

out ® [P] X. So, the

possible:

(1) [P] »b and a = (v) outu bo[P],

(2) [P:]® [PI»8 and a = (») outu ®6, or

(3) (u) outu ®P t and a = a'e[P)
where {i, j} = {2]. Note that by Proposition 2.4(2) one has [P] = {P] [P]. In
case (1), one has [P b® [P]. Take b = b ® [P1. In case (2), take b = b. In

case (3), by induction, one has [P] and a' = (u) -out,®b. So [P] Y beP)
Take b= b®|PI

- If P is a definition def w{t) » P in Pz, then without loss of generality, we
assume that w g {u,v}. It follows from Lemma 3.1 together with Proposition
2.4(4) that v- (w)(u) out, 8 [P]® defu (t)[P]) a. By Lemma 3.7, (v) out
Pa]e defu (t)[P] » a' and a = v (w)a'. As (») out X, defu ()|P] X» and

(u)out defu (t)[P] X (according to Lemma 3.4), it follows from Lemma 3.5

that one of the following cases remains possible:
(1) [P2] and a' = (v) . outu ®b ® defu (t)[P].

(2) [Pa]® defu (t)[Pi] and a' = (v) .gut, ® b, or

(3) (w) outu ® [Pa] a" and a = a" ® defu ()[Pi|

In case (1), one has [P] = v. (w){[Pa] ® def, (t)[P)) »v. (w)(® defu (t)[P]).
Take b = v (w)(b ® def (t)[P]). In case (2), one has [P] v (w)6. Take
b=v (w)b. In case (3), by induction, one has [AU and a" = (v). out, ®6.

One has [P] v- (w)(E ® defu (t)|PAJ). Take b = v- (uw){B ® defw (t)|PA). D

4.7. [P]® [Q] ya if one of the following conditions holds:

(1) [P] b and a = b® [Q].

(2) [Q]b and a = [P] ® .

Proof. () Trivial as the reaction is closed under tensorial product and equality.
) Induction on the structure of P.

If Pis the empty process 0 then 2. obviously holds.
If P is a message then 2. holds by Lemma 4.6.
If P is a parallel composition Pi | a, then [P]8|P]® [Q] a. By Lemma

3.5 it follows that one of the following cases is possible:
(1) (Q) and a = [P]® |[P2] ®b,
(2) and a = b8 [P]® [Q)
(3) [P:]® [P] and a = b 8Q], or
(4) [P]e (Q d and a = a' ® |P|,

where {i, j} = [2]. Note that by Proposition 2.4(2) one has [P] = [P]® [P;]. In
case (1), 2. holds by taking b = b. In case (2), one has [P] \ b® [P]. Then 1.

MIHAI ROTARU

holds by taking b = b'® [P]. In case (3), 1. holds by taking b = b. In case (4

by induction, we distinguish two sub-cases. Then

(a) [P y and a' = b ® Q] or

(6) [Q and a' = |PJ9b.
In sub-case (a), one has [P] » b ®[P). Then 1. holds by taking b = b s IP1

In sub-case (b), 2. holds by taking b =6. In both sub-cases we need some action

commutations which are assured by Proposition 2.4(2).

- If P is a definition def w(t) D P in P2, then without loss of generality,

we assume that w fn(Q). By Lemma 4.4, w surf(Q). It follows from

Proposition 2.4(4) that v : (w)(P2] ® defw (t)[P1]® [Q)) a. By Lemma 3.7,

[P8 defw (){P]8 (Q] ya' and a = v- (w)a'. As defw (t)|PAJ it follows from

Lemma 3.5 and Lemma 3.6 that one of the following cases remains possible:

(1) [P and a' =b ® defu (t)1PA]®1Q),

(2) (Q and a' = |[Pae def (t)[R] 8b,

(3) [Pa]® defu (t)[P] and a' = b® [Q), or

(4) |P2® 1QJa" and a' = a" 8 defu (1)|RJ.

ln case (1), 1. holds for b= v (u)(B ® defu (¢)[P). In case (2), by Lemma 3.3,

there is a b such that surf(b) C surf([Q])) and b = b.Then 2. holds for this b. In

case (3), 1. holds for b =v. (w)b'. In case (4), by induction, we distinguish two

16

sub-cases. Then
(a) [Pa] b and a" = be [Q] or

(6) [Q] » b and a" = [Pe]®b. .

In sub-case (a), 1. holds for b =v-(w)(b® defu (t)[R). In sub-case (6), by
Lemma 3.3, there is a b such that surf (b) C surf([Q]) and b = b. Then 2. holds
for this b. In all cases and sub-cases we eventually need to use Proposition 2.4.

Lemma 4.8. [P] ® defu (y)|Q a if one of the following conditions holds:

(1) [P] Yb and a = b defu (y)[Q].
(2) P=R| u(v) and a = [R| {v/y}Q]o defu (y)[Q]. (3) P = def vi(t1) D Ri in def v2(t2) D R2 in ... def v,(tn) D Ra in (R| u(vn))

v. (v1)(def,, (t1)[Ri]®8

v (v2)(defva (t2){Ra|®
a

V (v,)(defv, (tn)[R,]e [R| {va/y}Q]e def, (v)[O)..) where vi { fn(Q)U {u} for every i E n] Proof. (>) If 1. holds the proof is obvious. If 2. holds then one has P def (y)2)
Re (o). out, 8 defu (y)Q by Lemna 3.4 4 [v/s|[Q] % def, (u)[Q)

by Proposition 4.2

by Lemma 4.5

JC-NE'TS 17

If 3. holds then by Lema 3.1 and Lemma 4.4 it follows that v, g surf (def . (y)[)

for every i E n). On has

P] def, ()[Q]
v (v)(def,, (t)[Ri] 8

by Proposition 4.2 and Proposition 2.4(5)

by Lemma 3.4

v(n)(def. (t)[R,] e[R]® (v,) out, def., (v)[Q)...)
(1)(def, (t1)[R,]® by Lemma 4.5

v.(en)(def,, (t)[R,]® [| ® {vn/y][Q]® defu (y)[Q)...)

(=ndction on the structure of P.

If is the empty process 0 or a message w{v) with w u then |P8
defu(Q So, the statement of the lemma is obviously true as its premise is

no satistied. On the other hand, if P is a message u(v) then

Ps defu ()[Q)
v/y][]® def (v)\Q]a by Lemma 4.5

= 0 {v/y}Q] ® defu (y)\Q]
Furthertmore P = 0 | u(v). So, 2. holds.

- If Pis a parallel composition Pi |P2, then [PR]® [P]® def. (y)[Q] a. As

def (y) X, it follows from Lemma 3.5 that one of the following cases remains

pussibie:
(i} P b and a = b®|P]® defu (v)]Q

(2)Fe PI and a = ® def (U)Q), or

3)jedefu (y){Q] ya and a =d ® Pi},
herej} = [2]. Note that by Proposition 2.4(2) one has [P] = [P]® [P]. In
case (}. one has [P] ® [Pi]. So 1. holds for b = b® [P]. In case (2), 1.

iilds fob = b. In case (3), by induction, we distinguish three sub-cases. Then

by Lemma 3.4

()1b and a' = b® defu (y)Q),
(b) R' | u(v) and a' = [R| {v/y}Q)® defu (y)[Q), or
fr) = def vi (t1) » Ri in ... def v, (tn) b Rn in (R'| u(vn)) and

v (u1) (defu, (t)[R,]

()(def", t)[R,] ® [R'| {vn/y}Qo def. (u)[Q)..)
wiet o in(Q) u {u} for every k E nj.

SLuD tase (a), one has [P] ® [P]. So 1. holds for b = ® [P}. In

b), one has P = R | P; | u(v). Furthermore by Proposition 24(2),
P T{o/y}Q1e def. (u)iQ]. So 2. holds sub-case (c) we can

d tliout loss i generality that vk f fn(P,) ior everykE . Ten it

MIHAI ROTARU
18

Then P= follows from Lemma 4.4 that vk surf(|?;|) for every k ¬E {n].

def v(t1) » R1 in ... def vn (tn) D Ra in (I | P;| u(v,,)). Furthermore

by Proposition 2.4(5),(2)
v (v)(def, (t1)[R,]8

v (,)(def,, (1,)[R,] [R|P;|{vn/u}2] G def,, (v)\@)...)
So 3. holds.

- If P is a definition def w(t) Pi in lP2 then witlhout loss of generality we as-

sume that w g fn(Q)U{u}. By Lemma 4.4 and Lemma 3.1, w ¢ surf(def, (y)1Q1).
It follows from Proposition 2.4(5) that [P]%def (y){Q) = v(w){{P2]Bdef, (t)[P]

defu (4) a. By Lemua 3.7 one has that [Pa]® defw (1)|P] def, (u){Q
a and a =v: (w)a'. As one has defu (t)[PIX, defu (y)[Q) , and defu (y){Q]©
defu (t)!} X (according to Lemma 3.6), it follows from Lermma 3.4 that one of

the foliowing cases remains possible:
(1) [Pej b' aud a' = def (t){Pi] ® defu (y)[Q}
(2) [Po defu (t)|P] and a' = b® defu (v1Q], or
(3) P:8 defu (y)1Q] a" and a' = t" ® defu ()P

In case (1), 1. holds for b= v (w?{b ® def (t){P]). In case (2), holds for
b= (u)bi. In case (3), by induction, we distinguish three sub-cases. Then

a Pa and a"= b® def,a {y)[Q,
(6) Pa = R u(e) and d' = [R'| {"/y}Q] o def, (yQ}, or

(c) Padef v1{t1) >R, in ... def vn(tn) Rn in (R| u{v,a)) and

a" (vy{dein (th)[R]

vfu(def., (tn)R,] ®[R| {n/u}l def, ()Q)...)
where 7 n(0)U {u} for every k e n].

In sut-case (a), 1. olkds for b= v. {w)(def (t){P|). I. sub-case (b, ane has

PE def t) P in iR'| u(v)). We distinguish two situaiions:

. Then E def w(t)P in R | (. 1 is easy t show tilat

sU /3}Q} E i} U surf((QI). So uw surf{|{t/y}Q). So by Propositicn
2.42).5 one has idef w(t) D Pi in R|{a/y}2 def y!. So 0lis.

(i) i.

udef,(E]% {
P def wib Pi in def u (i1) D ?1 in.. def t R (R' uí L ing Prposition 2.4(2), one has

Tisen P def vt) P in { u{)) urtherT:1Ore

()(defu (1)[Pj G
(1)(def,, (t){1]

v ()def,, (t.)|H,)8 [" |{va/y}g] *3 de fu iu}}.

JC-NETSS 19

So 3. holds. D

Theorem 4.2. P] a implies P - Q and |Q) = a.

Proof. Induction on the structure of P

If is the enpty process or a nessage tlhen [/'| g. So, the staternent. of the
theorem is olviously true since the premise is not satisfied

if P is a parallei comnpositiou P | 2 then (/') [P2] ya. By Lemma 4.7
one ot the îollowing cases holds:

(1)[j and a = a [Ph r

(2) 2 2 and a =[P]® 42.
It is sufticieut to consider the case (1), the other one being symmetric. By induction

one has Pi Qi andaj = [Q1].

By 'ropasition 4.1, P Q1|P2 and a = [Qij ® [P] = [Q).

- if P is a detinition det w(t) »P in P2. Then v- (u) ([P2]e def (t)[P]a.
It follows from Lemma 3.7 that [P2] ® defu (t)[P ya' and a = v (w)#'. By
Lemma 4.8, one of the following cases holds:

(1) b and a' = b® defw)[P},
2 P R w(v) and a' = [R| {v/t}Q]e def (t)[P), or

3) E def wi(t1) R1 in ... def wn{tn) D Rn in (R|u(wn)) and

v (u1)(defu, (t1)[Ri]

v (u) (def u, (tn)[R,] ® [R| {w,/t}Pi]e defu (t)[P)..)
here w; fn(P,} U{w} for every i e [n].

In case (1}, by induction, Pa + Q2 and b = [Q]
Then - def {t) » Pi in Q2 and a = v (w){[2 def» (t)[A) = {Q.

Ces?) it foilows from Lemmas 3.l and 4.4 that w; f surf(deiu ()P).

ie ut; D Pi in def wi{¢1) b Ri in.. def wn(ta) p Rn in (R|u(w,))
def t) 2 in def w{ti) b Ri in ... def w{tn)o Rn in (R| {w,/t}Pi}

by Proposition 2.4(5),.(2) y (w)(
(wa)fdef, (t)[R,] ®

i2tef, (t,)[R.je [R i {w,/t} P]S dat, (}\Pl}.. .))
(w)(det , f#} P lo

,dei (t,)|Rai [R|i/l}Pi}}

MIHAI ROTARU
20

REFERENCES

AL96) A. Asperti, G. Longo. Categories, Types, and Structures. MIT Press, 1996.

Bar85 H. P. Barendregt. The Lanbda Calculus: Its Syntax and Semantics. North Holland

1985.

ICROO G. Ciobanu, M. Rotaru. A T-calculus Machine. In Journal of Uruiversal Computer Sr

ence, Springer Verlag, Vol. 6, 2000.

CR98 G. Ciobanu, M. Rotaru. Faithful r-nets. In Blectronic Notes of Theoretical Computen

Science, North-Holland, Vol. 18, 1998.
Eng93) J. Engelfriet. A multiset semantics of the m-calculus with replication, in CONCUR'93,

LNCS 715, 1993.

ci

FG96) C. Fournet, G. Gonthier. The Refiexive CliAM and the Join Calculus. I: Proc. of
POPL '96, ACM Press, 1996.

Fou99 C. Fournet. The Join-Calculus: A calculus for Distributed Mobile Progranming. PaD
thesis, INRIA Rocquencourt, 1998.

LLev98] J.J. Levy. Some results in the Join Calculus.
MMP95] A. Mifsud, R. Milner, and A. J. Parrow. Control Structures. In Proc. 10th Symposium

on Logic in Computer Science (LICS'95), 1995.

M96] Milsnd. PhD thesis, University of Edinburgh, 1996.
Mil94) R. Milner. T-nets: a graphical form of T-calculus, ESOP 94, LNCS 788, Springer-Verlag,

1994.
[Mil96 R. Milner. Calculi for interaction. Acta lnfornatica, 33(8), 1996.
SS93] G. Schmidt, T. Strohlein. Relations and Graphs. Discrete Mathematics for Computer

Scientist EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1993.

INSTITUTE OF THEORETICAL COMPUTER SCIENCE, RoMANIAN ACADEMY RO-6600 lAS!
E-maii address: mrotaru@iit.tuiasi.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

