STUDIA UNIV. “BABE§-BOLYAI”, INFORMATICA, Volume XLIV, Number 1, 1999

JC-NETS

MIHAI ROTARU

1. INTRODUCTION

By switching from input-boxing to output-boxing and by allowing sharing in
the m-nets of Milner we obtain a formal model of concurrency, the jc-nets, which
significantly reduces the original 7-nets, while preserving the computational power.
We use our model to provide a faithful graphical representation for a Turing com-
plete fragment of the join-calculus of Fournet and Gonthier.

2. CONTROL STRUCTURES

We review here the control structures as far as it is necessary for the following
sections. The presentation of the control structures uses the notion of symmetric
strict monoidal category. We suppose the reader has a little familiarity with this
notion. However, since we work with the control structures in a rather algebraic
than categorical style, no further knowledge of categories is needed.

Most of the ideas on the control structures we present in this subsection can be
found in the introductory paper [MMP95]. The reader can also find there detailed
poofs for all the background results we state in this review. A detailed account of
the control structures may be found in [M96).

From an algebraic point of view, a control structure consists in a set of terms
together with an equational theory and a reduction relation, called reaction, upon
terms.

A control structure can be also seen as a symmetric strict monoidal category
(ssmc for short) with additional structure. The ssmc morphisms, denoted by
a,b,c,..., correspond to the terms of the control structure (in the algebraic set-
ting). They are called actions. The ssmc objects, denoted by m,n,k,... , are
called arities. The monoid of the arities (M, ®,¢€) is assumed to be freely gener-
ated by a set P. The elements of P, denoted by p,q, ..., are called prime arities.
If the arities yn and n are the domain and respectively the codomain of a, we write
4 :m — n; with some abuse of terminology, we say that a has the arity m — n.
We write a - b : m — k for the ssmc composite of a : m — n and b : n — k, and
a@b:m ek -y nol for the ssme tensorial product of @ : m — nand b: k — 1.
By id,, : m — m we denote the ssmc identities, and by p,y.n i m®n = n@m the
SSINC symmetries.

MINAI ROTARU
a denumerable set X" of names denoted by z,y,z2,...
ed by several information as follows. To define the
terms. it is needed a signature (P,K), where P is the set of prime arities, and £
O)) A\

< a set of control operators. Fach name ¢ € X must be equipped with a prime
Z; ¢ P. written @ : p. A control is used to construct complex terms from more

simple ones. Each control K € K must be equipped with an arity rule of the form:
ap:my =>mny ... Qp - My — nr()
K(ay,...,ap) :m—+n
where Y may constrain the value of the integer 7 and the arities m;,n;,m,n.
When fixed. r is called the rank of K. To define the reaction, it is needed a set
of reaction rules R. A reaction rule is an ordered pair of terms having the same
arity. The equational theory needs not specific information, it is common to all

control structures.

Besides the ssmc and control operators, every control structure contains a datum
operator () : € = p where z : p, a discard operator wp : p —* €, and an abstractor
operator ab;a:p®m — p®n where z : pand a: m — n.

Notation We omit the arity subscripts when apparent. We suppose all terms
used are well-formed, and all equations are between terms of the same arity.

Definition 2.1. The action terms are constructed by the following grammar:

A control structure uses
and is completely determin

a = (z) l Wp I id,, | S | a-b ' a®b | abg a [K(ay...ar)
Definition 2.2. The following derived operator is a new kind of abstractor

d
(z)a ief ab; a - (wp ® id,) (z:p,a:m — n)

Definition 2.3. The equational theory of a control structure is the congruence
upon the terms generated by the ssmc azioms:

(.L'idnza (@:m — n)
idp-a=a (@a:m —n)
(a-b)-c=a-(b-c)

a®id, =a

ide ®@a=a

(a®b)®c:a®(b®c)
idm®idn S idm@n
(@-b)2(cd)=(awc) (bod

pm,'n ’ pn,m - ldm@m

Promn = (idy @ pm,n) ' (pk,n ® idy,)

P (b@a)= (awb) "Pry (@:m > kb:n—1)

together with (e fullowiny ALLOMms:

JC-NETS 5

abg (z) - (wp ® idy) = id, (z : p)
ab; (y) = id, ® (y) (z:p,y # z)
aby wg = idp @ wy (z:p)
ab, id,, = idp@m (:’: : P)
aby Pmn = idl’ ® Pm,n (T : p)

ab; (a-b) = ab,a-ab, b
ab, (a ® idy,) = aby a ® id,,

ab; ab; a = id, ® ab, a (,); : p)

abg abya - (p, , ® id,) = (Pp, ® idp) - abyabg a (z:p,y:q,y#1)
((z) ® idp) - (z)a = a (z:p,a:m —n)
() - (W ((Y) ®(v) = (z) ® (z) (z,y:p)

(<:L') ® idm) (y)K(al’) = K(((x> ® idml) g (y)al, o) (37; : D)

Notation We use the equality = between two actions a and b, if the equation
a = b can be proved using the above axioms together with the rules of a congruence.
Otherwise, we write a # b.

Definition 2.4. Fach action a possesses a surface defined to be the following set
surf(a) = {z € X | ab, a # id ® a}

Proposition 2.1. We have the following properties of the surface:

(1) surt((z)) C {)
(2) surf(w)
(3) surf(id)
(4) surf(p) =0

(5) surf(a-b) C surf(a) U surf(b)

(6) surf(a® b) C surf(a) U surf(b)

(7) surf(ab,a) = surf(a) — {z}

(8) surf(K(ay,...,ar)) C surf(a;)U...Usurf(a,)

Definition 2.5. We define now second derived operator by

={
={

[e/yla € ((2) @ idm) - W)a (2,y :p,a:m - n)

The next two lemmas motivate the substitution-like notation chosen for this
derived operator. The first shows a kind of a-conversion, and the second shows
properties verified by any standard capture-avoiding substitution (with the surface
understood as the set of the free names). Note that, with this abbreviation, the
last tree axioms in definition 2.3 are simple substitution properties.

Proposition 2.2. If © ¢ surf(a) then (y)a = (z)[z/y]a.

Proposition 2.3. The following are provable in any control structure:

MIHAT ROTARU

6
1. T = (T
3. [x/ylw =w
4. (x/ylid = id
5. [a/ulp=p
6. [x/v)(a-b) = [x/yla- [x/y]b
7. [z/y)(a®b) = [x/yla® [x/y]b
s le/u2)a = ()l/yla iz ¢ {o,y)
9. [r/y](y)a=(y)a
10. [z/y)(x)a = (w)[z/y][w/z]a if w ¢ surf(a) U {z,y} and z #y

1. [z/ylK(ay,...) = K([z/ylas,...)
Proposition 2.4. The following hold in any control structure whenever x ¢
surf(c):

I. Pp.=1dn

2. a®@b=a®b - (a,b:e—¢)

3. (z)(c-b)=(idp, ®c) - (z)b (z :p)

4. (2)(c®b)=c®(z)b (c:e—n)

5. (z)(a®c)=(r)a®c

6. (2)w)a= (b, © idn) - W)()a (z:pyiqaim—n)

Definition 2.6. Reaction \, is defined to be the smallest relation upon the ac-
tions which satisfies the reaction rules R, and is closed under composition, tensor,
abstraction, and equality.

3. JCNET: THE CONTROL STRUCTURE OF THE jc-NETS

3.1. Hypergraphs. In this section we recall the definition of the hypergraphs
together with some standard related concepts such as isomorphism, graphical rep-
resentation, and contraction on nodes or edges.

Definition 3.1 (Hypergraph). A rooted hypergraph is a tuple H = (S, V. E, $)
where S is a set of hyperedges, V is a set of vertices, E C S x V is a relation.
called the incidence, and s € S is the root hyperedge.

’Ihe‘ components of a hypergraph H are denoted by Sy, Vg, Ex, and su- If
(t, ’:’) € Ey for a hyperedge t € Sy and a vertex v € Vg, we say “v lies on t”.

’ The graphical representation of a hypergraph H is as follows. Hyperedges ¢ €
Sy are represented as unfilled ovals O with the name ¢ outside. Vertices v € Vi
are represented as points e carrying the name v. Incidences (t,v) € Ey are
represented as tentacles from the oval named by t to the point named by v (the

]bength of such a t,.(am.,;u:le is often taken to be zero). Finally, the root is emphasized
y a red flash pointing to the oval named by sp.

JC-NETS 7

T ®

FIGURE 1. Exampic of a hypergraph.

Example 3.1. We show in Fig. 1 the graphical representation of a hypergraph H .
Here Sy = {S’ t, t,}’ VH = {U’waw,}) EH = {(S,’U), (t,’U), (t?w)v (t,,’U), (tlvwl)};
and s;; = {t}. The left picture represents H using only tentacles of nonzero length,
and the right one only tentacles of zero length. We often use the representations

as in the middle picture when one makes a compromise between size and clarity of
visualization.

Definition 3.2 (Contraction). Let H be a rooted hypergraph. A nonempty subset
of nodes W C Vi gives rise to a contraction on vertices H /W which is the rooted
hypergraph defined by
Sa/w = Su
Viyw = (Ve \ W) U {v}
Egyw = (Eu \SuxW)U{ (t,v) | {t} x WNEgz #0 }
SH/W = SH
A nonempty subset of hyperedges T C Sy gives rise to a contraction on hyperedges
H|T which is the rooted hypergraph defined by

e Sgyr = (Su\T)U{t}

® Viyr =Vu

 Egyr = (Eg \T xVe)U{ (t,v) | Tx{v}NEy #0 }

e sy/r = if sy € T thent else sy
Given a hypergraph H, two vertices v,w € Vg, and two hyperedges s,t € Sy, we
write H,—,, for the contraction on vertices H/{v,w}, and H,—, for the contraction
on hyperedges H/{s,t}.
Example 3.2. If we take H to be the hypergraph used in Ezample 3.1 then we
show in Fig. 2 a contraction on vertices Hy—y and a contraction on hyperedges
Ht=t’ .
Definition 3.3 (Isomorphism). Two hypergraphs H and H' are isomorphic if
there exist two bijective functions ¢s : Sy — Sg and ¢y : Vg — Vi satisfy-
g ¢s(sg) = sy and for all s € Sy and v € Vi, (s,v) € Ex if and only if
(¢S(s),¢’v ('U)) € Ey.
Of course, the relation of isomorphism is an equivalence over hypergraphs. Since
for the present purpose, the names of hyperedges or vertices have no significance,

MIHAI ROTA RU

FIGURE 2. Example of contractions on vertices and hyperedges.

morphic hypergraphs. In accordance with this
hic hypergraphs then we simply write H = H',
of hypergraphs. For the equivalence classes
as for hypergraphs; we

we do not distinguish between is0
convention, if H and H' are isomorp
So we work with the equivalence classes
of hypergraphs we use the same graphical representation
have only to eliminate all names of vertices and of hyperedges.

the control structures JCNET of the jc-
dered to be the additive monoid (N, +,0)
ange over natural numbers. By [n] we
.,n}. Given a function fin] =Y
_k+n} — Y the function defined

3.9. Actions. In this section we define
hets. The arity monoid of J CNET is consi
of the natural numbers. We let m,n,k,... T
denote the first n naturals, i.e. [n] = 112
and a natural k, we denote by k@ f:{k+1,..
by (k& f)(i) = f(i = k).

JCNET is defined over the set X = {z]i € N} of names of the join-calculus. We
let z,y,u, ... range over arbitrary names. The unique prime arity 1 1s associated
with each name z € X.

Actions of JCNET are enriched hypergraphs, called nets. An action a =
(H,X) of arity m — 7 consists of a hypergraph H together with decoration
Y = (I,0,A,7,p) of H consisting in an injective function I : [m] = Vi, a func-
tion 0 : [n] — Vm, an injective function \: Z — Vg, where Z C X, a relation
T C Vg x Vh, and a function p: Sy — NVaxVu, -

Concepts of isomorphism and contraction introduced for hypergraphs extend 10
a quite straightforward way to nets. Let a; = (H;, £;) with X; = (1;,04, Ais Tir M)
vyhere i € [2]. We say a; and ap are isomorphic if there exists a hypergraph isomor-
irS:ll f((ﬁs;ﬁ)\;)ebgcwee’:n (1;{1 ar,ld H, such th,at pvol; = Iy, ¢y oy =0z, by o =N
and 1) (5, .0/ >H and v,v' € Vi, (v,v") € 7 if and only if (gﬁv(v),qﬁv(v'))‘e.@

e LS, v, U)." pa2($s(s), v (v), v (v')). As for hypergraphs, we do not distin-

guish between isomorphic nets. ’

Wit\}/:/(;: ni_)_“z choplf\ur; th)e %{aphical representations of nets. Let a = (H,X) be a.m‘rt

section. Ou’ly,fo’r ,Ll;c ;os-:-l resent the hypergraph H as explained in the previou®

16) = v, O(k) = o Ian(li 1;\”1,1_ Suppose all tentacles in H are of length zero-

named by V. an ot f', 'l (JJ) = w then assign an input label (i) to the vertex
’ wtput label (k) to the vertex named by v, and a name label 1O

JC-NETS 9

the vertex named by w. 1f (v,0") € 7 then draw an arc outside any oval from the
vertex named by v to the vertex named by o', If pu(s,v,0") = k then draw k arcs
inside the oval named by s from the vertex named by v to the vertex named by
o' Note that, in general, the last requirement as arcs to be inside an oval might
not be satisfied. Nevertheless, in the je-nets this situation could not appear since
u(s,v,v) > 0 dmplies (s,v),(s,0") € L. As in the case of the hypergraphs, for
the isomorphism classes of nets we use the same graphical representation as for
nets: we have only to eliminate all names of vertices and of hyperedges.

Definition 3.4 (Datum). The datum (x)7 = (H,¥) : 0 — 1 is defined by

H = ({s}, {0} {(5,0)}. 5 :
Y=(0,{1=v},{z—v},0,0) 0>

Definition 3.5 (Discard). The discard w” = (H, %) : 1 — 0 is defined by

H = ({S},{’U},{(S,U)},S) —O
L ={1~v},0,0,0,0)
Definition 3.6 (Controls). JCNET is. generated by three control operators:
-vY = (H,X):0-—1 is defined by

H= ({3}7 {’U}, {(S>U)}a3>
S = (0, {1 v},0,0,0) —’Q

- out” = (H,X) : 2 — 0 is defined by

H= ({3},{’U,'U'},{(s,v),(s,v’)},s) ()
Y=(0,{1—v,2—1"},0,0,{(s,v",v)}) :@
- Ifa=(H,X):1—0, ¥ =(I,0,\7,u) thendef?a = (H',X') : 1 = 0 with

H' = (SgU{t}, VgU{v}, Ea U {(t,v)},t)

¥ ={1~v},0,A,7U{(v,I(1))}, 1)
Definition 3.7 (The ssmc operators). Consider a; = (H;, %;) with
Yi = (1,0, N, 1, i) and A; @ Zy = Vi, where i € [2]. W.lo.g. we suppose
S, = sp, = s and (Sg, — {su, }) N (SH, — {SHy}) =0, as well as A\ (2) = \a2(2),
Vze ZiN Zy and (Vig, = M(Z1 N Z2)) N (Vi, — A2 (Z1 N Z3)) = 0.

Identity id), = (H,Y) : m — m is defined by

H = ({s},{v;]i € [m]},{(s,vi)|i € [m]},s)
o= ({imr vl € [m]), {i e vgli € [m]},0,0,0)

~ Symmetry p), . = (H,%) :m+mn—n+mis defined by

H = ({s},{vili € [+ n]}, {(s,0)]i € [m+n]},s)
Y= {im i€ A4 n)}, {i o vnaali € 0]} U {n i vl € [m]},0,0,0)

10 MIIAT ROTARU

— Tensorial product a; ® ay : m +k = n +1 ofay :m —:) n and ay k=1 is
obtained by combining a; and ay as follows. Increment with m Lhc input .label.'s,
and with n the output labels in az. Coniract the two rn()'f,.';, as well as vertices in,
ay and in ay bearing the same name label. Formally, a; @ ay = (H,3) where

H = (SH\ LlS{{?!‘.’h U "'”'.H'E”l U 14;112"‘;)
Y= {TiUum@ Iy, 00 Un® 0y, My Uy 1 Uz, jig W ji2)

— Composition ay -ay :m = k of ap :m = n and ay 1 — k is ob'ta,z'nrfd by
combining a; and ay as follows. Contract the two roots, as well as vertices in o,
and in a-.; bearing the same name label. For each i € [n] contract the vertez in o,
output labeled by (i) with the vertex in ay input labeled by (7). Remove these labels
(i) and (1). Formally, ay - ay = (H,X)g,(1)=1,(1),....0s (n)=I2(n) where

H = (SH1 U SH:-VHl U ‘71{2,EH1 UEH2,8>
Y= ({11.03.)\1 U Ao, 71 U,y L‘H/Jq)

Definition 3.8 (Abstractor). Let a = (H,Z) : m — n with ¥ = (I,O,'/\,T, 1)
Then adbla : 1+ m — 1+ n is obtained from a as follows. Increment with 1 all

input and output labels. Assign to the vertez labeled by = the input label (1) and
the output label (1). Remove the label z. Formally, abl a = (H,X') where

={1=A2)}Ula L, {1~ M2)}Ul®0,\ - {z— Az)},7, 1)
One easily see that the above introduced operators over nets are well-defined,
except the abstractor. Indeed, ab} a is not defined if the net a does not contain a
vertex labeled by z. The completion we propose in the following definition is on
one hand dictated by the need to have all operators well-defined. On the other,
one may not have satisfied the axiom ((z) ® id,,) - (z)a = a of control structures
which, in absence of a similar completion, could introduce new name labels.

Definition 3.9 (Completion). We complete the definition of the above introduced
operators, where op stands for each of these operators, as in the following

op(a,...) = op”(a®"1i,..)i

where i = (H, Y) is the net defined by

H = {{s}. {vili € N}, {(s,v5)]i € N}, s)
L=0.0{zi > uvlic N}, 0,0)

Proposition 3.1. The operators (),

wiroduced in Definition 9 9, define a co

Definition 3.10. we define in the

_ de f
out,, © ((u) @ idy) - out

de
def,n "/ (u) - det
Lemma 3.1, We have

def
)

W, v, out, def, id, p, :, ®, and ab, .
ntrol structure which we call JCNET.
following two derived control operators:

JC-NETS 11
(1) surf(outy) C {u}
(2) surf(defya) C {u} U surf(a)
Lemma 3.2. Let o = {x/y} a name substitution. Then
(1) [x/y]out, = outyy
(2) [x/y]defy a = def,, [/y]a.

3.3. Reaction.

Definition 3.11 (Reaction). The reaction N\, in JCNET is the smallest relation

over jc-nets closed under tensorial product, composition, abstraction, and equality,
which satisfies the following control rule

out, ®def,a \,a®def, a
Lemma 3.3. If a \, b then there exists b’ s.t. b=1b" and surf(b’) C surf(a).
Lemma 3.4. We have (v) - out,, ® def, (y)a \ b iff u = w and b = [v/y]a.

Lemma 3.5. We have a; ® as ® a3z \ c iff either there ezists i € [3] s.t. a; b
and ¢ = b® a; ® ag, or there existi,j € [3] s.t. a; ®a; \(b and c = b ® ar where
{i,d,k} = [3].

Lemma 3.6. If u & surf(b), then b defya \,c iff b\, and c = b’ @ def, a.
Lemma 3.7. We have v-(z)a\ b iffa\ya' and b=v - (x)d’.

4. EXPRESSIVENESS OF THE jc-NETS

4.1. The Join-Calculus. In this subsection we recall the definition of the join-
calculus [FG96]. A detailed account may be found in [Fou99]. Our presentation is
based on [Lev98].

We consider a restriction of the join-calculus where only single input patterns
and monadic messages are allowed.

Let X be an infinite countable set of names. We let z,y,z,u,v,w,... range
over names. We denote by P the set of the join-calculus terms which are called
processes. We let P, (), R, ... range over processes.

Definition 4.1. The processes are constructed from the following grammar:
P

| 0 empty process
| u(v) message
| P|Q parallel composition
| def u(y)> P in Q definition

In the above syntax, only the definition binds names. So u and y are considered
to be bound. The scope of y is P, whereas the scope of u extends to the whole
definition. a-convertibility among processes is defined in the standard way. We
write {:c/'y}P to denote the usual capture-avoiding name substitution.

Definition 4.2. The free names of processes are defined inductively by:

MIHAI ROTARU
12

fn(0) =0

fn(u(v)) = {u,z()}) 2(Q)

fn(P| Q) = fn(P)Ufn

fn(def u(y)> P in Q) = (fn(Q) U (fn(P) — {y})) — {u}

Definition 4.3. Structural congruence = C P x P is the smallest congruence
relation which satisfies the following azioms:

Al: def u(y)> P in Q = def u(t)> {t/y}P in Q, if t € £n(P)
A2: def u(y) > P in Q = def w(y) > {w/u}P in {w/u}@Q
if y € {u,w} and w ¢ fn(P) U £n(Q)
Pl: P|O=P
P2: P|Q=Q|P
P3: (P|Q)|R=P|(Q|R)

D1: Qi |def u(y)> P in Q, = def u(y)> P in (Q1 | Q2) if u € fn(Q1)

D2: def u(y)> P in def w(t)> P, in Q = def w(t)> Py in def u(y)> Py in
fu#w, ugtn(P,), and w ¢ fn(Py)

Lemma 4.1. P = Q implies oP = 0Q.

Definition 4.4. Reduction +C P x P is the smallest relation which satisfies:

R1 def ui(y1)>Q1 in def us(ys)>Q: in ... def up(yn)>Qp in P | ui(v) =
def uy(y1)>Q1 in def us(y2)>Q; in ... def up(y,)>Q, in P | {v/vi} Qi
if {uit1, .-, un} N (E0(Qi) U {u;}) = 0 wherei € [n] and n > 1.
R2 Py — P, implies def u{y) > Q in P, — def u(y)>Q in P,
R3 P =@, Q1 = Q2, and Q; = P, implies P, - B,
Remark that, in the definition of the reduction, we have not a rule for parallel
composition. The next proposition shows that such a rule is a consequence. A
preliminary lemma useful in the proof of the proposition is introduduced first.
Lemma 4.2. P, - P, implies 0Py — o P,.
Proposition 4.1. P, - P, implies QP —Q|P.
4.2. Semantics of the Join-calculus.
Definition 4.5. The encoding [~] : P — T (y, out,def) is.defined by:
(1) [0} = 1dq
(2) [u(v)] = (v) - out,
(3) [P1Ql = [P]®[Q)
(4) [det u(y)> P i
Lemma 4.3, (P

nQl=v- (u)(Q)® det, (y)[P))

L€ €
. Proof. A simple induction op the structure of P. O
er;mz; 4.4. fn(P) O surf([P]).
700} Inductioy i e of
— on the structure of P. The proof is imediate using Lemma

JC-NET'S 13

Lemma 4.5. [{x/y}P] = [x/y][P]
Proposition 4.2. If P = Q then [P] = [()].

Proof. Since both = and equality in CS are congruence relations, it will be
sufficient to check the statement of the proposition only for the axioms in Definition
4.3 which generate =. For P1 and P3, the result is trivial since the associativity
of tensor ® and the fact that idy is neutral for tensor are assured by two axioms
of CS. Likewise, for P2, the result follows directly by Proposition 2.4(2).

Al. Suppose t € fn(P). By Lemma 4.4, we have t ¢ surf([F]).
[def u(t) > {t/y} P in Q]

= v (W([Q] ®def, (t)[{t/y}P]) by Lemma 4.5

= v (u)([Q] ® def, (¢t)[t/y][P]) by Lemma 2.2

= [def u(y)> P in Q] . ‘
A2. Suppose u # y and w ¢ fn(P) U fn(Q) U {y}. By Lemma 4.4, we have
w & surf([P]) Usurf([Q]). If u = w then the result is trivial. Suppose u # w.
[def w(y) > {w/u}P in {w/u}Q@]
v (w)({w/u}Q] ® defy, (y)[{w/u}P]) by Lemma 4.5
v (w)([w/u][Q] ® defy, (y)[w/u][P]) by Prop. 2.3(8,7) and Lem. 3.2
v - (w)[w/u]([Q] ® defy, (y)[P]) by Lemma 3.1 and Lemma 2.2
[def u(y) > P in Q]
D1. Suppose u € fn(Q1). By Lemma 4.4, we have u ¢ surf([Q1]).

[def u(y) > P in (Q1 | Q2)]

v- (u)([Q1] ® [Q2] ® defy (y)[P]) by Lemma 4.3 and Proposition 2.4(4)
= [Q; | def u(y) > P in Q]

D2. Suppose u # w, u € fn(P;), and w € fn(P;). By Lemma 4.4, we have u ¢

surf([P,]) and w ¢ surf([P;]). Furthermore, by Lemma 3.1, w ¢ surf(def, (y)[P1]-

[def u(y) > P; in def w(t) > P> in Q]

I

= v- () (v (w)([Q]®defy (t)[P2]) ®def, (y)[P1]) by Lemma 2.4(5)
= v-(u)(v- (w)([Q]® defy (t)[P2] ® defy (y)[P1])) by Lemma 2.4(3)
= e) Ww)(Q) 8 st OIR] ®det, WIR) = X

Similarly we obtain
[def w(t) > P, in def u(y) > P, in Q]
= (vav)- (w)(w)(Q]@def, (y)[P1] ® dety (H)[F2]) =Y
Showing that X = Y will complete the proof:
X by Lemma 2.4(6)
= %) by - () (w)(Q) @ dety (O[] @ dety ()[P1]) by Lemma 2.4(2)
= Poy W) (w)(u)([Q]® defy (y)[P1] ® defy (1)[F2]) by Lemma 2.4(1)
=Y

Theorem 4.1. P - Q) implies [P) N\ [Q]-

14 MIHAT ROTARU

Proof. By induction on the definition of P — Q.

RI: P — Qis
def w;(y1) > Q1 in def wy(ya) DQQ in ...def u,(yn) > Qn in R | u;i(v) —
def ui(y1) > @ in def wy(y2) > Q2 in ... def u, (yn) > Qn in R | {U/Ui}Qx

where {uiy1,. .o tun} N (fn(Qi) U {ui}) = 0,4 € [n], and n > 1. By Lemma 3]
and Lemma 4.4 one has {1, .- Uy} Nsurf(defy, (y:)[@:]) = 0. Using this wit‘h
Proposition 2.4, and also using the compatibility of “\, with composition, ten9<)ri"Jl

product, and abstraction, one has
[P]
= v (w)(defy, (y1)[Q1) ®

v+ (ui)(dety, (:)[Qi] ®

V- (up)(dety, (¥n)[@n] ® [R] ® (v) - outy,)...)...)
= v (ur)(defy, (11)[Q1] ® ‘ by Lemma 3.4

v (ui—.l)(defu,-._l (Yi-1)[Qi-1
i Yi-1)[Qi-1] ®
v (Uig1)(defuy,,, (4ir1)[Qit1] ®

v (un)(defy, (Yn)[@n] ® [R] ® (v) - out,, ® def
Up + outy, €Ly, (yi) Qil).-)) .-
N v (un)(defy, (y1)[@1] © by[Ljr)n))?15 |
. ma 4.

v - (u;)(defy, (1:)[Qi] ®

V- (Un)(defu,. (yn)[Qn] ® [R] ® [U/yl][Ql]) .))
= (@)
R2: P - Qis d :

induction, [(ﬁ”]ls\ T(f.?’}l@zg 'D R' 0 2% = dat u(y) » R in Q' with P’ — Q'. By
we have [P] =y . (y) (i P,]S \‘ 18 closed under composition, tensor. and ab Q ")
R P+ Q i b o cj) jiefu WIRD v - (u)([Q'] @ det, (y)[R)) is’[g?('“m'
[')roposition 4.2, [p]; []’)/] ' _; Q ; and Q' = Q. By induction [P\, [Q'] Bv
follows that [P] \, Q). O and [Q] = [Q]. Since N s closed l’lndCI‘ equ xl't' it
, ; quality, 1!

Lemma 4.6, (,) . '
v) - out,, & [PI N\ aiff [PIN\ b and = (v) - out, ® b

l),’()()/ (_‘ e
- (=) Trivial as t}
as thereaction ig ¢
ction is closed under tensorial oy .
‘nsorial product and equality:

JC-NETS 15

(<) Induction on the structure of P.

_ If P is the empty process or a message, then (v) - out, ® [P] A- So, the
statement of the lemma is obviously true as its premise is not satisfied.

_ If P is a parallel composition P, | Py, then (v) - out, ® [P1] @ [P2] \ya. As
(v) - outy X, it follows from Lemma 3.5 that one of the following cases remains
possible:

(1) [P;] \« V' and a = (v) - out, ® V' @ [F],

(2) [Pi] ® [P;] \« b and a = (v) - out, ® b', or

(3) (v) -outy ® [P;] \ya' and a = a' ® [P}],
where {i,7} = [2]. Note that by Proposition 2.4(2) one has [P] = [] ® [P;]. In
case (1), one has [P] \, ' ® [P;]. Take b = b’ ® [P;]. In case (2), take b =1b". In
case (3), by induction, one has [P;] \, b’ and a’' = (v)-out,®b'. So [P] V' ®[P;].
Take b = b' @ [P}].

— If P is a definition def w(t) > P, in P,, then without loss of generality, we
assume that w ¢ {u,v}. It follows from Lemma 3.1 together with Proposition
2.4(4) that v - (w)({v) - out, ® [P] ® def,, (t)[P1]) \ a. By Lemma 3.7, (v) -out, ®
[P2] ® defy, (£)[P1] \va’ and a = v - (w)a'. As (v) - out, K, defy (8)[F1] A, and
(v) - outy, ® defy, (t)[P1] % (according to Lemma 3.4), it follows from Lemma 3.5
that one of the following cases remains possible:

(1) [P] \y b and o’ = (v) - out, ® V' @ defy, (¢)[P1],

(2) [P2] ® defy, (8)[P1] N b and a' = (v) - out, @ ¥, or

(3) (v) - outy, ® [P2] \y @ and o' = a" ® defy, (t)[P1].

In case (1), one has [P] = v - (w)([P2] @ defy, (t)[P1]) \y ¥ - (w)(V' @ defy, (t)[F1])-
Take b = v - (w)(V' ® defy, (t)[P1]). In case (2), one has [P] \, v - (w)b'. Take
b=v-(w)d. In case (3), by induction, one has [P,] \; b’ and a” = (v) - out, @ b'.
One has [P] \y v - (w)(b' ® defy, (t)[P1]). Take b =v - (w)(V' ® defy, (t)[F1]). O

Lemma 4.7. [P] ® [Q] \« a iff one of the following conditions holds:

(1) [P] \yb and a =bQ®[Q)].
(2) [Q] \yb and a=[P]®b.

Proof. (=) Trivial as the reaction is closed under tensorial product and equality.
(<) Induction on the structure of P.
— If P is the empty process 0 then 2. obviously holds.
- If P is a message then 2. holds by Lemma 4.6.
— If P is a parallel composition P, | P, then [P1]® [P2] ® [Q] N\, a. By Lemma
3.5 it follows that one of the following cases is possible:
(M) QN YV and ¢ = [P @ [R] RV,
(2) [P]\ V' and a = b' @ [P}] ® [Q),
() [P ®[Pj] \\b and a = ¥ ® [Q], or
4) [P]®[Q)\yd and a = a’ ® [P},
where {4, j} = [2]. Note that by Proposition 2.4(2) one has [P] = [F] ® [P;]. In
-case (1), 2. holds by taking b = b'. In case (2), one has [P] N\, b' ® [P;]. Then 1.

MIHAI ROTARU

° . 1. holds by taking b = b'. In case (4),

holds by taking b = .
by induction, we distinguish t
" (a) [P] N 0" and a =b®[Q]or

b b and @' = [P]®V . -
In iu)bggjse\(a), one has [P] v ® [P Then 1. holds by taking b = b' ® [pj].

In sub-case (b), 2. holds by taking b =b'". Ifl .both sub-cases we need some action
commutations which are assured by Proposition 2.4(2). ‘ .

_ If P is a definition def w(t) > P in P,, then without loss of generality,
we assume that w ¢ fn(Q). By Lemma 44, w ¢ surf([Q]). It follows frole
Proposition 2.4(4) that v - (w)([P2) ® defw t)[A] ® [Q]) \ @ B_y Lemma 3.7,
()] def, ([P ©[Q) \sa and a = v- (w)a'. As defy ()IP1] A, it follows from
Lemma 3.5 and Lemma 3.6 that one of the following cases remains possible:

(1) [B] \ b’ and o' = V' ® defy, (1)[P1] @ [Q],

(2) [Q] \(V' and o' = [P2] ® defy, (t)[P1] ® D,

(3) [P2] ® dety, ()[1] \ ' and o’ = V' @ [Q), or

(4) [P] ® [Q] \\ @" and o' = a" ® defy, (t)[P1].

In case (1), 1. holds for b = v - (w)(b' ® def,, (¢)[P1]). In case (2), by Lemma 3.3,
there is a b such that surf(b) C surf([Q]) and b = b".Then 2. holds for this . In
case (3), 1. holds for b = v - (w)b’. In case (4), by induction, we distinguish two
sub-cases. Then

(a) [Po] \yb' and o" =¥ ® [Q] or

(b) [Q] b and o’ = [R] @V .

In sub-case (a), 1. holds for b = v - (w)(b’ @ def,, (¢)[P,]). In sub-case (b), by
Lemma 3.3, there is a b such that surf(b) C surf([Q]) and b = b’. Then 2. holds
for [t]his b. In all cases and sub-cases we eventually need to use Proposition 2.4.
Lemma 4.8. [P] @ def, (y)[Q] \s a iff one of the following conditions holds:
(1) [P} N\ b and a = b® def,, (y)[Q).
8; 1]j - felfuwgt oo P [B]{v/y}Q) ® det,, (y)[Q].
u@;))’ vi(t1) > Ry in def vy(t) > Ry in ... def U (tn) > R, in (R |
@ = v-(v)(def,, (t)[Ri]®
v+ (vg)(defy, (ty)[Ro]@

y @ [P;]. In case (3)
i wo sub-cases. Then

b (Un)(de v n n v, [v]
where v; ¢ £n(Q) U {u) fof gvfztry)E'RE][3.[}2 | (n/y}Ql @ det, (AN

Proof. (=) 1t
)of[l()]:i) If 1. holds the proof is obvious. If 2. holds then one has
B ; Z;fu ()[Q] by Proposition 4.2
o 2 [v/?-]c[)(ljtu “def, (y)[Q] by Lemma 3.4
. yllQ] @ def,, (»)[Q] by Lemma 4.5

V|

JC-NETS 17
1f 3. holds then by Lemma 3.1 and Lemma 4.4 it follows that v; ¢ surf(def, (y)[@])
for every i € [n]. On has
[1’] ® defy, (¥)[Q] by Proposition 4.2 and Proposition 2.4(5)
= v (n)(def,, ()R] ® by Lemma 3.4

v (vn)(defy, (t,)[Ry] ® [R] @ (vy,) - outy, @ def, (y)[2])--.)
N v (v)(defy, (8)[R1]® by Lemma 4.5

v+ (vn)(defy, (t)[Ra] ® [R] ® [vn/y][Q] ® defy (y)[Q]) ---)
= 0
<) Induction on the structure of P.
- If P is the empty process 0 or a message w(v) with w # u then [P] ®

def, (31Q] A So, the statement of the lemma is obviously true as its premise is
not <a*1:hed. On the other hand, if P is a message u(v) then
[P} ® def, (v)[Q] by Lemma 3.4

N v/Y][Q] ® defy (y)[Q] \va by Lemma 4.5
= 0] {v/y}Q] ® det, (4)[Q)
Fur'her? aore P =0 | u(v). So, 2. holds.

- If P is a parallel composition P; | P, then [P;] ® [P] ® def, (y)[@] \y a. As
def, (¥)1Q] K, it follows from Lemma 3.5 that one of the following cases remains
possibie:

(11 1P] N b and a = V' @ [P;] ® defy, (¥)[Q),

(2) ! "-’,-i ® [P;] \ b and a = b’ ® def,, (y)[Q] or

%) @ def, (y)[Q] \v o and a = d' ® [Pyl
where |, g} = [2]. Note that by Proposition 2.4(2) one has [P] = [P] ® [P;]. In

()g(J one has [P] \/ b ® [.PJ] So 1. holds for b = b ® [P]] In case (2), 1

Jlds for 6 =V'. In case (3), by induction, we distinguish three sub-cases. Then

(o) 1771\ b" and o' = b’ ® def,, (y)[Q)],
\f, - = R' | u{v) and o = (R | {v/y}Q] ® dety, (y)[Q), or
(¢} £ = def 1y (t1)> Ry in ... def Un(tn) > Rn in (R’ | u(vn)) and

woociop. (v1)(def,, (t;)[Rl] @

v (vo)(defy, (t)[Ba] ® [R' | {va/y}Q] ® defy (y)[Q)]) ..)
Cwhens o £0(Q) U Lu} for every k € [n].
Iy sub eage (a), one has [P] Ny U ® [Pj]. So 1. holds tor b = o[£ ,J In
Fib-taie 0h), one has P = R | P; | uw({v). Purthevmore by Proposition 2.4(2),
o L 2o {o/y}) e defy, (y)[()]. So 2. holds lu sub-case () W can
e without Joss ot generality that vg & fn(F;) for every ke lnl. Then it

18 MIHAT ROTARU

follows from Lemma 4.4 that vy ¢ surf([l%]) for every k € [n]. Then P =
def vy (t) > Ry in ... def Up(tn) & Ry in (R"| Pj | w(vy)). Furthermore

a by Proposition 2.4(5),(2)

Sy (e)(defy, (1D)[I] ®

v () (def, (1) [Ba] @ (R Py | {vn/y}@Q] & detu (n){@)))
So 3. holds. ,])
_ If P is a definition def w(t) > P, in P then without loss of g gr'nvraht’y we as-
sume that w ¢ fa(@)U{u}. By Lemma 4.4 and Lemma 3. 1, w ¢ surf(def, (y)[Q]).
It follows from Proposition 2.4(5) that [P]®def, (y)[Q] = v+(w)([P2)@det. (1)[F]2
def, (1)[@)) \« a. By Lemma 3.7 one has that [Py] @ def,, (8)[/3]@def, (y){Q]

.

a anda=v- (w)u . As one has def,, (t)[P1] X, defy, (y)|Q] A, and defy, e
def, (1)1 X (according to Lemma 3.6), it follows from Lemma 3.4 that one cf
the following cases remains possible:

(1) [P2] \ Y and o’ = b' @ def,, (t)[P1] ® defy (y)[Q),

\2? ;PZ} Q defy, (t) Pl] NV and o' = b’ ® def, (y)[Q]’ or

(3) [Py} @ def, ()[Q] \\ a” and o’ = &" ® def,, (t)[F1].
In case (1}, 1. holds for b = v - (w)(b' ® def,, (£)[F]). In case (2), {. holds for
b=v- ’u'\‘b’ In case (‘2) by induction, we distinguish three sub-cases. Then

a TR\ and o =1 3001,)]G

(b\ "‘ = R' Culry and o [R' I {v/y}Q] @ def,, (1/\'\4,, or

(c; PQ = deT v1 ’h) >Ry in ... def vp(ly) > By in (R | u{v,)) and

= oot ()] @

v, »(de-f,,, ‘,L)ifsfnJX)[R | {on/y}0] © def
where v, & $2(03 U {u} for every & € [n].
In sub-case {(a)., 1. holds for b= v - {w)(M wdef, ()], Tri sub-case (5], ane has
P=def wit)e Poin (' | u(v)). We distinguish two situations:

)« 4 w. Then 2 = def wit) » PLin R | ey, Tt is easy Lo show ﬂ" at
EOE e IO O Y 'O S avrtf[f YR -
iy / jj-.)l -‘: (RS rl,.' ‘Sllrf(;Q‘}. S(n u) y: :.”.Lrj ([:{'IL /y}"b)_l}‘ ‘-.0 k‘\ ...}:/\.
ALl ia) one Nas g e |def ’ll)(t) > P oin R I {\'.!;’?/}(‘)} 2 ded, r\y‘,,{)i_

=

LIRS [
DOWES.

:"‘.;,i oI, N I def i /4" I I L .
P P e E[“';K, = def vif) e By dn (K ol wley) Furthermore oo v
“"M‘{t';‘!i!:_,"'i (PR T A /0 f“ I - R . N ;N
l def "; Ulpy e o yiQl e det, G 7 Golas, I soabecase (0
Sael L @ /y -_ . \ . - , .
1 Jnd 1 0y 1‘> "l in .4 ;-l U 5 !,t)-. 4 (i.l),’ M \ Us

iy Proposition 2.4(2), one has

(1 = [(:’)(defm (’)[1J 9]
v (”l) (JPL, ll)l“ll)

v ('Uu)(_def,:“ (L)) [£ | {1(-’,‘4/.',1'1}(,”

T 1
RACISR Ly L b

JC-NETS 19
So 3. holds. O
Theorem 4.2. [P} N\, a implies 17—) and ()] = a
Procf. Induction on the structure of 22,
lf 7 is the empty process or a message then [I°] . So, the staterent of the
theorem is obviously true sinee the premise is not satisfied.
If P is a parallei composition I | 1 then [P)] & (%] ~y a. By Lemmma 4.7
one of the ollowing cases holds:
(1\ l."‘;] \ ap and a = N [l’)] or
(2) 5] N\ a and a = [P] @ ay.
[t is suflicient to consider the case (1), the other one being syminetric. By induction
one “.;‘Q P> (31 and a = [(Jl]
Ls\ o wition 1.1, P — Q Pg and a = [Ql] @ [P:z] = [Q]
_\,._4

Q
:s a definition def w(t)> P, in P,. Then v - (w)([P2] @ defy, (8)[F1] v a
it follows from Lemma 3.7 that [1%] @ def,, (¢)[P1] \, ¢’ and a = v - (w)d’. By
-8, one of the following cases holds:
Nbandae =3 ® def., (t)[Pi],

2= Rwl) and o = [R] {v/t}Q] ® def,, (£)[P1], or
{ ﬁ F. = def wi({t) > Ky in ... def wy(t,) > R, in (R | u(wy)) and
i:’ = v (wi){def,, (t1)[R] &

v (wn)(defy, (th)[Ra] @ [R| {wn/t}F1] @ defy, ()[PL])..)
vhere w; € £a(P1) U {w} for every 1 € [n].
» (13, by induction, Py — @5 and b = [Q-).
-3 def w{t) > Py in le and a = v - (w){[Q2! ®@det,, (I)[#1]) = [Q].

Q

i ocase (211t follows from Lemmas 3.1 and 4.4 that w; ¢ surf(det, (O)[£1]).

P zdel wit; e P in def wi{t) > Ry 1n ... def wn(t,) > Ry, in (£ | uwn))
2t wlt) = Poin def wy{t) > Ry in ... def wy(ty) o Ry, in (R | {wn/t}Py)
........... - o

Q
ooy (w)(by Proposition 2.4(5),(2)

Vo (‘!U])(def"u ”')U{‘] ®

i (det (L)) @ [R | {wa /tY P @ dety, (1Y P

In v
’ i
Yot ((H‘,,,u»[)l =) u
""'/'!"|)({,..§.L [1‘[1{1] (;)
/ . 2) A " ..] /,.A!-‘ AN
! i/,_"”ll(\[_;(;:j T '(r,,')!:"'l nj (.’:) ‘./:'E l"‘ I.‘.I ’l.}"' l.il Ly
[¢

20 MIHAI ROTARU

REFERENCES

[AL96] A. Asperti, G. Longo. Categories, -'pres, and St;ucturesr. I\JH;F,PMS,S-’ 19.‘;\?. |

[Bar85] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. orth HOnla,nd,

[(fi{ol()?gg. Ciobanu, M. Rotaru. A m-calculus Machine. In Journal of Universal Computer S.;.

Spri Verlag, Vol. 6, 2000.

[(;]{g:fcg.sgir:};iiru, M. T{,()raru. Faithful 7-nets. In Zlectronic Notes of Theoretical Compute,
Science, North-Holland, Vol. 18, 1998. ' o o

[Eng93] J. Engelfriet. A multiset semantics of the 7-calculus with replication, in COXCUR’93,
LNCS 715, 1993.)

[FG96] C. Fournet, G. Gonthier. The Reflexive CHAM and the Join Calculus. Iu Proc,
POPL’96, ACM Press, 1996.

(Fou99] C. Fournet. The Join-Calculus: A calculus for Distributed Mobile Programming. PuD
thesis, INRIA Rocquencourt, 1998.

[Levag] J.J. Levy. Some results in the Join Calculus.

MMP95] A. Mifsud, R. Milner, and A. J. Parrow. Control Structures. In Proc. 10th Symposium
on Logic in Cemputer Science (LICS’95), 1995.

(M96] Mifsud. PhD thesis, University of Edinburgh, 1996.

[Mil94] R. Milner. m-nets: a graphical form of 7-calculus, ESOP’94, LNCS 788, Springer-Verlag,
1994. -

(Mil96] R. Milner. Calculi for interaction. Acta Informatica, 33(8), 1996.

[SS93] G. Schmidt, T. Strohlein. Relations and Graphs. Discrete Mathematics for Computer
Scientist:. EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1993.

()f

INSTITUTE OF THEORETICAL COMPUTER SCIENCE, ROMANIAN ACADEMY RQ-6600 Iast
E-maii address: mrotaru@iit.tuiasi.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

