STUDIA UNIV. BABES-BOI YA INFORMATICA, Volume XLIII, Number 2, 1998

MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR
DISTRIBUTED DATABASE SYSTEMS

DARABANT SERGIU ADRIAN

Abstract. Information explosion across all arcas has determined an increase i
hardware requirements for application that provide data to thc_uscrs. As hardware
evolvement is quite susceptible to be bound after a top barrier is recached, new
technologies must be developed in the software area In orde_r to keep up with the
rcquimnénts‘ We present here such a technique for improving access to data by
means of distribution and by using client-server multi-tiered techniques. The main
idea is to, transparently and efficiently, distribute data in multiple places using a
client-server multi-ticred system. We model the system by introducing a broker
between clients and servers in a client-server system. This additional level in the
communication layer between clients and server will handle things as data
distribution and will participate in the query processing stage.

1. Introduction

Large databases are, lately, more and more a quite common thing. High
amounts of user data collections are needed in almost all today’s applications. In order
10 keep up with the performance needs and with this high amount of data, new
technologies must be used. Hardware performance has increased a lot in the last years
but so did the requirements in the software area (amount of data, speed requirements).
As software needs evolve almost in parallel with hardware performance we will reach,
someday, a top performance that will hardly be improved after that, in other words a top
limit in hardware performance. This is happening as we tend to reach the light speed. To
solve this problem research in software area is done and is aimed to find new softwar¢
solutions. We deal in this paper with a very simple, yet highly effective, method t0
improve performance in a distributed system. We will apply this model to a distributed
database technology although it can be used with some modifications in any distributed
system.

A distributed system is a collection of sites connected in a network togethet bY
some kind of communication lines that runs an application on the entire system and
mak‘es transparent to the user the fact that we are dealing with more than on¢ computer:
s e o b sy et el qery e spone 17

In a tradtions] din)t' (‘)v.er oaded when usec} in a traditional wa.)’. .
communicate with a server that -bCl'\('Jcr‘ moc.iel, d Chef]t’ or. more ?llg?h;:. wa
SErver processes a request frOnI:r?Vl. 'cs services, There is no ]lnk.be.tw"bf] wvers 1l

X : a client related to the others similar servers = -
f,yslcm. Most of the time the servers arc unawar > of cach other or they are aware
Just by means of mutual exclusion when ac - O‘ - o )u,-ccsa In a &
multi-server or single application o orhen :u.ccssmg common reso 'u;cc y using
an additional intelligent broker lh';t ! ‘t_r s‘y‘blcm we can improve perto'rl‘r?f o rep“““ws
data from onc server 1o at assures a global state between servers _to-server

ultiple  servers and manages the client

usually
y one
1 the




MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

requests/responds.

One example of such system is the Intern
composed by an Information Retrieval
indexed trom the Internet or local text
systems, where data and documents a

ernet Search Engines. Such an engine is
(IR) system that manages text collections
and clustered document collections. Dynamic IR

. W dd re collected from the Internei continuously are
highly eligible for the distributed technique we present in this paper. In the same time

the system must quickly respond to a large number of user querics, A system like this
might be an Internet search engine like Altavista or Lycos’, eic. They provide a very
easy way to search for information on the Internet using a friendly interface. There is a
specific need for returning, as a result, from a query, the latest information available to
the user because, statistically, this will be the most relevant to the end user. This
problem did not exist in the past, when existing information was refreshed once or a few
times a day. In these days, however, information is gathered form the network at speeds
as high as hundreds of MB/hour. In this case, most of the time, new information is

added dynamically to the system in large quantities, in parallel with processing queries
from the end users.

2. General System architecture

The difference between the architecture proposed here and the classic client-
server architecture is highlighted in the fig. 2.1.

As we can see in the traditional architecture each client must connect to every
server, and more it has to know all the available servers and services. In the second
model, the broker is used to provide links to all the servers in domain. The connection
between clients and servers is managed by the broker. The architecture presented in
figure 2.1 b) has the following components:

1. Clients - a user interface for accessing services. Usually is a process specific to the
system or a general client for multiple services. In a database distributed system it
can be an interface to the services provided by the database: update, query, data
definition, etc. It’s not very complicated but rather simple and has to know just how
to connect with the broker. The rest is application specific and is implemented in
the application: sending commands to the database engine. A client does not
connect directly to a specific database server.

2. Connection Server — is the broker between the clients and servers. Handles
requests from clients by forwarding them to the appropriate servers and merging
back the results if necessary. Since this is the key for the whole new system
architecture, it has some properties that help to improve performance. The
connection server is usually a lightweight process that manages all the messages
between clients and servers i.e. client interfaces and database engines. These
messages are placed in queucs that are served using some priorities or simple in a
Jirst-in-first-served order. L

3. Servers — Processes or just front-ends that implement a §tandard communication
interface between the connection server and databasc engines. [n many cases, the
single database engines don’t have interfaces to access them remotely.

; Altavista - http://www.altavista digital.com
Lycos — htp://www.lycos.com




96

SERGIU ADRIAN

o communicate with the database either locall
ded. Again thesc interfaces are quite Simplz (on
dard communication protocol, and post and
ction scrver (0 the databasc engine in an understand Lhe
language (specific to the attached databasc engine). This is another way to im ;1 le
qualitative performance. we can build a heterogeneous system made up Dfovc
multiple kinds of database engines, provided that we can come with a pr(ZOm
ted by the conncction server; 1.€. database engincs mii:

interface to that reques
yimal facilities. (ex. SQL support, transactions, €tc).

DARABANT

ly we need a way t
tely as nce
ment a stan

Consequent
the samc host), or remo

they only need to imple
commands {rom the conne

.

support some mit

Generic Server |

Chent

“ s -
X Requests/answers

Fig.1 a) Traditional

Client

Fig. 2.1 b) Distributed multitiered

System simulation

In order to demonstrate th
R ued strat at we can achieve a ‘manc ing ¢
Retrieval System.w\:/ew\t:'lillslmulate,SUCh architecturept?orrfoalln;:tc'ebe(ZiSt b? matin
because implementing suchUSc a simulation rather than a s r;' Ut'e o Ormm?on
rrTOdel the real behavior of a system can be time costin %em ' m'lpleme.ntatlon
different aspects of a distr-blhe system under different cg AR
use different parameters ! uted system to be tested s and.cnablfs
e il pram dift!n the simulation e lpr(ljgr to implementation. \\?
topologies and v oy ada;’rs;l_l queries and numbereof :(t;ferent number g(f ‘fuscr:
In the simulation fon techniques. e .
zra'ndon Cahoon and ;(;:/l?r S, e 1esuls of a simil ’
easurcments of a i ryn S. McKinley []. O similar model developed b,)
systems. They Proposcdlflm?“led system ar h,' ur work relates, mainly, t0 thelt
a distributed Inf-ormc,'lecturc for Information RetrieV?
ation Retrieval were clients connect o




MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

document retrieval engines using a single or a fixed number of brokers. Each
architecture was measurgd in terms of query time response, document retrieval
time;, network lalency,.c!wnt-pmccssing time. In their experiments, they used a
static tppology under d'xﬂ'crent workload cocfficients and using different document
collections. They varied some parameters of the topology, like number of
connection servers and/or Retrieval engines and studicd the results in order to find
out the bottlenecks of the system on different topologies.

As a simulation environment, we used YACSIM [5], a simulation library.
YACSIM is a discrete—cvent, process oriented simulation language based on the C
programming language. We modcl, using YACSIM, all the major components of
the system including clients, connection servers and retrieval engines. We used as a
retrieval and query engine Inquery, a probabilistic retrieval model that is based
upon a Bayesian inference network. Inquery accepts natural language or structured
queries. For query operations, the system outputs a list of documents ranked by
relevance. Internally, the system stores the text collections as an inverted file. We
used Inquery in order to keep results obtained by their study related to our work and
keep their relevance intact. We will use in our experiment different text collections
of those used in the above-mentioned work. This can influence some of the system
measurements. There is a strong relation between query evaluation time and the
number of terms in the query and the frequency of each of the terms. In the
TIPSTER 1, a collection of full-articles and abstracts used by Cahoon, the
correlation between query length and query evaluation time is .96 and for query
term frequency is 0.95. The time to evaluate a single term ranges from 0.5 seconds
for a term that appears only once to 17 seconds for a term that appears 554,658
(maximum term frequency in TIPSETR 1). Our collection has close parameters to
those mentioned above. They are 0.90 for correlation between query time and query
length, respectively 0.85 for query term frequency. We divide the query response
time into CPU and disk access time. The simulator computes the evaluation of the
query response time by adding the evaluation times of the individual terms in query
like in previous work we relating to.

Like in their study, we approximate constant the document retrieval time for an
Inquery server and we takc an average retrieval time from a number various set of
retrieval operation on documents with different sizes. We repeated for a fixed
number of times the set of retrieval operations with different randomly selected
documents. The average response time is used in the simulation. Connection server
times are different from that presented in [1] because we try to improve
performance of system by making it self-adaptable. We do this by using the results
gathered from studies made in [1], [2], [3] to develop a simulation for a self
adapting system to a different workload pattern and using a different number of
servers and services, having information replicated at different sites. The system
also supports fragmentation. Our results might a bit different than those presented
in [1] because of the different sources of data used, but we found it in a £19% of the
real implemented system. This is because we used some of the resylts presc'nted in
[1] that do not accurately model all out results and because some of the caching and
data distribution techniques we us¢ alter the in a various manner the response time

of the system.
97




DARABANT SERGIU ADRIAN

.1 Simulation model . ) ) |
4.1 The simulation for our adaptive modc_al' is \ivorklr;g,s Oa:lcw(c):thsald, using some
results from previous work in domain. In addmont,_ I;Suasgom svstemi\r/ Pliilrameters in
order to demonstrate de correctness of our assumptio ) orkload. Theg
assumptions are: o

stem is transparentl distributed. . ‘
; Wr\}\is}:,;izttljbtli lir?ks bct\yveen all the componen.ts in the Syster.n, If some links il

" the results would be inaccuratc. In the same.tlrn.e, the algorithms, Lfsed here for

hronization and for exchanging hints ang

communication between brokers, for sync g for e
cached data do not work correctly in the case of brol\'en inks. The system might go
in an unstable status in the case of communication failure. Anyway, our aim was to

demonstrate that we could improve performance by adapting to a particular system
load in time. There arc various studies about recovery from communication errors

in distributed systems that can be applied in order to improve the system.

Information is spread across a network of computers on servers, using different

topologies, replication and fragmentation techniques [4], [6], [7]. The replication

and fragmentation strategies are dictated by the possible number of clients, amount
of data in a text collection, amount of update operations, etc.

4. We can have one or more distributed text collections. They are spread out on the
network, replicated and fragmented. In the case of small text collections, between
the others we have, we can choose not to fragment it. We can still replicate it if it’s
a very intensive searched database. Otherwise, this can cause major bottlenecks in
the system.

5. We have multiple brokers in the system. We say the system has a dynamic

topology, as we have a minimum number of brokers registered at a particular

moment. This is the starting configuration when the load coefticient is zero. They
are aware by 'each other and they communicate with each other, as we will sec.

They serve clients un.lil workload in the system reaches a peak point. At this

gfgllzn;l}?e:sevyl‘t?irso:f\:/ ;sssgawnf:d in the system and rcgistcrcd, i.e. made known 10

o o broker' s thyc Sz;;r)\;l);:slonaldlttcrcnt free (ot.bro.kcr§) site. o
schemes, i.e. it has information al:)pot ofgy artd data c_ils} rlbutlp 0 gae rcp‘l wal'l(');
node. This information is obtained t(‘)u ragments and information present I cacl
new broker is started, it receives fi rom {he e when they are started. Wher £
current svst . S Irom l.he initiator all the information about the

;e }l/( em topology and data distribution.

a mann:r etlru?tnzlgllifessi‘::: hthqalie?(l)x:f C_elv.ed‘ iEom a client and splits the query in SUC}}
interrogated. ain information about those terms in query

8. A user can ch i . .
collections are i(;x(::rotgatlendteirtr Olfattlf ngst ,on.e or multiple collections. If multxptls
query. This information is extrac de ) ker s Losk 1o decide which data sen’er?

9 ﬁ’e geographically collection dist:iet)u[tirom the data it has about system topology an

. Each client has a loca ¢ _ o
10. Each connection ::rilccrafgreorhere doc?umcnts retrieved are stored.
er) has it’s own cache used together with !

brOkCr’S cac .
aches to im
clients, or repe: Prove speed when common infi o d by
» or repeatedly, by the same cljent n information is asked b
ents.

(98]

98




MULTI-TIERED CLIENT- OR DIS [RIBUTED DATABASE SYSTEMS
4.2 Simulation Parameters

We used some parameters tg v
Some of them are taken from studies m
of the improvements of the system beha

*  Number of clients/servers (C/1S) ~ used 1o model smal| ang large configurations, [t
is different used comparing to work i

ary the conditions in which the simulation runs,

ath In [1] and others are new necessary because
Vior and open architecture:

o Terms per Query( TPQ) - is also used to increase or decrease the workload in the
system

*  Distribution of Termg in Queries (OTF) — we used a local observer distribution of
lerms in queries, calculated for our text collection.

*  Number of Documents thgy Match Query (4AR) — i

the clients. This parameter affects the network
brokers.

* Client Cache Hi (CCH)
* Broker Cache Hit (BCH)
in order to use cached d

s the list of documents returned to
traffic and processing time in the

- is the client cache hit percent/ coefficient

— a value for each broker cache hit frequency. This is used
ata when this is possible between

given to the appropriate broker and after that to t
*  Max. Broker Queue Length (MaxBQL) —

aded brokers. We choose another measured
value for going to spawn remote processes when reached. If chosen in a proper

way, this can lead to an improved level of network traffic, because of load

Max. Broker Childs (MaxBC) — this is the other value, we
is used as g maximum load value for a site. When reache
additiona] remote broker on a free site.

Maximum Number of Brokers (MaxNB) — this is the max_imum number of brokers
Permit in the system. When reached no other broker§ will be spawned remotely,
€ven if one of the existing ones is overloaded. This is useﬁ}l bécause we do not
have an infinite system as number of sites. If proper chosen it will not be reached
Sooner than the moment when all the existing data servers are properly loaded.
After that no other increase in performance can be achieved, whatsoever.

inimum Numper of Brokers (MinNB) - is the minimum number of existi
brok

» previously mentioned. [t
d, a site tries to Spawn an

ng
ers in the system. Even if they are idle, they don’t stop execution, Properly

chosen can handle sudden, large, workload increase after an idle period.
Maximym Idle Time (MIT) — is the amount of time that, a remotely spawned broker,
Ives idle. When this value is reached that broker stops execution and dies.

99

.



DARABANT SERGIU ADRIAN

e Maximum Server Queue Length (MSQL) — 1s.thc maximum number of enfrjag in
server's waiting queue. When this number 18 rcz}chcd, brokers that try a
receive back specific hints. If another server with the‘ samc data exjst

il choose that one. If not, they will continue to uge

0 usc il

S In the

system, all the brokers w this one
which will, soon, become overloaded. ,

e Maximum Pre-analyzed Queue Length (MPQL) the length. of the Pre-analy g
queuc at each broker. When recciving qucrics' each br.oker %ries to Pfe'ﬂnalyzé .
number of queries in the queue an exchange information with the other brokers
This is useful for caching purposes, as We will see. If the requested data is 'dlrcady.
present somewhere in a broker’s cache it will be returned to the appropriate
handling broker and to the client without having to send all the query (eventually

split up by fragment purposes) to servers.

4.3 System architecture ‘

Our system architecture differs a bit from the original one presented at the
beginning of this paper.- This is, mainly, because we permit a dynamic topology of the
system. Brokers can dynamically be spawned or closed (automatically, as we saw). In
the fig. 4.3.1, we present the actual architecture of the system we simulate.

The system is following the next algorithm:

Initialize algorithm is:
Initialize system
For each initial broker b do Run_Broker(b,true);
End;
Procedure Run_Broker(broker runb, boolean initial) is:
register with all remote brokers;
if not initial then
Gather information received from initiator;
else
gather information from the system ;
end if
while true do
while Incomming_connection()=false do
if not initial then
compute_idle_time;
if Max_Idle_Time >= MIT then
unregister with all remote brokers;
exit;
end if
end if
end while

100




MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

Mmlmum system of brokers

-
y
i
K

Client Cache

[lost

T T S L L TR RGN
SNEHTE O SN TN "

Host

Server Replica or
Fragment

Client \

S8 W™
&

S

Pre-analyzed

=

Qucu

ISR e e

Server Replica or
Fragment

Broker

Pre-analyzed

Host

Server Repiica or
Fragment

S

Host

Broker

Server Replica or
Fragment

Pre-analyzed

Fig. 4.3.1 System architecture

insert into queue request
if Queue length >= MaxBQL then
exchange hints with all existing remote brokers;

if exists idle broker bl then .
pass hint to client to connect to idle broker bl

remove from queue;

else ‘
if Child Number < MaxBC then

101




DARABANT SERGIU ADRIAN

~ 1 N \/:
spawn local child blney

Run local(blnew);
pass hints to client to connect to blncw:

remove [rom queue

che if Max Number_of Brokers >= MaxNB then ‘
if exists partially free broker bfree then ‘
pass hints to client to connect g 3
bree; remove from queue; i:
else |
postpone request; |
end if |
else
spawn remote broker bnew;
Run_Broker(bnew, false); 1
pass hints to client to connect to bnew; 1
remove from queue; |
end if;
end if;
end if;
else
extract request req from queue; |
analyze request; j
pass request hints to all remote brokers;
pre-analyze requests from queue(MPQL);
while avai]ableﬁremote_data(remote_broker) do
retrieve_data(remote_broker);
if full_processed(req) then send result to client;
else
identify data servers:
take load hint form server;
if Max_Server_Queuc_Lcngth>=M SQL then
identify another server:
if found snew then server=snew; end if
end if;
send partial query to server;
wait for results;
send results to the client;
end if;
A
mark rcordcr?nz (‘:()r-k?]f)te ‘brokcr) do
identify rcquL-&sfbrcl L\',d.mm- on queuc;
reorde, I'Cun;lg i“qlulauhc in the queuge;
end if - ¢ queues
102




MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

while available remote data(remote broker)
retricve_data(remote broker):

if full_processed(reqeache) then send result to client:

clse

do

identify data servers;

take load hint form server;

if Max_Server_Queue_Length>=MSQL, then
identify another server:
if found snew then server=snew: end if

end if;

send partial query to server;

wait for results;

send results to the client;

end if;
End procedure Run_Broker;

Procedure Run_local runs a local child on the same site. The only difference from a
remote broker is that the local child only receives information the parent process (initial
broker) and terminates as soon as serves a request to a client.

An initial broker waits for a connection and inserts the request into a queue. If
the queue does not get longer than MaxBQL the broker processes the request. It first
analyzes the query and sends hints to the other remote brokers. If there are brokers that
have related information in the cache, they send back the data. If the request is fully
processed, we return result to the client, otherwise we send the rest of the partial query
for evaluation to the identified servers and after we receive the result we combine it with
the cached information and send it back to the client. Meanwhile the queue is pre-
analyzed and identify requests for which some brokers have cached data, we reorder the
queue if possible, i.e. no other unresolved request has gone back in the queue (pecause
of multiple reordering). If we have such requests we take cached data and send it to the
client. Anytime when a broker is much more loaded than others requests are routed tp
the other brokers. When a broker expects to send a query for evaluation to a server, it
takes hints about server load from the server. If the server is overloaded than the broker
tries to identify another valid server. If found sends the query to the second server else

to the initial one which will become overloaded.

% Experiments and results

: In this séclion, we present the results of our expcrim@ﬂg We lc'est;drt{o:h ca[sej
In-which clients only query a single document collection dlStI‘lbLlled“a:n‘ ‘l.rflslrfmeg cu
over the entire network, with different number of Servers. In the thcr ?d.bb «. ients quer
multiple text collections, some of.them distributed, (ragmented and replicated.

5.1 Distributing a single text collection

. In this section we examine the e The
Single, large (0.8 GB), text collection among all servers. The

performance of the system when we divide a
size of the text collection

103



E——

DARABANT SERGIU ADRIAN

r depends upon the number of sc‘:rver‘s. .
R servers, a single connection-server can hc.mdle all requests
rs from 8 to more the single broker rf‘p"“)’ tends to o u;
multithreaded mode or passes mnncc'linns 1o thc‘ ‘(Tthclrs. :l?c ihl:t ‘cas'ed‘WC 'h'clvc ;
continuously improve in performance with son.mc p.aus‘cs t’v'}cn , yh ulnzd dp‘ts tself o
the increasing load. For up to 300 clients we 1Improve [:jcr’()rman‘u,l yl 34, The e
of this result is that each Inquery server prog@sys l.hc a.la more ?asn y. Documents .
most likely distributed over all the servers. This lughly.lmproves pe'rformancc. As we
: her of clients the load on the connection servers, increases and th..

managed by cach serve
For up to about 6
I we raise the number of serve

increase the num ; ‘hoose the \ ¥
tond to redirect some queries between them. It we choose the maxnmum pumbcr of
hrokers as one we have almost the same results as thosq prcsanqd lf] [1]: an increase in
serformance for 1 to 20 servers and up to 400 c!lents. This is becausp We use
multithreading in our connection server. Experiments in [1] do not use multithreading,
fact that is the cause of their results (not as good as these ones). They increase
performance for 1 to 8 servers and up to 256 clients. We reach just 400 clients and 20
cervers because after that the network latency increases as the connection server
becomes increasingly utilized as number of clients increases. In this case, Inguery
servers perform quite well. If we replicate data on additional servers, we do not increase
performance. In this case, the network and the connection servers become, more and
more. a bottleneck. When the number of servers increases over 40 the connection server
cannot process s as much results as the servers send back.

If we increase the number of Inquery servers above 20, the connection servers
gets overloaded much more faster and becomes a bottleneck. Performance degrades, for
40 servers, 4 times when increasing the number of clients from 1-400. The result is
better in this case, also, than that from [1]. Performance degrading is 4 times, in their
case, for just 8 servers and 256 clients. In multithreaded mode, connections servers can
process as much as 16-32 requests per second. Above that, they became over utilized.

If we increase MaxNB (maximum number of brokers) the system scales much
more better as this is the point were the self adapting property becomes utilized. With
MaxNB=2 the system performs better with up to 64 servers. We see that the system
performs better as the number of clients and Inquery servers increases. We get @
speedup of 3.65 over the single connection-server model using the same number of
clients. For MaxNB=4 improves even more performance for large configurations.
;}O%a‘r:ao :2 ‘::a:b]lgb;lr:: Lil::; 2;esrl\r/1§le fifocument collection we do not gain i_mprovemcnf
Inquery servers can respond immrsd'l \;ve l‘epllca-t ¢ some fragments. Thls. s bccal,l?t
speedup if the number of Inque ‘? lately to queries. If we use large querics, We ‘:’f‘j”
to large queries. Under the it r i under 128, Over 128, they can respond e“fl

at number, they become over utilized and replication helP

] nt > '

speed. This is happeni '
servers andplnqucry %r";ri";)pr;cnmg because of the hints passed between connection
- > before evaluatin
In these cases, if &2 query.
ses, 1 we use cach: .
can improve performance W\;/ use caching, especially on the connection server s
_ - We observed that many times people tend to send
; nge s Y 2 o1 1 al
observed that in a large gr BC some terms in a query and resubmit it. Agaimn, oy
ol qu
is 15

ide wW¢
similar
Wwe

104




NN

MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

happening because people tend to search for similar words. This fact leads to a high
percent of reordering close transactions. Therefore, many queries are not sent to the
servers but evaluated by the connection servers.
For MaxNB>4 and a number of Inquery servers between than 128-240 the
system performs increasingly good in the same time with the increase in the clients
number. This is because the system scales well at the connection server level. At this
point self-adaptation facility of the system works at maximum, provided that we have
enough sites to run the system. We can only observe short time bottlenecks on the
periods when the system switches between different strategies. For a large number of
clients (more than 600), however, the number of messages exchanged over the network
increases a lot, due to the necessity for passing hints between components. At this level,
caching techniques tend to be unutilized because the amount of different, not similar,
queries exceeds the caching capacity of each node. The amount of messages exchanged
over the network is very high and the network becomes a bottleneck source. For some
configurations of 8-10 connection servers and more than 240 Inquery servers, both
components, have idle periods because of the network latency. At this level of high
number in Inquery servers and clients, our experiment shows that the simplified
algorithm without hints works better. This result comes from the fact that the connection
servers spend a lot of time exchanging messages between them before each query and
with Inquery servers in order to determine server’s load.

For a even high number of Inquery servers and if no replication is present,
connection servers spend a lot of time to determine the location (identify servers) of data
and to process hints and messages from the other brokers. However, if the number of
Inquery servers is not so high, the system performs better in any situation. We also think
that a number of more than 400 Inquery servers is unrealistic and will not be soon
implemented in any system because of the high demand in the number of different
computers to run the configuration.

5.2 Distributing multiple text collections

In this case, the system maintains multiple text collections. In this
configuration, each client selects a random subset of the available collections to search
for. Statistics show that a client searches half of the available collections. The workload
increases both as a function of the number of clients and the number of Inquery servers.
For MaxNB=1 the system performs better, in our case, duc to the multithreaded
connection server. For MaxNB>2 performance increases, if we use small querie‘s,
together with the number of Inquery servers. For TPQ=2 we improve perform.ance for
more than 32 Inquery servers because transaction time decreases due to parallelism. The
same result is obtained by experiments in [1]. As we add 1nguery servers they rc?s;?ond
faster and for a MaxNB>2 the system performs quite well for 200 chent.s'.ﬁTheC‘sy‘;t.en;
begins to adapt to the workload increase for more than 128 and 180 servers. Caching

techniques do not scale very well at this level.

6. Future Work

. - ' qituati ver, we must assume
The system scales well for quite a lot of situations. Howe

105



DARABANT SERGIU ADRIAN

stabile links between computers. ()lhcrwisc: the algorithms ma
not anticipate the case where a mmpfmcnl in the system canno ol
This happens when the system \.‘urmhlcs are }..lp(lufcd' duc‘ O system sel :Hd"’.n(tiénc.
capability. There are a lot of wcl)l\lqllc& ;mq dlMlll)L]FLd algorithms thyy take i, . '”g
these situations. Another issuc is in the caching, lcchmq.ucs uscq hcr'c. We think that 1, l.t
can be improved in order to give better results even in the Situations prc.;;(:nw!? u’(" L/
they seemed inopportune. 3

y loop foreye,
. ) € dj
b respond g, - ¢ did

-

Conclusion

In this paper. we present a model of a distributed system that tri'es to alleviate
of the problems encountered in the traditional IR system. In addition, the system
simulated in a IR model. We think that the same solution or, a similar one, can
applied in any other traditional system that do not scale \A{g]l
Databases scale very well to such a technique, even tradition
databases, or non-relational databases. We develop a flexible si
results previously obtained on similar research and use those results in order to make 5
distributed system adapt to the particular workload of a moment. Our results show tha
the system we proposed provides scalable performance on almost all kind of

rehitectures. Replication, caching and fragmentation are ones of the methods rarely
used in IR, and many times even in traditional systems. Together with data distribution

On @ system that adapts itself to the specific workload, they can improve speed in
gathering information.

>OMme

IS

y
L

when overloaded
al non-distribytey
mulation based on

)

REFERENCES

[1] Brandon Cahoon, Kathryn S. McKin
Information Retrieval, SIGIR 1996 con
[2] Forbes J. Burkowski, Retrieval perfo
document server. In 1990 Internation
pages 71-79, Trinity College, Dublin, Ireland, July 1990.

! . . : o : se study.
) Z Lin and z Zhou, Parallelizing 1/0 intensive applications for a workstation cluster, a case st
Computer Architecture News, 21(5):15

-22. December 1993 , ributed
1% Antony Tomasic and Hector Garcia-Molina, Performance of inverted indices in shared nothing dlbm
Lext document informati ' tems. Technical report STAN-CS-92-1456, Stanford Univ.

_ anual. Rice University, 1993 L distributed
(6] Charles 1. Viles and James C. French Dissemination of collection wide information in a . Lr-h and
niformation retrieyg] system. [n Proceedings of the 18t International Conference on Resear

Development in IR, Scattle, WA, 1995

[7) lan A Macleof, T, Patrick Martin, Brent Nordin, ai
systems, Information p

ley, Performance evaluation of a Distributed Architecture for
ference paper.

—
w

N

o ananiputed IR
1d John R Philips, Strategies for building distribt
rocessing & Management, 23 (6):5] 1-528, 1987

I3abey-Bolyai

. ~Jui-Napoca, str. M-
University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, s
Kopalniceany I, Romania

Lemaf uddress dadi(

Aoy ‘ubbeluig, ro

106





{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

