
STUDIA UNIV. BABE^-BOLYAI, INFORMATICA, VoLUME XLIII, NUMBER 2, 1998

OBJECT-ORIENTED SYSTEM FOR IMPLEMENTING SYMBOLIC
COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY

ALINA ANDREICA AND ADRIAN MONEA

Abstract. The paper describes an independent software system which performs

symbolic computations within the hierarchy of algebraic structures that contains
semigroups
abclian tields). The system was designed by using an object-oriented approach as a
tlexible system that models the above-mentioned algebraic hierarchy, the present
version being implemented in Microsoft Visual C++. The system provides symbolic
computation facilities that are not offered within commonly-used symbolic
computation systems by giving the possibility of operating in abstract domains,
independently of the massive symbolic eomputation systems based on type theory.

monoids - groups - abelian groups rings - (abelian rings, fields-

1. The system's motivation and its working principles

The problem of performing formal calculus within abstract algebraic domains,
unsolved by the most wide-spread symbolic computation systems, initiated the
development of type theory and of symbolic computation systems (SCS) based on it [3],

the most important of them being AXIOM [5]. Within these SCS, usual computation

domains are particular cases of the abstract ones, being defined by the rigorous
principles of the type theory, using a hierarchical structure with multiple inheritance [4]

The drawbacks of these systems, which introduce all working domains using the

constructive and functional principles of domain and category theory, are their

dimension and complexity. Therefore, one of the orientations within this research

domain is to extend commonly used SCS with abstract facilities [2]. The system that is

further presented aims at introducing an object-oriented model of reduced complexity

1or the semigroup - monoid - group- abelian group -ring - (abelian ring, field

abelian field) algebraic hierarchy and at outlining the design problems which arise from

the implementation of such a SCS in a usual programming language.

The system was initially implemented in Borland C++ 3.1 for DOS [6], [7| and was

later ported to Visual C++ 5 for Windows |8| in order to add a graphical, more user-

rlendly, interface and to facilitate access to a larger memory space. The choice of C++

anguage is motivated by the fact that the possibility of introducing inheritance relations

Very mportant for the implementation of the above-mentioned hierarchy of algebraic

domains.
'rom the user's point of view, the working principle of the system is a declarative

alter declaring a structure of a certain type, all subsequent caleulus will be done

nin that structure, until a new structure is declared. ll one wants to return to the

Context of a previously declared structure, that structure (domain) will be redeclared;

COnsequently, the system will perform the computations in the previously defined

A. ANDREICA AND A. MONEA

ontext (for example, the user will be abl

domain). The user's identifiers will contain at most 20

aring a domain are: Semigrup, Monoid,

Corp. CorpCom. The spaces within user's commands will be ignoOre

Thus. the commands entered by the user can be of the following tvnes.

Domain declaration, of the form (A,*) : Grup or (Ccom. +

r will be able to use variables that were defined withi that tters and the reserved keyw Grup, GrupCom, Inel keywords nelCom,

m nd the characters for
.

Alecbraic domains will be named with user identifiers, and the

@.,A operators can be

domain declaration nmay contain the neutral

chosen from the following list: +", &, A, %, S, #,

element(s) of the domain, if the
(X,+, e): Grup or (Ccom, operator(s) has (have) neutral elements, for example:

CorpCom. When neutral elements are not declared, they will
have e, eo)

implicit values: e for the first operator and en for the second.
2 Assignment, of the form variable = expression, where expression comtain

operators from the current domain, identifiers (with or without a previonsl

assigned valuc) and possibly parentheses. The cxpression will be evaluated bv
replacing already assigned variables with their values and canceling neutral or
symmetrical elements; the result will be returned to the user. The result's form will

isly

depend on the axioms associated with the current domain's operators (associativity,

commutativity, distributivity, etc). Thus, in the case of commutative operators, the
subexpression operands will be lexicographically sorted.

3. An expression will be evaluated according to the principles stated earlier.

Symmetrical element declaration, of the form Sim(a) = as, if the current domain
has only one operator or Sim(a,+) = as if the current domain has two operators. The lists of symmetrical elements from each structure will be retained and
processed afterwards in order to produce correct results.

4.

5. Equality test, of the form expression1==expression2, where the two expressions are given in the usual syntax, containing domain operators, user identiliers (implicit neutral elements) and, optionally, parentheses. The result returned wil oe True or False, depending on the test's value of truth. The validations w d performed on the expressions brought to canonical form, depending on the a associated with the current domain's operators. 6. Diference test, of the form expression1 !=expression2. The result wl
True if

tne canonical forms of the two expressions are different and False, otherwis DIsplay the variables from the current domain, of the form_Listavar 8. Display of all declared domains, of the form Listadom. For each domain,
element(s if case

domain

the

TOlowing elements will be displayed: name, operator(s), neutrai and type (for the latter there will be used the reserved keywo type).
9. Program termination, of the form exit or _exit.
2. Designing the object-oriented algebraic hierarcuyalgebraic hierarchy

The implementation of the structure:onod-group -

commutative group ring (commutative "*
nela) 1s based on a three auxiliary modules, which implemen

nigroup uctures within the algebraic hieraru field - mutative

108
ent:

OBJECT-ORIENTED SYSTEM FOR SYMBOLIC COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY

The representation of the expressions in a tree form and various operations on this

form (the operations will be performed according to the axioms associated with the

operators of the domain within which the operations are performed)

User command validation

Specific operations in the String class, used for identifiers, returned cxpressions,
commands etc.

The module for expression storage and analysis contains functions for:
The ereation of the binary trec associated with an expression and of the multiple-
descendants tree into which a binary tree containing associative operators can be

converted

Conversions betwcen binary and ordinary forms of a tree
Tree copying (necessary for the constructors of the elasses describing cxpressions
from various algebraic structures)
The elimination of neutral and symmetrical elements from the tree form associated
with an expression
The conversion of an expression containing commutative operators to a canonical

form, by lexicographically sorting the operands of each sub-expression
The explicit application of the distributivity property
The replacement of an expression identifier with a sub-cxpression represented in

the tree form. This function will be used to evaluate, within various domains,

expressions containing previously-assigned identifiers

The generation of the external form associated with a tree representation, taking
into account the possible existence of operators' priorities (as in the case of rings

and fields)
The process of freeing the dynamically allocated memory for tree representations.

Pointer assignments are extensively used, in order to speed up the tree functions,

especially for value replacements or eliminations.

An expression will be represented using a binary trec or, alternatively, an

equivalent, ordinary one. The construction of the associated binary tree can be done in

two steps: the first involves the storage of the expression's operands and operators
together with their priorities (the information given by parentheses is stored into an
array of priorities) and the second contains the recursive generation of the binary tree

associated with the array of operands and operators by successively introducing the

lowest priority operand into the current root. The transition
representation to the n-ary representation (and conversely) can be done by taking into
account the associativity of the operator(s) and transferring on the same level the

descendants between which the aforementioned operation appears.
Thus, in order to obtain the internal n-ary tree representation of an expression over

a domain with an associative operator o, we can distinguish the following cases, which
will be applied recursively, from the terminal nodes (leafs) to the root, for a complete

transformation
if the sub-tree is terminal or doesn't have the operator o as root, a copy operation

from the binary

will be performcd

109

A. ANDREICA AND A. MONEA

if the operator o appears in the root and in the root of the ripht ousl

will be moved on the upper level:

e, its sub-trees

*******'y *********************

******************** Ss Sd1
Sdn o SS

*************** *******************

**************** ***

*******"**********"

** **

Sdn Sd1
**********************"

if the operator o appears in the root and in the root of the left sub-tree, its sulh .

will be moved on the upper level:
-trees

/

:"*************.
******************.

***********";

Sd Ss1 Ssn Sd *

.. ******* *****************

******s

**************"**;

Ss1 Ssn

******* *************

if the operator o appears in the root and in the roots of its both sub-trees, all ther
sub-trees will be moved on the upper level:

********s************ ;********f****** ************
Sdm Ss1 Ssn Sd1

*******"""*****"
*******"****"*****' ******************

..

**************d****; Ss1 ****"************ Ssn Sd1 Sdm
*************.

**** ********

oraer to reduce the complexity of the program that impleme deseribed algorithm, wherever possible, pointer assignments have b
subtree copying.

plements the above
than

n the casc of the structures which posses neutral element(s) (
need mechanisms for expression processing, which can appiy o
simplifying the expressions we operate on.

we
(at least monoid),

for

The elimination of neutral elements from the biIna
expression can be performed by recursively applying (PO
principles:

an

nary tree internal tor
(post-order) the

following

110

OBJECT-ORIENTED SYSTEM FOR SYMBOLIC COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCH

if both subtrees are identical to the unit, the unit will be returned if the left subtree is identical to the unit, the right subtree will be returned if the right subtree is identical to the unit, the left subtrce will be returnced The elimination of symmetrical elements from structures of (al least) group type can be done similarly, by visiting in postorder the tree that retains the internal form of the expression.
If the algebraic structure in which we operate possesses a commutative and invertible operator, it is necessary to generate a canonical form in which the operands from a sub-expression containing the same commutative operator are sorted lexicographically and, moreover, the properties of the symmetrical and neutral operands are applied. The problem of lexicographically ordering the operands is not a trivial one, as these can further contain sub-expressions. The sub-trees from the expression representation which correspond to operands will be sorted in such a way that those

containing operators in their root will be placed at the end and those which contain identifiers defined as symmetrical elements will be placed immediately after their
corresponding elements, such that the symmetrical elimination algorithm can be applied. The property of distributivity in structures of ring type can be applied casiest on the
binary tree representation, which can subsequently be converted to the n-ary tree
representation, as shown earlier. Denoting by "*+" the additive operator of the ring and
by i*" the multiplicative one, the following cases need to be considered, recursively:

if the root of the tree contains the multiplicative operator and the right subtree
contains the additive one (in the form Si*($2+S3), then the resulting tree will
contain in its root the additive operator, the multiplicative operator in the roots of
each of its two subtrees, and the initial left subtree will appear as an operand in both
of them (in the form S1*$2+S1 *$3).

r***********;

S S S S S S
i **** i ******* ** ******** ****

**************" *********"

A. ANDREICA
AND A. MoNEA

tree contains the

additive one (in the form
(S1+S2)*$3). then the resulting tree

the additive operator,
the multiplicative

one in

will have in the root if the tree root contains the multiplicative
operator and the left suhtro.

ne in the roots of each of its two subtrees both of them (in the form
and the initial right subtree will appear as an operand in both of them

SI*S2+S1*$3).

S1

$3 S1 S2 S1 53 $2 ******

if the root of the tree contains the multiplicative operator and each of his two

subirees contain the additive one, then the resulting tree will correspond to a sum of

four suburees subexpressions corresponding to the product formed trom each two

initial subtrees (in the form S1 *$3+(S1*S4+($2*S3+$2*S4)).

*******;| ********* ****

************** ************* **-*****: ************* 2************** S

Sss ssss S
*-*********./

easily t 1s veryY important that the expressions represented within the system
Cxtracted in an appropriate external format. For this
corresponding to the internal representation of the expression is transTO equivalent parenthesis form, taking into account operato

form
purpose, the tree

to the

issue

within ring type structures). Parentheses are introdu for subexpressions

ators priorities (an important
vhose root

contains an operator of a lower priority than the operator from the ro in certain situations the user will find it useful to consult the intera of an expression obviously, in an easily understandable form. obtained by representing the tree associated with the expression in a string type, which can be displayed at any moment. This feature for ve form is also present in the classic symbolic calculus syo

entire tree.

epresentation

be

understandable form. Such a form ca
in a parenthesis

tom,

ing the interna

112

OBJECT-ORIENTED SYSTEM FOR SYMBOLIC COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY

Mathematica). Practically, the construction of such a form can be done by simply
visiting the corresponding tree in preorder.

The validation module contains functions that verify the syntactical correctness of a

command. The tests are done in a modular fashion, the base level containing functions

for validating user identifiers, operators and reserved keywords that designate algcbraic
structures. On the next level there are functions which parse command's elements:

strings representing declarations of domains with name, operators and possibly
neutral elements, separated by commas (and delimiled by parentheses)

strings representing expressions
expression's arrays of variables (this feature will be used for kecping track of all
variables of a given domain) and operators (thus it is possible to verify whether

undefined operators appear)

the corresponding function roctains the

These verification operations are used by the function which validates a

command see the types describes carlier). The argument string is processed in
accordance with its form, thus determining whether the command is syntactically
corect and, if so, which is its type. Depending on the command's type, the following

elements will be stored for later use:
name, operators and possibly neutral elements - for domain declarations

the variable which is assigned a value to, the variable list and the expression's
operators for variable assignment
variables and operators lists, for expressions, cquality and difference tests
the two variables and possibly the operator wvith respect to which they are

symmetrical (in the case of domains with more than one invertible operator) - for

symmetrical element declaration.

The hierarchy of algcbraic structures implements the categories of semigroup,
monoid, group, abelian group, ring, field, abelian ring, abelian field as structures in

which symbolic computation operations can be performed, without particularizing them

into a given domain. These structures will appear in the hierarchy as special classes,

used to describe the domain's name, operators, attributes, variables and generally

available methods. For the classes corresponding to structures that have an invertible

operator there are also defined lists of corresponding symmetrical elements. In this

paper (and in the source text), the classes that describe the above-mentioned algebraic

structures are named TipSemigrup, TipMonoid, TipGrup, TipGrupCom, Tiplnel,

TipCorp, TiplnelCom, and TipCorpCom, respectively. Obviously, between these

classes there are inheritance relationships. Moreover, each class will be identified by a

code (0..7) which creates a one-to-one mapping between the types of domains and the

information stored for each domain within a special structure of array type (Tip).

Pursuing the goal of processing the domains in a similar manner, a special (abstract
type) class TipAbstract has been defined, which enables conversions from/ to algebraic

domain types (TipSemigrup, TipMonoid, TipGrup, TipGrupCom, Tiplnel, TipCorp,

ipinelCom, respectiv TipCorpCom). Keepiig a history of all defined domains is of

special importance if the user wishes t0 return to a previously declared domain. For this

purpose we use an array of pointers to abstract types (Tip), these pointers will later be

113

A. ANDREICA AND A. MONEA

converted into pointers to algebraic
domains (of the types described ahns.

created objects will be stored in this array when executing a domain
). The newly

In order to represent objects belonging to algebraic structures, i. e. expressions

classes will be defined. These classes are named Semigrup, Monoid, Grun eved

command.

ly derived
Grup, GrupCom, declared within these structures (possibly assigned a user identifier)

Inel, Corp. InelCom, and CorpCom, respectively. Besides direct inherit upCom

heritance relations (for mem
ations

variables and methods) from superior order classes that describe the domain r

Cxpression-objects belong. The classes for objects/expressions will describe the nam
the

introduced between these classes, there are also inheritance

the variable associated to the expression, the string and the tree representino

types expression (in canonical form). In order to be able to process objects of different
as abstract objects, a new class ObiectAbstract is defined; this class enahi bles
conversions from / to various expression types (Semigrup, Monoid, Grup, GrupCom
Inel, Corp, InelCom, and CorpCom, respectively). The object-oriented programming
philosophy facilitates the process of freeing objects that correspond to expressions

without an associated identifier and the storage of all others. This memorization process

uses an array (Obiecte) of pointers to those objects (referred to as abstract objects from
now on). This array will be updated whenever an assignment command is issued by the

user. Moreover, the variables from any expression entered by the user (assigned or not)
will be retained in the variable list associated to the corresponding domain (within the
superior class), to be used later if the user wants to display the identifiers declared
within a given domain. Among the methods specific to expression classes, besides

constructors, destructors and assignment operators, there are also functions tor
displaying the result of the current expression (the canonical form processed according to the current's domain properties, in which assigned variables are replaced accordingiy) and functions for processing the list of created objects (variables with an assigned Vanue from all the domains defined by the user. The process of initializing the pointer to eact such instance of assigned expressions is performed whenever an assignment command appears.

The design principles presented above induce the implementation of the algcora structures and their associated objects as a multiple inheritance hierarchy prese fig. 1.

The problem of eliminating duplicate inheritances has been solved by uslug inheritance, which is implemented using pointers.

n

virtual

Computation operations in structures of semigroup type are impio
two classes, which model: ng

general structures of semigroup type - the TipSemigrup class. 1
name and the operator of the structure, its axioms (coded), the iyp
structure, the current domain's index in the domain

ins the

the

variables, as well as specific implementation methods. These inciua.
and copy constructors (very important for parameters a
overloaded assignment operators, as well as display functions

of domain
array, the array

lude
initialization

rparameters and results transrer
given domain,

to a domain

there will be displayed its name, operator and type in a man
declaration), functions for displaying the Iist of variables belongis
One can observe that it is sufficient for the domain's type anu P

to the domain

erties to be 114

OBJECT-ORIENTED SYSTEM FOR SYMBOLIc COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY
stored in a single instance, as they are the same for every instance representing the
same type of algebraic structure. We can anticipate a little by revealing that the TipSemigrup class will be the base of the entire multiple inheritance hierarchy that
is described in what follows.

TipSemigrup

Semigrup TipMonoid

Monoid TipGrup

Grup TipGrupCom

GrupCom Tiplnel

Inel TipCorp TiplnelCom

Corp InelCom TipCorpCom

CorpCom

Figure 1

Expression-objects bclonging to a domain of semigroup type- the Semigrup class.

This inherits the TipSemigrup class and contains as specific data elements

describing an expression: the identifier associated with the expression (if the

expression has been assigned a value to), the expression as a string and as a tree (as

Shown earlier, considering that the operator of the domain is associative, the

CApression can be represented as an n-ary tree, representation used for the internal

operations), the position of the current object's pointer in the array (Obiecte) which

retains the objects having an assigned value from all domains in a similar form, as

Shown in what follows, and specific methods lor expression processing. These

include, besides overloaded constructors, destructors and assignment/stream

operators, operators used for the equality/difference tests (these tests are performed

on the canonical form representations) and a lunction for displaying the result of the

115

A. ANDREICA AND A. MONEA

Cxpression entered (the system works as an interprcter). To ohtam

expression we analyse its identifiers by VISiting the associated tro
To obtain the

iated tree, verifying
result f an

the corresponding sub-expression (by a function from the tree madl

a pointer swapping), aller which the trce 1orm is transformed into a

visiting its nodes. ln lact, this conversion function from the
representation into the string representation is more complex, as it takes int

there are identifiers having assigned a value to. In this case, they are replace with

erforms
one by

rnal tree

account that priorities might be associated to the operators, in the case.

operator domains. One can obscrve that from the Semigrup class all otho
classes

ple
describing objects of expression type will be derived, directly or indircctly

using
Computation operations in struclures of mono1d type are implemented

two similar classes, which model:
general structures of monoid type the ipMonoid class. This class inherits
the TipSemigrup class and supplementarily contains the neutral element a
well as specific constructors and destructor (which call those of the base class

TipSemigrup).
expression-objects belonging to a monoid type domain- the Monoid class,
This class inherits TipMonoid and Semigrup classes and contains specific
constructors/ destructor. It also redefines the function that returns the result,
eliminating neutral elements from expressions (this operation is performed on
the tree form, which is later converted to the external form).

Structures of group type, as well as the expressions belonging to group type domains, are introduced pursuing the same principles, using the classes TipGrup and

Grup, respectively. TipGrup class is directly derived from TipMonoid class and
supplementarily introduces two arrays that store pairs of symmetrical elements for each
domain of group type. In the Grup class, which is derived from TipGrup and Monoid, the method for returning the result is redefined. The new method reduces the pairs o symmetrical elements.

Computation operations in structures of abelian group type and expressl belonging to abelian groups are defined in a similar manner using TipGrupco
ons

GrupCom classes. The differences lie in the fact that the canonical representa of the expressions belonging to these domains takes into account the commu property of the domain's operator. This canonical representation is by lexicographically sorting operands of each subexpression (within the ass n
tree

thal
representation, sce tree module). This operation is performed within the u nof
redctines he external form from Grup class by using the canonical reprc abelian group domains

ined

Ring type structures are described within Tiplnel class, TipGrupCom and TipMonoid classes; Tiplnel supplementa mulliplicalive operator, together with its neutral element ana P
Construetors used to create ring type instances will obviously call tne o
its base classes. Expressions belonging to ring type domainS ar
Class, which is directly derived from Tiplnel and GrupCom classe
principles as previous derivations. In order to generate the res

plnel class, which is deriv

lementarily introdu ces
the

(ies. The

Constructors trom

Inel
created within

Same

result of an
xpression

16

OBJECT-ORIENTED SYSTEM FOR SYMBOLIC CoMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY
belonging to a ring, there will be cancelled symmetrical elements in respect with the

additive operator and neutral elements in respect with both operators. Obviously, we
shall verify whether the expression contains previously assigned identifiers (therefore retained as pointers to abstract objects in the array of expression objects) and if so, they
will be substituted in the tree form for the corresponding subexpressions and afterwards
the external form will be generated (these operations are performed within the tree
module). For expressions belonging to ring type domains and domains derived from
these ones, the function that applies the distributivity of the operators is explicitly
applied.

Computations in abelian ring type structures are performed similarly, using the
classes that describe structures of this type - TiplnelCom class and expressions over
abelian rings -InelCom class. TipinelCom class inherits InelCom class and InelCom
class is derived from TiplnelCom and Inel. The difference in expression manipulation
consists in the fact that the lexicographical sorting of operands is also applied for the

multiplicative operator, therefore the function that generates results of expressions will
be redefined accordingly.

The field type structure, described within TipCorp class, inherits Tipinel class and
supplementarily introduces the pairs of symmetrical variables in respect of the
multiplicative operator. Expressions over field type domains are objects of Corp class,
which is derived from TipCorp ai Inel elasses and introduces specific manipulations of

expressions, taking into account the invertibility of the multiplicative operator: in the
tree form and within the function that generates the results of expressions there will also
be cancelled the symmetrical elements in respect of the multiplicative operator.

Abelian fields are instances of TipCorpCom class, which inherits TipCorp class.
Expressions over abelian field domains are instances of class CorpCom, derived from
TipCorpCom and CorpCom classes. The manipulation of these expressions involves
the lexicographical sorting of operands in respect of both operands (we consider that the
multiplicative operator has a higher priority than the additive one). Other types of
expression processings, such as the cancellation of neutral and symmetrical elements,

are similar to the ones from the ascending classes.

In order to perform an efficient processing of the user's commands, it is necessary

to be able to refer in a common manner to all the instances that represent abstract

algebraic structures, respectively expressions over these domains.

The abstract type that all classes representing algebraic structures (TipSemigrup,

TipMonoid, TipGrup, TipGrupCom, Tiplnel, TipCorp, TiplnelCom, TipCorpCom)
WIll be converted to, named TipAbstract, retains the encoded type of the structure (used

in the conversion process), and an undefined (void) pointer, which enables type

transformations. These conversions will be performed from the above mentioned classes
to the new type, using conversion constructors, as well as from the abstract type class to
algebraic domain classes, whenever an instance must be processed according to the type

of the domain it represents. Such opcrations are necessary within the methods that
process user's commands, which, on the one side, must be generally valid and, on the
other side, must describe computations derived from the type of the current algebraic

domain. Taking into account its implementation, it is necessary that TipAbstract

117

A. ANDREICA AND A. MONEA

redefine the specific methods of the algebraic domains by an exnlici

appropriate ones, based on the type of the current domain. Obviouslu f the Obviously, the construc
destructor and overloaded operators of ipAbstract class will use the appropriate

methods defined within the hierarchy classes.

Moreover. the abstract type that denotes

memorization of user defined domains by

This fact allows the user to "reload" a previous Working context by redanl

algebraic structures enables the using pointers to their instances (Tip array).

domain. Domain memorization is performed by specific methods of TinAhefr
class

It

which verify whether the current domain nstance was already created and if not.

it in the abstract pointer array.
Pursuing the same representation principles regarding expression-objects from

Various types of algebraic structures, these instances will be created by an abstract clas

(ObiectAbstract), which implements conversions from / to classes that descrihe

expression over defined domains (Semigrup, Monoid, Grup, GrupCom, Inel, Coro
InelCom, CorpCom). Conversions are performed based on the type of domain the
expression belongs to, using an undefined (void) pointer both for conversion
constructors and explicitly, whenever an abstract object must be processed according to
particular properties of an algcbraic domain. The constructors, destructor, overloaded
operators and the other methods specific to abstract expressions (for example, the
function that returns the result of an expression or the equality and difference tests)
explicitly call similar methods from the expression classes (Semigrup, Monoid, Grup.

GrupCom, Inel, Corp, InelCom, CorpCom). It can be noticed that the elements of the
domain a certain expression belongs to are also available using ObiectAbstract class,
since all expression-object classes are derived from the ones that model correspondingalgebraic structures.

The abstract object class induces a common manner of processing expressions from
various algebraic domains within the methods that manipulate user commands particular manipulations will be performed consequent to the appropriate yp conversion of the expression), as well as the memorization of all user-delineu subexpressions by using pointers to abstract expression instances. This memorizau essential for correct computation of expressions that contain previously assi identifiers (as shown above) and is performed within expression processing, Dy t

retain

methods of ObiectAbstract class. Variables will not be memorized twice, but i

pecifie

r

domain, the position of its instance in the array of domains and the index of nc v

current

ned

new
symbolic value is introduced for an identifier, we shall obviously retain Further references to these identifiers will take into account: the ype variable

latter.

(retained while creating the expression object).
User commands wilI be interpreted until the termination coma encountered. Command processing is initiated by a function that validacs

(see validation module) by parsing it and retaining its ype of command, there will be created an abstract instance represen
structure or an algebraic expression, which will be proce introducing domains and the inheritance relations implementea be
and expression classes enable us to use the instance command as a general context for creating the following expresso
new domain declaration.

ination command (exit) 1s
mand

the Its type and elements. Based on
ing an algebraic

en
domain classes

ce generated by a domai inces, until a

118

OBJECT-ORIENTED SYSTEM FOR SYMBOLIC COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCHY

Command interpretation is performed as follows:
for a domain declaration, an abstract (TipAbstract) instance will be created; this
instance will retain, taking into account the domain type, a rcference to an instance

of the actual algcbraic structure. The abstract instance will be retained in the
domain array and will represent the eurrent computing context (until the next

domain declaration).
for an assignment it is verified whether the opcrators belong to the current domain
and if so, the expression is instantiated as an abstract object, which contains a

pointer to the instance of the actual type expression, derived from Semigrup class.

The abstract object is memorized in the expression array. An assignment command
will generate the result of the symbolic expression evaluation by calling the
cvaluation method for the abstract object, which makes use of specific evaluations
described in various expression classes (these ones operate upon the tree form of

the expression).
an expression command is processed similarly, except the memorization of the

expression; therefore, after generating the result, the object may be destroyed.
symmetrical element declarations involve the actualization of the current domain

instance (retained as an abstract domain) by modifying its list of symmetrical
variables. This list will be accessed in a specific manner for different types of

domains since for domains with two operators the list of symmetrical elements in

respect of the second operator is independent from the first one. If the specified
operator (or implicitly assumed, for domains with one operator) is not invertible, an

error message will be displayed.
for equality and difference tests it is verified whether the operators are correct and

if so, objects for each member of the equality / inequality an abstract expression is

created. These two objects will be applicdand ! overloaded operators, which
use the similar operator defined in the basic expression (Semigrup) class and
inherited by the other expression classes. Obviously, the tests take into account
previously assigned identifiers, as well as the axioms of domain operators
(commutativity, associativity), and generate a boolean result (True/ False).

the domain display command uses the domain array by means of a specific display
method that generates an external form for cach domain; this form includes its

name, operator(s), neutral element(s) and type.

the variable display command works on the current domain by displaying its
variable list (the method defined for abstract expressions explicitly calls the

corresponding ones from specific expression classes).
the exit command terminates the cycle that processes user commands.

3. The user interface
The system's interface module is created by using the applications available for this

purpose within Developer Studio for Visual C++ 5.0 [8] environment. The user wil

inleract with the application by means of a Simple Document lnterface (SDI) - see tig.

, which was designed by using Application Wizard.

Within the document window (see lig. 2), the user can input commands trom the
keyboard after the prompter character; each command will be interpreted according to

the above described rules. A more accessible pOssibility to introduce the commands is to

119

A. ANDREICA AND A. MONEA

use the corresponding buttons, which assist the user in specifying: domain

variable / domain view requests,
assignments,

symmetrical declarat.

difference tests or finishing the computation (see tig. 2). For each button uality

elements of commands, a dialog window (Dialog Based Interface) Was read

latter contains specific controls,
associated with the

general frame for defining the controls was create

ns,

ated; the
parameters of the comman The

ited by using Class Wizard, the

necessary
elements, the command created within the dialog box is sh thec

the frequently used ones being edit boxes, drop down and drop lists. After snecif.

n in

most

document window, validated and interpreted.

Unted Hier

Fie Ylews Hep

a D3==
(Ce, iren): Co rpCom
>i/a

a/1
>Sim (a,) =asn

Dialog

Caracterishici

Nurne Tip Monoid
>a/z/asn

Semgup

Monod
EE neuru 1: Grup

GrupCom
Inel

-q gerato 1: +
>Sim (b) =bs

>z-bs-b
tt 2:nellom

Lorp

P- OpLom_

>(Gr, *) :Grup PIMonod
>Sim (a) =as

>tt=ato*y and

aoy
>astt

Listavar
variabilele domeniului (Gr, *) de tip Grup Sunt:

a as o y tt

Rexdyt
NUM

Fig. 2 the

ror domain declarations, dialog controls are activated / deactivated oas
domain type, so that a consistent declaration is obtained: for semis
specify only the operator, for monoids and groups the operator a el
neural elemnent, for rings - both operators and the first neutral element,
operators and both neutral elements.

sibly, its

ields - both

The content of the document window (input commands and their resuls

display of the window
ontent

after

processed using a string array that ensures a correct
resizing operations, as well as the possibility of saving the current wo
a text file, which can be later reloaded- for this purpose, the impil

context into

ated buttons

120

OBJECT-ORIENTED SYSTEM FOR SYMBOLIC COMPUTATIONS WITHIN AN ALGEBRAIC HIERARCEIY
New, Open, Save are used. The actions associated with these buttons were designed according to archiving and serializing principles that arc implemented within Visual C++'s Document/ View architecture.

4. Conclusions

The software system described in the paper belongs to the research area of symbolic computation systems based on type theory; it implements symbolic computations within the algebraic hierarchy containing semigroups, monoids, groups, abelian groups, ring, abelian rings, fields and abelian fields. The system's design principles rely on an object oriented modeling of the relations between the above mentioned structures; in fact, the whole type theory wvas influenced not only by the algebraic category theory, but also by object-oriented programming principles [3]. The practical impact of the system specialized in symbolic computations within abstract algebraic structures is sustained by
an accessible, visual-like user interface.

REFERENCES
1. Alina Andreica - Aplicaoii ale calculului simbolic, Referat de doctorat, 1996.

Alina Andreica - A Possibility to Describe an Algebraic Hierarchy, Studia Informatica, 1,
1997.

2.

Alina Andreica - Type Systems in Symbolic Computation, Preprint Computer Science,

forthcoming.
3.

J. H. Davcnport, B, Trager - Scratchpad's View of Algebra I : Basic Commutative Algebra,

DISCO 1990, Springer Verlag 1990.

4

5. J. H. Davenport- The Axiom System, Axiom Technical Report TR5, 1992.

Liviu Negrescu - Limbajul C++, vol 2, Fd. Microinformatica, 1994

Bujor Silaghi - Din tainele program�rii în C++, Ed. Microinformatica, 1996.

6.

7.

8. Mickey Williams - Bazele Visual C++, Ed. Teora, 1998.

"Babes-Bolyai" University, Cluj-Napoca, Faculty of European Studies

Technical University Cluj-Napoca, Faculty of Automation and Computer Science

121

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

