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OBJECT—ORIENTED‘SYSTEM FOR IMPLEMENTING SYMBOLIC
COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY

ALINA ANDREICA AND  ADRIAN MONEA

Abstract. The paper dCS'Cl'lbcs an independent software system which performs
5.““!’011C computations within the hicrarchy of algebraic structures that contains
semIgroups — monoids — groups — abelian groups — rings — (abelian rings, fields —
abcl_xan fields). The system was designed by using an object-oriented appr(;ach as a
ﬂem.blc system that models the above-mentioned algebraic hicrarchy, the present
version b.emg implemented in Microsoft Visual C++. The system provides symbolic
computation facilities that are not offered within commonly-used symbolic
computation  systems by giving the possibility of operating in abstract domains,
independently of the massive symbolic computation systems based on type theory.

1. The system’s motivation and its working principles

The problem of performing formal calculus within abstract algebraic domains,
unsolved by the most wide-spread symbolic computation systems, initiated the
development of type theory and of symbolic computation systems (SCS) based on it [3],
the most important of them being AXIOM [5]. Within these SCS, usual computation
domains are particular cases of the abstract ones, being defined by the rigorous
principles of the type theory, using a hierarchical structure with multiple inheritance [4].
The drawbacks of these systems, which introduce "all working domains using the
constructive and functional principles of domain and category theory, are their
dimension and complexity. Therefore, onc of the orientations within this research
domain is to extend commonly used SCS with abstract facilities [2]. The system that is
further presented aims at introducing an object-oriented mf)del of red.uced.complexity
for the semigroup — monoid — group — abe.:li.an group — ring — (abelian ring, field -
abelian field) algebraic hierarchy and at outlining the c'ie51gn problems which arise from
the implementation of such a SCS in a usual programming langu‘age. o

The system was initially implemented in Borland C++ 3.1 for DOS [6], [7] and was
later ported to Visual C++ 5 for Windows [8] in order to add a graghlcal, frjore‘u.fcn-
friendly, interface and to facilitate access to a .lalrgcr memory space. 1h§_ujh030c o[t (++
language is motivated by the fact that the pgssnbxllty of 1ntrqducmg .I‘n‘bel‘l}:amtc‘:.rlco 8;101]\
is very important for the implementation of the above-mentioned hierarchy ot algebraic

dornain" . . . < vt

l:robm the user’s point of view, the \vgrkilmg principle ,(jl [}IC svbllunlul: \1\:;::)[;113[01;:
one: after declaring a structurc of a certain Pypc, all‘subsrquunl L,.d;{;l l(; il be dorc
within that structure, until @ new structure 18 dcc‘lan‘ed:.l 1qui\r\\)mwi[| rewrn (0 the
context of a previously declared structure, that stxuu}ugu (‘( (in:ulhc il be v dcﬁned
consequently, the system will perform the computations 1t I
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ser will be able to usc variables that were defip

ample, the U : ) 90 T od with;
context (for exame - dentifiers will contain at most 20 letters and the reserveq ke 0 theyy
domain). The user's ! YWorgs

i domain are: Semigrup: Monoid, Grl{p, GrupCom, Inel, Ing|g
for declaring a he spaces within user’s commands mll‘be ignored. Om,
Corp, CorpCom. The dl: entered by the user can be of the following types.

Thus, the comman n, of the form (X,#) @ Grup or (Ccom, + =+ . Cor
1. Domain declaiafl‘; ’Wm be named with user identifiers, and the Charaqpcom'
Algebraie donz)amchosen from the following list: +,-%, & " % g 4 @ e’rs or
OPeraForSdC:?arafion may contain the neutral element(s) of the dor;winv .i,fl“\
domi;gr(s;has (have) neutral clements, for example: (X,+, e) : Grup or (C’com &le
S,peer' eo) : CorpCom. When neutral elements are not declared, they will ha\k
implicit values: e for the first operator and en for .the second. |
Assignment, of the form vanablg = expiession, .where expression congyy,
operators from the current domain, identifiers (with or W%thOUt a previously
assigned value) and possibly parentheses. The expression will be evaluateg by
replacing already assigned variables with their values and canceling neytr| or
symmetrical elements; the result will be returned to the user. The result’s form will
depend on the axioms associated with the current domain’s operators (associativity,
commutativity, distributivity, etc). Thus, in the case of commutative operators, the
subexpression operands will be lexicographically sorted.
3. Anexpression will be evaluated according to the principles stated earlier.

to

4. Symmetrical element declaration, of the form Sim(a) = as, if the current domain
has only one operator or Sim(a,+) = as if the current domain has two operators.
The lists of symmetrical elements from each structure will be retained and

S processed afterwards in order to produce correct results.

Equaljty test, of the form expression1==expression2, where the two expressions
are given in the usual syntax, containing domain operators, user identifiers (or
implicit neutral elements)- and, optionally, parentheses. The result returned will be
True or False, depending on the test’s value of truth. The validations will be

pc‘:rfOFmed on the expressions brought to canonical form, depending on the axioms
y as§oc1ated with the current domain’s operators.
- Difference lest, of th

¢ form expression1l= - ill be True if
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] he two expressions are dif vise.

7. Displ y Xpressions are different and False, other
8 Disﬁlz ’Z;’ :Zuablesﬁ‘om the current domain, of the form _Listavar. -

ollowing elep declar ed dom.ains, of the form _Listadom. For each domai™ ISC
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e The representation of the expressions in a tree form and various operations on this
form (the operations will be performed according to the axioms associated with the
operators of thc domain within which the operations are performed)

e User command validation

e Specific operations in the String class, used for identifiers, returned expressions,
commands etc.

The module for expression storage and analysis contains functions for:

e The creation of the binary trec associated with an expression and of the multiple-
descendants tree into which a binary tree containing associative operators can be
converted

e Conversions betwceen binary and ordinary forms of a tree

e Tree copying (necessary for the constructors of the classes describing expressions
from various algebraic structures)

e  The elimination of neutral and symmetrical elements from the tree form associated
with an expression

o The conversion of an expression containing commutative operators to a canonical
form, by lexicographically sorting the operands of each sub-expression

e The explicit application of the distributivity property

e The replacement of an expression identifier with a sub-expression represented in
the tree form. This function will be used to evaluate, within various domains,
expressions containing previously-assigned identifiers

e The generation of the external form associated with a tree representation, taking
into account the possible existence of operators’ priorities (as in the case of rings

and fields)
e The process of freeing the dynamically allocated memory for tree representations.

Pointer assignments are extensively used, in order to speed up the tree functions,
especially for value replacements or eliminations.

An expression will be represented using a binary trec or, alternatively, an
equivalent, ordinary one. The construction of the associated binary tree can be done in
two steps: the first involves the storage of the expression’s operands and operators
together with their priorities (the information given by parentheses is stored into an
array of priorities) and the second contains the recursive generation of the binary tree
associated with the array of operands and operators by successively introducing the
lowest priority operand into the current root. The transition from the binary
representation to the n-ary representation (and conversely) can be done by taking into
account the associativity of the operator(s) and transferring on the same level the
descendants between which the aforementioned operation appears.

Thus, in order to obtain the internal n-ary tree representation of an expression over
a domain with an associative operator o, we can distinguish the following cases, which
will be applied recursively, from the terminal nodes (leafs) to the root, for a complete

transformation
e if the sub-tree is terminal or doesn’t have the operator o as root, a copy operation

will be performed
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«  if both subtrees are identical (o the
« ifthe left subtree is identical (o the unit, the right subtree will be returned
« il the right subtree is identical to (he unit, the left subtree will be returned

The elimination of symmetrical elements from structures of (al least) group type

can be don.e similarly, by visiting in postorder the tree that retains the internal form of
the expression.

If the algebraic structure in whic
invertible operator, it is necessar

unit, the unit will be returned

h we operate possesses a commutative and

: . Yy to generate a canonical form in which the operands

trorp a sgb-cxprcssxon containing the samec commutative operator are sorted

lexicographically and, moreover, the properties of the symmetrical and neutral operands
are applied. The problem of lexicographically ordering the operands is not a trivial one,
as these can further contain sub-expressions. The sub-trees from the expression
representation which correspond to operands will be sorted in such a way that those
containing operators in their root will be placed at the end and those which contain
identifiers defined as symmetrical elements will be placed immediately after their
corresponding elements, such that the symmetrical elimination algorithm can be applied.

The property of distributivity in structures of ring type can be applied easiest on the
binary tree representation, which can subsequently be converted to the m-ary tree
representation, as shown earlier. Denoting by “+” the additive operator of the ring and
by “*” the multiplicative one, the following cases need to be considered, recursively:

« if the root of the trec contains the multiplicative operator and the right subtree
contains the additive one (in the form S1*(S2+S3)), then the resulting tree will
contain in its root the additive operator, the multiplicative operator in the roots of
each of its two subtrees, and the initial left subtree will appear as an operand in both
of them (in the form S1*S2+S1*S3).

.................................................

...............................
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. if the root of the tree contains the multiplicative operator and each of his two
subtrees contain the additive one, then the resulting tree will correspond 10 a sum of
four subtrees / subexpressions corresponding to the product formed from each two
initial subtrees (in the form S1*S3+(S1*S4+(S2*S3+52*84))).
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Mathematica). Practically, the construction of such a form can be done by simply
visiting the corresponding tree in preorder.

The validation module contains functions that verify the syntactical correctness of a
command. The tests are done in a modular fashion, the base level containing functions
for validating user identifiers, operators and reserved keywords that designate algebraic
structures. On the next level there are functions which parse command’s elements:

. strings representing declarations of domains with name, operators and possibly
neutral clements, scparated by commas (and delimited by parentheses)

. strings representing expressions — the corresponding function rctains the
expression’s arrays of variables (this feature will be used for keeping track of all
variables of a given domain) and operators (thus it is possible to verify whether
undefined operators appear)

These verification operations are used by the function which validates a
command (see the types describes carlier). The argument string is processed in
accordance with its form, thus determining whether the command is syntactically
correct and, if so, which is its type. Depending on the command’s type, the following
elements will be stored for later use:

« name, operators and possibly neutral elements — for domain declarations

« the variable which is assigned a value to, the variable list and the expression’s
operators — for variable assignment

« variables and operators lists, for expressions, equality and difference tests

« the two variables and possibly the operator with respect to which they are
symmetrical (in the case of domains with more than one invertible operator) — for
symmetrical element declaration.

The hierarchy of algebraic structures implements the categories of semigroup,
monoid, group, abelian group, ring, field, abelian ring, abelian field as structures in
which symbolic computation operations can be performed, without particularizing them
into a given domain. These structures will appear in the hierarchy as special classes,
used to describe the domain’s name, operators, attributes, variables and generally
available methods. For the classes corresponding to structures that have an invertible
operator there are also defined lists of corresponding symmetrical elements. In this
paper (and in the source text), the classes that describe the above-mentioned algebraic
structures are named TipSemigrup, TipMonoid, TipGrup, TipGrupCom, Tipinel,
TipCorp, TiplnelCom, and TipCorpCom, respectively. Obviously, between these
classes there are inheritance relationships. Moreover, each class will be identified by a
code (0..7) which creates a one-to-one mapping between the types of domains and the
information stored for each domain within a special structure of array type (Tip).
Pursuing the goal of pro‘cessing the domains in a similar manner, a special (abstract
type) class TipAbstract has been defined, which enables conversions from / to algebraic
domain types (TipSemigrup, TipMonoid, TipGrup, TipGrupCom, Tiplnel, TipCorp,
TiplnelCom, respectiv TipCorpCom). Keeping a history of all defined domains is of
special importance if the user wishes to return to a previously declared domain. For this
purpose we use an array of pointers to abstract types (Tip); these pointers will later be
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now on). This array will be updated whenever an assignment command is Issued by the
user. Moreover, the variables from any expression entered by the user (as§1gneq or not)
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storedtm a Slfng}e lll)lstfincc. as they are the same for every instance representing the
same type of algebraic structure. We can anticipate a little by revealing that the

TipSemigrup class will be the base of the entire multiole inher: :
. . 1 I h .
is described in what follows. ple inheritance hierarchy that

I —
[ TipSemigrup l

L’l‘ipMonoid

A
Tiplnel

—_—T

CorpCom

Figure |

Expression-objects belonging to a domain of scmigrgup type —- tl}e Semigrup class.
This inherits the TipSemigrup clas§ and contains  as specific datg elements
describing an expression: the identifier assocnateq with the.expressnon (1f the
expression has been assigned a value 10), the expression as a string anc? as a tree (ﬁs
shown earlier, considering that the operator of the domain is assoclnqatl.ve, t ei
expression can be represented as an n-ary trf:e, rgpl-esgntatxon .L.lserd é%r etcteel)n::}:??h
operations), the position of the Cl}rfeﬂ; 0?13? g’(?lfllrzlltlel:rdl:nigien?!lr?)a(simlilar form :13
retai iects having an assigned v _ : lar form, as
sht;lw: ti}rlle v(:'?:tatb‘o?liws,g and specific methods for cx?f'ess1c§1 proa,e:ssti/stfl}i:;
include, besides overloaded conslructors, dcstructox‘s » gxn tds:lblr;:\ ert:ormed
operators, operators used for the equality/difference tests 5‘ Clsc _;b ih‘ regult e
on the ca;xonical form reprcsentations) and a function for displaying the

115

e



K. ANDREICA AND A. MONEA

| (the system works as an mlcrprﬁlflu)- IO_Obtzm the result of 3
sntercd i Fand isiting the associated tr .
b l(ch its identificrs by V'-“'tmlg llh' " tree, Verifying if
/¢ analyse ' ) a value to. In this case, they are e
expression M-r s having assigned a value to from the t yld 1L haced With
are identihiers ne > a functi om the tree moduyle .
there are ldun} 1o sub-expression (by a llJl‘lctl()l? r‘ b dule that Perform
a pointer S\\“‘Nﬂ;uﬂ‘ln (act. this conversion function from the nterng| 4,
e )ICS. oY Al Is e ¢ 5 1t 1t -
visiting |l§ m_ o the string representation 1s- more LOmPICX, as 1t takes int
representation i ft' : might be associated to the operators, in the case o,
that prioritics at fr migrup class al
aecoun !'1\‘ One can observe that from the Se. grup ass all oth
operator domains. O ssion type will be derived, directly or indirectly,
jescribing objects ol expression tyf
UL L= .

expressi

0

Fmultip),
er Cl'dSS(;v'

; in structures of monoid type are implementeq .. .

Computation operations In structures of m yp P Using

o similar classes. which model; _ . ' o
tWo mm“l},‘l‘i‘:l::u’“_ es of monoid type — the T|pMonOIq class. This class inheri

. ﬁm#‘i}pskemigrup class and supplementarily contains the neutral elemen; 4

\& . 7 '
\\‘:ll as specific constructors and destructor (which call those of the base class
TipSemigrup). ' ' _

+  expression-objects belonging to a monmd type domain- the Mo'n0|d CIE_ISS'
This class inherits TipMonoid and Semigrup cla§ses and contains specifig
constructors / destructor. It also redefines the function thgt re.turns the result,
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the tree form, which is later converted to the external form).

Structures of group type, as well as the expressions belonging to.group type
domains, are introduced pursuing the same principles, using the classes '_TIpGrUp and
Grup, respectively. TipGrup class is directly derived from TipMonoid class and
supplementarily introduces two arrays that store pairs of symmetrical elements for caph
domain of group type. In the Grup class, which is derived from TipGrup and Monoid,
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symmetrical elements.

operator. This canonical representation 1s Obt,amed“.g':-
‘ erands of each subexpression (within the assomﬂi_ed hat
representation, sce tree module). This Operation is performed within the function ! o
redefines the cxternal form from Grup class b using the canonical repl‘CScntatlollt
abclian group domaing, ’ :

Ring type structures are (e

. o derived oM
| scribed within Ti Inel class, which is derivet .
Ti , . : n Tiplnel clas .o duces e
rTplgrt]J'pNCpm and - TipMonoiq classes; Tiplnel Supplem’enmrily s T
ultiplicative OPeralor, together with

CONSLFUCLOrs 11en , its neutral element and Pmpemcb'.

s I:‘:ff“:]'::::dlui )matu g type instances will obviously call the c0nsu-u°.l$;

class, which h di‘r Jcﬁw&"}? bclor_lging 10 ring type domains are created \\l[hc same

principles g previg .y crved from Tiplnel and GrupCom classes, on pression
us de S Inorder (o generate the result of an ¢¥P

from

Mvation
116



OBJECT-ORIENTED SYSTEM FOR SYMBOLIC COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY

belonging to a ring, there will be cancelled symmetrical elements in respect with the
additive operator and neutral elements in respect with both operators. Obviously, we
shall verify whether the expression contains previously assigned identifiers (therefore
retained as pointers (o abstract objects in the array of expression objects) and if so, they
will be substituted in the tree form for the corresponding subexpressions and afterwards
the external form will be generated (these operations are performed within the tree
module). For expressions belonging to ring type domains and domains derived from

these ones, the function that applies the distributivity of the operators is explicitly
applied.

Computations in abelian ring type structures arc performed similarly, using the
classes that describe structures of this type — TipInelCom class and expressions over
abelian rings —InelCom class. TiplnelCom class inherits InelCom class and InelCom
class is derived from TipInelCom and Inel. The difference in expression manipulation
consists in the fact that the lexicographical sorting of operands is also applied for the

multiplicative operator, therefore the function that generates results of expressions will
be redefined accordingly.

The field type structure, described within TipCorp class, inherits Tiplnel class and
supplementarily introduces the pairs of symmetrical variables in respect of the
multiplicative operator. Expressions over field type domains are objects of Corp class,
which is derived from TipCorp i Inel classes and introduces specific manipulations of
expressions, taking into account the invertibility of the multiplicative operator: in the
tree form and within the function that generates the results of expressions there will also
be cancelled the symmetrical elements in respect of the multiplicative operator.

Abelian fields are instances of TipCorpCom class, which inherits TipCorp class.
Expressions over abelian field domains are instances of class CorpCom, derived from
TipCorpCom and CorpCom classes. The manipulation of these expressions involves
the lexicographical sorting of operands in respect of both operands (we consider that the
multiplicative operator has a higher priority than the additive one). Other types of
expression processings, such as the cancellation of neutral and symmetrical elements,
are similar to the ones from the ascending classes.

In order to perform an efficient processing of the user’s commands, it is necessary
to be able to refer in a common manner to all the instances that represent abstract
algebraic structures, respectively expressions over these domains.

The abstract type that all classes representing algebraic_ structures (TipSemigrup,
TipMonoid, TipGrup, TipGrupCom, Tiplnel, TipCorp, TiplnelCom, TipCorpCom)
will be converted to, named TipAbstract, retains the encoded type of the structure (used
in the conversion process), and an undefined (void) pointer, which enables type
transformations. These conversions will be performed from the above mentioned classes
to the new type, using conversion constructors, as well as from the abstragt type class to
algebraic domain classes, whenever an instance must be processed according to the type
of the domain it represents. Such operations are nccessary within the methods that
process user’s commands, which, on the one side, must be generally valid and, on the
other side, must describe computations derived from the type of the current algebraic
domain. Taking into account its implementation, it is necessary that TipAbstract
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redefine the specific methods O[ th? tl?lgccsrrfclgt ((ji(())rrrrllzllrr:g (t;{)v?(?u:;whc” call of
' based on the type 0T the © lously, the constrygy
appropriate 0nes, ) erators of TipAbstract class will use the o,
destructor and OV lfdeCd h?el:'archy classes. PPrOprae
mclhmis.tici,l‘n.cd ‘\[\;gm:bts:facl ype that denotes algebraic structures cnables

. Mf?;i:\i:‘;] of user defined domains by usin_g poinlers. to their instances (Tip array)e
",“.'T“;:l;l‘ allows the user to “reload” a previous vY(Erkmg context by redCClaring "
jh}:x::ai:.kl);\main memorization is Perﬁ?m!Cd by SPCCI.‘ I,C methods of TipAb,StraCt clasa?
which verify whether the current domain instance was already created and if not, retgi,
it in the abstract pointer array. o . -

Pursuing the same representation principles regard‘“g expression-objects  frop,
various types of algebraic structures, these instar}ces will be created by an abstract class
(ObiectAbstract), which implements conversions from / to classes that describe
oxpression over defined domains (Semigrup, Monoid, Grup, GrupCom, Inel, Corp,
InelCom, CorpCom). Conversions are performed based on the type of domain the
expression belongs to, using an undefined (void) pointer both for conversio
constructors and explicitly, whenever an abstract object must be processed according 1o
particular properties of an algebraic domain. The constructors, destructor, overloaded
operators and the other methods specific to abstract expressions (for example, the
function that returns the result of an expression or the equality and difference tests)
explicitly call similar methods from the expression classes (Semigrup, Monoid, Grup.
GrupCom, Inel, Corp, InelCom, CorpCom). It can be noticed that the elements of the
domain a certain expression belongs to are also available using ObiectAbstract class,
sinc; a!l expression-object classes are derived from the ones that model corresponding
algebraic structures.

The abslract. object class induces a common manner of processing expressions from
:’anqus] algebrafc dqmains .within the methods that manipulate user commands
10 I;i?;; s; I:fantlé):latxons vall be performed consequent to the appropriate t)’Pg
subexpressions by us?:pre;?:t)nr)’ taS bwe“ = e o i Ot? 2l use.r-de'ﬁneis
essential for correct golr)n utZt?oo afStra,c t oo mstance:s - This x.nemonzatl.oned
identifiers (as shows abovel)) . il~l 0 fexpre3319n§ that cor.ltam prev1pusly vaSSl%?ﬁc
methods of 'ObiectAbstract class 5\l/)er' Obrlm " YVlthm N by'i‘pe;ew
symbolic value js introduced fori ar?n'?j o Yw” not be memor'lzed ce, bmhl Ellatter.
Further references (o these identifi ~l ffntlher, e shall abviously retaint te urrent
domain, the position of j(s instanc - will lake~mto ac GOURL: the. type of the C able
(retained while Creating the ex . the' array of domains and the index of the var

pression object),

User commande w: ) L
cncountered, C?x:r)r?:ndwnrl be .'"te_"Pfe_led until the termination command (eXIt)' nl«;
(sce validatiop module) f) chss‘{ng '.S Initiated by a function that validates the cOmm&:hc
Lype of command, (here v)\:“pld:)smg It and retaining its type and elements. Based Ogmic
structure or gp, algebraic e V¢ created an abstract instance representing an alge r_r‘0~
troducing domaing g lh’tl%mm.]’ Which will be processed. The declarative man™® ¢s
and expreggiop, classes ep, ¢ Inheritance relations implemented between domain g n
tommand yg 4 S ehable yg (g use the instance generated by a domain declarati®

gcncru] cont v a
a1 CX ‘Ireat y . . fl
new domain declaration, b 2oy creatng the following expression instances, un
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Command interpretation is performed as follows:

for a domain declaration, an abstract (TipAbstract) instance will be created; this
instance will retain, taking into account the domain type, a reference to an instance
of the actual algebraic structure. The abstract instance will be retained in the
domain array and will represent the current computing context (until the next
domain declaration).

for an assignment it is verified whether the operators belong to the current domain
and if so, the expression is instantiated as an abstract object, which contains a
pointer to the instance of the actual type expression, derived from Semigrup class.
The abstract object is memorized in the expression array. An assignment command
will generate the result of the symbolic expression evaluation by calling the
cevaluation method for the abstract object, which makes use of specific evaluations
described in various expression classes (these ones operate upon the tree form of
the expression).

an expression command is processed similarly, except the memorization of the
expression; therefore, after generating the result, the object may be destroyed.
symmetrical element declarations involve the actualization of the current domain
instance (retained as an abstract domain) by modifying its list of symmetrical
variables. This list will be accessed in a specific manner for different types of
domains since for domains with two operators the list of symmetrical elements in
respect of the second operator is independent from the first one. If the specified
operator (or implicitly assumed, for domains with one operator) is not invertible, an
error message will be displayed.

for equality and difference tests it is verified whether the operators are correct and
if so, objects for each member of the cquality / inequality an abstract expression is
created. These two objects will be applied == and != overloaded operators, which
use the similar operator defined in the basic expression (Semigrup) class and
inherited by the other expression classes. Obviously, the tests take into account
previously assigned identifiers, as well as the axioms of domain operators
(commutativity, associativity), and generate a boolean result (True / False).

the domain display command uses the domain array by means of a specific display
method that generates an external form for each domain; this form includes its
name, operator(s), neutral element(s) and type.

the variable display command works on the current domain by displaying its
variable list (the method defined for abstract expressions explicitly calls the

corresponding ones from specific expression classes).
e  the exit command terminates the cycle that processes user commands.

3. The user interface . L . . :

The system’s interface module is created by using the applications available tor this
purpose within Developer Studio for Visual C++ 5.0 [8] environment. The user will
interact with the application by means of a Simple Document Interface (SDI) — see fig.

2, which was designed by using Application Wizard.

Within the document window (see fig. 2), the user can input commands from the
keyboard after the prompter character; each command will be interpreted according to

the above described rules. A more accessible possibility to introduce the commands is to
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uttons, which a§sist the user in specifying: domai
requests, assngr.lments, symmetrical decla,-at?ln declaratiOnS
putation (se¢ fig. 2). For each butt Ons, equality
ds. a dialog window (Dialog Based Interface) On used to rey
ols, associated with the parameters of th:vzfs Created; (e
general framc for defining the controls was created by using Class Wf‘?mmand. The
frequently used ones being odit boxes, drop down and drop lists. After s lLd.rd’. the mog
essary elements, the command created within the dialog box ispe:}:(f)ymg all the
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nt, for rings
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1€ content of '
the document wi is
pxr(.).ufSwd using a string arr’()cumgm window (input commands and their rcSUl‘S), .
'r(,sl'/,ln!?’ operations, as wc”‘f)"lhal ensures a correct display of the window content ’d'ﬂ'Cl
a text file, which can be lat d.s the possibility of saving the current working cor xt mtc?
er reloaded — for this purpose, the implicitly created putto™
’
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New, Open, Save are used. Th
according to archiving and s
C++’s Document / View

¢ actions associated with these buttons were designed
‘erlallzmg principles that arc implemented within Visual
architecture,

4. Conclusions
The software system described in the

computation systems based on type
the algebraic hierarchy

paper belongs to the research area of symbolic
theory; it implements symbolic computations within
algeb 1 containing semigroups, monoids, groups, abelian groups, ring,
abelian rings, fields and abelian ficlds. The system’s design principles rely on an object-
oriented modeling of the relations between the above mentioned structures; in fact, the
whole type theory was influenced not only by the algebraic category theory, but also by
object-oriented  programming principles [3]. The practical impact of the system

spec:ahzgd n symbolic computations within abstract algebraic structures is sustained by
an accessible, visual-like user interface.
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