
STUDIA UNIV. BABE^-BOLYAI,
INFORMATICA, Volume XLIII, Number 2, 1998

MULTI-TIERED CLIENT-SERVER TECHNIQUES FOD
DISTRIBUTED DATABASE SYSTEMS

DARABANT SERGIU ADRIAN

Abstract. Infonnation explosion across all areas has determined an increase

handware requirements for application that provide data to the users. As hardware
evolvement is quite susceptible to be bound alter a top barrier is reached, new

technologies must be developed in the soflware area in order to keep up with the

requirements. We present here such a technique for improVing access to databy

means ot distribution and by using client-server multi-tiered techniques. The main
idea is to, transparently and efficiently, distribute data in multiple places using a
client-server multi-tiered system. We model the system by introducing a broker
between clients and servers in a client-server system. This additional level in the
communication layer between clients and server will handle things as data

distribution and will participate in the query processing stage.

in

1. Introduction

Large databases are, lately, more and more a quite common thing. High
amounts of user data collections are needed in almost all today's applications. In order
to keep up with the performance needs and with this high amount of data, new
iechnologies must be used. Hardware performance has increased a lot in the last years
but so did the requirements in the software area (amount of data, speed requirements).
As software needs evolve almost in parallel with hardware performance we will reach,
someday, a top performance that will hardly be improved after that, in other words a top
limit in hardware performance. This is happening as we tend to reach the light speed. 1o

solve this problem research in software area is done and is aimed to find new software
solutions. We deal in this paper with a very simple, yet highly effective, method to
improve performance in a distributed system. We will apply this model to a distributed
database technology although it can be used with some modifications in any distributed

system.
A distributed system is a collection of sites connected in a network together

some kind of communication lines that runs an application on the entire syste
makes transparent to the user the fact that we are dealing with more than one col
A distributed system can be easily used to reduce query time response, it proP in a database system that is highly overloaded when used in a traditional wa In a traditional client-server model, a client, or more cliens COmmunicate with a server that provides services, There is no link between tnc
Server processes a request from a client related to the others similar servei ar system. Most of the lime the servers are unaware one of each other or

just by means of mutual exclusion when accessing common resour hy usine multi-server or single application server system we can improve perlot an additional intelligent broker that assures a global state between serve fO-S

and

outer.

used.

ually

one

such

plicat.

data from one server to multiple servers and manages the

server

MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS
requests/responds.

One cxample of such system is the Internet Search Engines. Such an engine is composed by an Information Retrieval (IR) system that manages text collections indexed from the Intermet or local text and clustered document collections. Dynamic IR SVstems, where data and documents are collected from the Internei continuously are

highly eligible for the distributed technique we present in this paper. In the same time, the system must quickly respond to a large number of user qucries. A system like this

might be an Internet search engine like Alavista' or Lycos', etc. They provide a vcry easy way to search for information on thc Internet using a friendly interface. There is a
specific need for returning, as a result, from a query, the latest information available to
the user because, statistically, this will be the most relevant to the end user. This
problem did not exist in the past, when existing information was refreshed once or a few
times a day. In these days, however, information is gathered form the network at speeds
as high as hundreds of MB/hour. In this case, most of the time, new information is
added dynamically to the system in large quantities, in parallel with processing queries
from the end users.

2. General System architecture

The difference between the architecture proposed here and the classic client-
server architecture is highlighted in the fig. 2.1.

As we can see in the traditional architecture each client must connect to every
server, and more it has to know all the available servers and services. In the second
model, the broker is used to provide links to all the servers in domain. The connection
between clients and servers is managed by the broker. The architecture presented in
figure 2.1 b) has the following components:

Clients a user interface for accessing services. Usually is a process specific to the
system or a general client for multiple services. In a database distributed system it
can be an interface to the services provided by the database: update, query, data
definition, etc. It's not very complicated but rather simple and has to know just how
to connect with the broker. The rest is application specific and is implemented in
the application: sending commands to the database engine. A client does not
connect directly to a specific database server.

2

1.

Connection Server - is the broker between the clients and servers. Handles
requests from clients by forwarding them to the appropriate servers and merging
back the results if necessary. Since this is the key for the whole new system

architecture, it has some properties that help to improve performance. The
connection server is usually a lightweight process that manages all the messages

between clients and servers i.e. client interfaces and database engines. These

messages are placed in queucs that are served using some priorities or simple in a

first-in-first-served order.
Servers- Processes or just front-ends that implement a standard communication

Inlerface between the connection server and database engines. In many cases, the
Single database engines don't have interfaces to access them remotely.

Altavista http://www.altavista.digital.com
Lycos - http://www.lycos.com

95

Consequently we need a way to
communicate

with the database either local.,

and

the same host), or remotely as nceded. Again thesC intertaces are quite simnla

they only need to implement a standard
communication protocol, and Do the

dable
commands from the connection server to the dalabase engine in an understand.

nprove

DARABANT SERGIU ADRIAN

language (specific to the attached databasc engine). This is another way to im
from

multiple kinds of database engines, provided that we can come with a nr

must

qualitative performance. We can build a heterogeneous system made un f

support some minimal facilities. (Cx. SQL support, transactions, etc).

Generic Server

interface to that requested by the conncction server; 1.e. database engines nm

Client
Requests/answers

Client Generic Server 2

Fig.1 a) Traditional

Generic Server
Client

Broker
Connectiod server)

Manages Comections
betweenclhents and
serversProvides the

transparent mechanism
for accessiug servers

Generic Server 2

Client
Generic Server 3

Fig. 2.1 b) Distributed multitiered

I.System simulation
In order to demonstrate that we can achieve a performance boost by usinE

system like this we will simulate such architecture for a distributed Information
Retrieval system. We will usc a simulation rather than a specific implementan because implementing such a system can be time costing. Such a Simulauo

can

model the real behavior of the system under different circumstances and
ables

different aspects of a distributed system to be tested prior to implementato
We

use dilierent parameters in the simulation to model different number otu
sers

accessing the system, different queries and number of term per query, u
rent

topologies and on load adaptation techniques. In the simulation, we used some results of a similar model deveoeir Brandon Cahoon and Kathryn S. McKinley [1[. Our work relates, mainyriVal measurements of a distributed system architecture for Information systems. T hey proposed a distributed Information Retrieval were clients co
96

MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

document retrieval engines using a single or a fixed number of brokers. Each

architecture was measured in terms of query timc response, document retrieval
time, network latency, clicnt-processing time. In their experiments, they used a

static topology under different workload coefficients and using different document

collections. They varied some parameters of the topology, like number of
connection servers and/or Retrieval engines and studied the results in order to find

out the bottlenecks of the system on different topologies.
As a simulation environment, we used YACSIM 151, a simulation library.

YACSIM is a discrete-event, process oriented simulation language based on the C

programming language. We model, using YACSIM, all the major components of

the system including elients, connection servers and retrieval engines. We used as a

retrieval and query engine nquery, a probabilistic retrieval model that is based

upon a Bayesian inference network. Inquery accepts natural language or structured

queries. For query operations, the system outputs a list of documents ranked by
relevance. Internally, the system stores the text collections as an inverted file. We

used Inquery in order to keep results obtained by their study related to our work and

keep their relevance intact. We will use in our experiment different text collections

of those used in the above-mentioned work. This can influence some of the system
measurements. There is a strong relation between query evaluation time and the

number of terms in the query and the frequency of each of the terms. In the

TIPSTER 1, a collection of full-articles and abstracts used by Cahoon, the

correlation between query length and query evaluation time is .96 and for query

term frequency is 0.95. The time to evaluate a single term ranges from 0.5 seconds

for a term that appears only once to 17 seconds for a term that appears 554,658

(maximum term frequency in TIPSETR 1). Our collection has close parameters to

those mentioned above. They are 0.90 for correlation between query time and query

length, respectively 0.85 for query term trequency. We divide the query response

time into CPU and disk access time. The simulator computes the evaluation of the

query response time by adding the evaluation times of the individual terms in query

like in previous work we relating to.

Like in their study, we approximate constant the document retrieval time for an

Inquery server and we takc an average retrieval time from a number various set of

retrieval operation on documents with different sizes. We repeated for a fixed

number of times the set of retrieval operations with different randomly selected

documents. The average response time is used in the simulation. Connection server

times are different from that presented in |1] because we try to improve

performance of system by making it self-adaptable. We do this by using the results

gathered from studies made in [1]. [21, 13] to develop a simulation for a self

adapting system to a different workload pattern and using a different number of

Servers and services, having information replicated at different sites. The system

also supports fragmentation. Our results might a bit different than those presented

in 1] because of the different sources of data used, but we found it in a t19% of the

real implemented system. This is because we used some of the results presented in

that do not accurately model all out results and because some of the caching and

dala distribution techniques we use alter the in a various manner the response time

of the system.

97

DARABANT SERGIU ADRIAN

4.1 Simulation model

results from previous work in domain. In addition, it uses some other parame e

order to demonstrate de correctness of our assumptions about system workload T

assumptions are:

1. The system is transparently
distributed.

The simulation for our adaptive model Is working, as we said, sin

ese

We have stable links between all the components in the system. If some links f.
2.

the results would be inaccurate. In the same time, the algorithms, used here

communication between brokers, for synchronization and for exchanging hints an

cached data do not work correctly in the case of broken links. The system might e

in an unstable status in the case of communication failure. Anyway, our aim was to

demonstrate that we could improve pertormance by adapting to a particular system

load in time. There are various studies about recovery from communication errors

in distributed systems that can be applied in order to improve the system.

for

Information is spread across a network of computers on servers, using different

topologies, replication and fragmentation techniques 14], 16], [71. The replication

and fragmentation strategies are dictated by the possible number of clients, amount

of data in a text collection, amount of update operations, etc.

4. We can have one or more distributed text collections. They are spread out on the

network, replicated and fragmented. In the case of small text collections, between

the others we have, we can choose not to fragment it. We can still replicate it if it's

a very intensive searched database. Otherwise, this can cause major bottlenecks in

the system.
We have multiple brokers in the system. We say the system has a dynamie

3.

topology, as we have a minimum number of brokers registered at a particular
moment. This is the starting configuration when the load coefticient is zero. They
are aware by each other and they communicate with each other, as we will sec.
They serve clients until workload in the system reaches a peak point. At this

moment a new broker is spawned in the system and registered, i.e. made known to

all the others. This always happens on a different free (of brokers) site.
6. Each broker knows the server topology and data distribution and replication

schemes, i.e. it has information about fragments and information present in each

node. This information is obtained from the servers when they are started. When a
new broker is started, it receives from the initiator all the information aboul u
current system topology and data distribution.

7. Each broker analyzes each query received from a client and splits the query
a manner that only sites that contain information about those terms in quo interrogated.

ch

are

8. A user can choose to interrogate just one or multiple collections. I m collections are interrogated it is the broker's task to decide which dat rs and to
query. This information is extracted from the data it has about system o the geographically collection distribution. Each client has a local cache where documents retrieved are stored. 10. Each connection server (broker) has it's own cache used together wi nltiple broker's caches to improve speed when common information is askeu clients, or repeatedly, by the same clients.

an
ology

9.

98

MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS 4.2 Simulation Parameters

We used some parameters to vary the conditions in which the simulation runs.
Some of them are taken from studies made in [1| and others are new necessary because
of the improvements of the system behavior and open architecture: Number of clients/servers (C/IS) - used to model small and large configurations. It

is different used comparing to work in [1] as we neced to constantly vary the number
of clients to make the system adapt itself to the specific workload at some particular
moment in time. We do not use this parameter to identify bottlenecks in the system
but, merely, to simulate the necessary conditions (especially by varying the number
of clients) for the system to adapt to an increase in the system workload. Terms per Query(TP) - is also used to increase or decrease the workload in the system

Distribution of Terms in Queries (QTF) - we used a local observer distribution of terms in queries, calculated for our text collection. Number of Documents that Match Query (AR) - is the list of documents returned to
the clients. This parameter affects the network traffic and processing time in the brokers.
Client Cache Hit (CCH) - is the client cache hit percent/ coefficient Broker Cache Hit (BCH) - a value for each broker cache hit frequency. This is used in order to use cached data when this is possible between brokers. They exchange information when a new query is issued so that if information already exists, it is given to the appropriate broker and after that to the appropriate client. Max. Broker Queue Length (MaxBQL) - is the maximum queue length for a broker. When this value is reached that broker is going multithreaded until another peak value is reached and after that, the broker tries to spawn another broker on a foreign site in the system. This is useful for moments when the system is not very loaded and we have the facility to run multithreaded brokers. We choose another measured value for going to spawn remote processes when reached. If chosen in a proper way, this can lead to an improved level of network traffic, because of load balancing as one machine does not get overloaded with too many requests that it cannot handle.

Max. Broker Childs (MaxBC) - this is the other value, we, previously mentioned. It IS used as a maximum load value for a site. When reached, a site tries to spawn an additional remote broker on a free site.
Maximum Number of Brokers (MaxNB) - this is the maximum number of brokers permit in the system. When reached no other brokers ill be spawned remotely, even if one of the existing ones is overloaded. This is useful because we do not nave an infinite system as number of sites. If proper chosen it will not be reached SOoner than the moment when all the existing data servers are properly loaded. Alter that no other increase in performance can be achieved, whatsoever.
Minimum Number of Brokers (MinNB)- is the minimum number of existing Drokers in the system. Even if they are idle, they don't stop execution. Properly Cnosen can handle sudden, large, workload increase after an idle period.

Vaximum ldle Time (MIT) - is the amount of time that, a remotely spawned broker, nves idle. When this value is reached that broker stops execution and dies.

99

DARABANT SERGIU ADRIAN

Maximum Server Queue Length (MSQL)- is the maxim um number of entei.

server's waiting qucue. When this number is reached, brokers that tr t
receive back specific hints. If another server With the same data exists

system, all the brokers will choose that one. If not, they will continue to use thi

which will, soon, become overloaded.
Maximum Pre-analyzed Queue length (MPQI) - the length. of the pre-anal

queue at each broker. When recciving queries each broker tries to pre-anal
number of queries in the qucue an cxchange information with the other kers.

This is useful for caching purposes, as we will see. If the requested data is alread

present somewhere in a brokcr's cache it will be returned to the appropriata
handling broker and to the client without having to send all the query (eventualv

split up by tragment purposes) to servers.

in a

use

one

nalyzed
yze a

4.3 System architecture
Our system architecture differs a bit from the original one presented at the

beginning of this paper. This is, mainly, because we permit a dynamic topology of the
system. Brokers can dynamically be spawned or closed (automatically, as we saw). In

the fig. 4.3. 1, we present the actual architecture of the system we sinmulate.

The system is following the next algorithm:

Initialize algorithm is:
Initialize system

For each initial brokerb do Run_Broker(b,true);

End;
Procedure Run_Broker(broker runb, boolean initial) is:

register with all remote brokers;
if not initial then

Gather information received from initiator

else
gather information from the system;

end if
while true do

while Incomming_connection()=false do
if not initial then

computeidle_time;
if Max_Idle_Time >= MIT then

unregister with all remote brokers;

exit;
end if

end if

end while

100

MULTI-TIERED CIIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

**

Client Minimum system of brokers

Client Cache Host
Host

Broker
Replica or
Fragment

Server

Client Broker Cache | Pre-analyzcd

Client Cache
Qucue

Host

Replica or
Fragment

Server Host

Broker

Broker Cache Pre-analyzed

Client Host

Repiica or
Fragment

Queug Server

Client Cache
.***

Host

Broker

Replica or
Fragment

Server

| Broker Cache Pre-analyzed

Queue

Fig. 4.3.1 System architecture

insert into queue request
if Qucue length>= MaxBQL then

exchange hints with all existing remote brokers;

if exists idle broker bl then

pass hint to client to connect to idle broker bl

remove from queue;

else
if Child_Number < MaxBC then

B1BLIOTEC FAC

OE MATEMATIC

101

CLUJ-NAPOCA

DARABANT SERGIU ADRIAN

spawn local child blnew;

Run local(blnew);
pass hints to client to connect to blnew;

remove lrom qucue

else
if Max Number_ of Brokers >= MaxNB then

if exists partially free broker bfrce then

pass hints to client to connect to

bfrec:
remove from queue;

else

postpone request;
end if

else
spawn remote broker bnew;

Run_Broker(bnew, false);
pass hints to client to connect to bnew;

remove from queue
end if;

end if
end if;

else
extract request req from queue;
analyze request;
pass request hints to all remote brokers;
pre-analyze requests from queue(MPQL);
while available remote_data(remote_broker) do

retrieve_data(remote_broker);
if full_processed(req) then send result to client;
else

identify data servers;
take load hint form server;
if Max_Server_ Queue_length>=MSQL then

identify another server;
if found snew then server=snew; end if

end if;

send partial query to server; wait for results;
send results to the client; end if;

pass hints to all remote brokers queue(MPQL); if available_remote_data(remote_broker) do
mark reordering operation on queue; identify request reqcache in the queue; reorder requests in the queue end if

102

AMIULT-TIERED CLIENT-SER VER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

while available_remote_data(remote_broker) do
retrieve data(remote_broker);

if full processed(reqcache) then send result to client;
else

identify data servers;
take load hint form server;
if Max Server_ Queue_Length>=MSQL then

identify another server;
if found snew then server-snew; end if

end if;
send partial query to server;
wait for results;
send results to the client;

end if;

End procedure Run_Broker;

Procedure Run_local runs a local child on the same site. The only difference from a

remote broker is that the local child only receives information the parent process (initial
broker) and terminates as soon as serves a request to a client.

An initial broker waits for a connection and inserts the request into a queue. If

the queue does not get longer than MaxBQL the broker processes the request. It first

analyzes the query and sends hints to the other remote brokers. If there are brokers that
have related information in the cache, they send back the data. If the request is fully
processed, we return result to the client, otherwise we send the rest of the partial query
for evaluation to the identified servers and after we receive the result we combine it with

the cached information and send it back to the client. Meanwhile the queue is pre-

analyzed and identify requests for which some brokers have cached data, we reorder the

queue if possible, i.e. no other unresolved request has gone back in the queue (because
of multiple reordering). If we have such requests we take cached data and send it to the
Client. Anytime when a broker is much more loaded than others requests are routed to

the other brokers. When a broker expects to send a query for evaluation to a server, it

akes hints about server load from the server. If the server is overloaded than the broker

ries to identify another valid server. If found sends the query to the second server else

to the initial one which will become overloaded.

5. Experiments and results
In this section, we present the results of our experiments. We tested both cases

nch clients only query a single document collection distributed and fragmented

he entire network, with different number of servers. In the other case clients query

mu text collections, some of. them distributed, fragmented and replicated.

.1 Distributing a single text collection
n this section we examine the performance of the system when we divide a

large (0.8 GB), text collection among all servers. The size of the text collection

103

DARABANT SERGIU ADRIANN

For up to about 6-8 servers, a single
connection-server can handle all .

If we raise the number of servers from 8 to more the single broker rapidly tendo

multithreaded mode or passes
connections to the others. In this case we

handle all requests. managed by cach server depcnds upon the number of servers.

to go t

a

continuously improve in performance with some pauscs wnen the system adapts itsele.

the increasing load. For up to 300 clients we improve pertormance by 12.34, The

of this result is that cach Inquery server processes the data more easily. Document

most likely distributed over all the servers. This highly improves performance A

inerease the number of clients the load on the connection servers, increases and tho

tend to redirect sonme queries between them. If we choose the maximum number ce

are

we

brokers as one we have almost the same results as those presented in [1]: an increase

pertormance for l to 20 servers and up to 400 clients. This is because we us
in

ng, multithreading in our connection server. Experiments in | do not use multithreadin

fact that is the cause of their results (not asS good as these ones). They increase

performance for 1 to 8 servers and up to 256 clients. We reach just 400 clients and 20

servers because after that the network latency increases as the connection server

becomes increasingly utilized as number of clients increases. In this case, Inquery

servers perform quite well. If we replicate data on additional servers, we do not increase

performance. In this case, the network and the connection servers become, more and

more, a bottleneck. When the number of servers increases over 40 the connection server

cannot process s as much results as the servers send back.
If we increase the number of Inquery servers above 20, the connection servers

gets overloaded much more faster and becomes a bottleneck. Performance degrades, for

40 servers, 4 times when increasing the number of clients from 1-400. The result is

better in this case, also, than that from [1]. Performance degrading is 4 times, in their
case, for just 8 servers and 256 clients. In multithreaded mode, connections servers can

process as much as 16-32 requests per second. Above that, they became over utilized.
If we increase MaxNB (maximum number of brokers) the system scales much

more better as this is the point were the self adapting property becomes utilized. With

MaxNB-2 the system performs better with up to 64 servers. We see that the system
performs better as the number of clients and Inquery servers increases. We get a
speedup of 3.65 over the single connection-server model using the same number o

clients. For MaxNB=4 improves even more performance for large configurations.
Again, if we distribute just a single document collection we do not gain improvemenis

1or more than 16 Inquery servers if we replicate some fragments. This is because

Inquery servers can respond immediately to queries. If we use large queries, w gain

speedup if the number of Inquery servers is under 128. Over 128, they can respon to large queries. Under that number, they become over utilized and replication nc

ven

and helps a lot if each fragment is replicated. In this case, we can improve c doubling speed. This is happening because of the hints passed between cou servers and Inquery servers belfore evaluating a query.

by

n these cases, if we use caching, especially on the connection Serve ilar we

can improve pertormance. We observed that many times people tend t0 SCu queries many times, or, they change some terms in a query and resudmie query observed that in a large group of clients with the same "preferences" in terms

in,

sis

we

similar

similitude, caching can improve with a factor of aprox. 2. In the later cas
this

104

MULTI-TIERED CLIENT-SERVER TECHNIQUES FOR DISTRIBUTED DATABASE SYSTEMS

happening because people tend to search for similar words. This fact leads to a high
percent of reordering close transactions. Thercfore, many queries are not sent to the

servers but evaluated by the connection servers.
For MaxNB>4 and a number of Inquery servers between than 128-240 the

system performs increasingly good in the same time with the increasc in the clients
number. This is because the system scales well at the connection server level. At this
point self-adaptation facility of the system works at maximum, provided that we have
enough sites to run the system. We can only observe short time bottlenecks on the
periods when the system switches between different strategies. For a large number of
clients (more than 600), however, the number of messages exchanged over the network
increases a lot, due to the necessity for passing hints between components. At this level, caching techniqucs tend to be unutilized because the amount of different, not similar, queries exceeds the caching capacity of each node. The amount of messages exchanged over the network is very high and the network becomes a bottleneck source. For some
configurations of 8-10 connection servers and more than 240 Inquery servers, both
components, have idle periods because of the network latency. At this level of high number in Inquery servers and clients, our experiment shows that the simplified algorithm without hints works better. This result comes from the fact that the connection
servers spend a lot of time exchanging messages between them before each query and with Inquery servers in order to determine server's load.

For a even high number of Inquery servers and if no replication is present, connection servers spend a lot of time to determine the location (identify servers) of data and to process hints and messages from the other brokers. However, if the number of Inquery servers is not so high, the systenm performs better in any situation. We also think that a number of more than 400 Inquery servers is unrealistic and will not be soon implemented in any system because of the high demand in the number of different
computers to run the configuration.

5.2 Distributing mutiple text collections

In this case, the system maintains multiple text collections. In this
configuration, each client selects a random subset of the available collections to search
for. Statistics show that a client searches half of the available collections. The workload
increases both as a function of the number of clients and the number of Inquery servers.
For MaxNB=I the system performs better, in our case, due to the multithreaded

connection server. For MaxNB>2 performance increases, if we use small queries,
together with the number of Inquery servers. For TPQ=-2 we improve performance for
more than 32 Inquery servers because transaction time decreases due to parallelism. The
same result is obtained by experiments in [1]. As we add Inquery servers they respond
faster and for a MaxNB>2 the system performs quite well for 200 clients. The system
begins to adapt to the workload increase for more than 128 and 180 servers. Caching

techniques do not scale very well at this level.

6. Future Work

The system scales well for quite a lot of situations. However, we must assume

105

DARABANT SERGIU ADRIAN

stabile links between computers. Othcrwise, thc algorithms may loop foras.
not anticipate the case where a component in the system cannot respond to This happens when the system variables are updated due to system capability. There are a lot of techniques and distributcd algorithms that tabo apting these situations. Another issue is in thc caching techniques used here. We thi
can be improved in order to give bctter results even in the situations nrov they seemed inopportune.

ever. We did

self-a dgc

Count We think that they
d, werC

Conclusion
In this paper, we present a model of a distributed system that tries to alleviate sor of the problems encountered in the traditional IR system. In addition, the systemis simulated in a IR model. We think that the same solution or, a similar one, can be applied in any oher traditional system that do not scale well when overloaded. Databases scale very well to such a technique, even traditional non-distributed databases, or non-relational databases. We develop a flexible simulation based on results previously obtained on similar research and use those results in order to make a dis1ributed system adapt to the particular workload of a moment. Our results show that the system we proposed provides scalable performance on almost all kind of architectures. Replication, caching and fragmentation are ones of the methods rarely used in lR, and many times even in traditional systems. Together with data distribution on a system that adapts itself to the specific workload, they can improve speed in gathering information.

Some

REFERENCES

[1 Brandon Cahoon, Kathryn S. McKinley, Performance evaluation of a Distributed Architecture tor Information Retrieval, SIGIR 1996 conference paper. 12] Forbes J. Burkowski, Retrieval performance of a distributed text database utilizing a parallel proccso document server. In 1990 International Symposium on Databases in Parallel and Distributed Syse pages 71-79, Trinity College, Dublin, Ireland, July 1990. 15 2 Lin and z. 7hou, Parallelizing I/0 intensive applications for a workstation cluster, a case S Computer Architecture News, 21(5):15-22. December 1993. 14 Antoy Tomasic and Hector Garcia-Molina. Performance of inverted indices in shared nounig LExt document information retrieval systems. Technical report STAN-CS-92-1456, Stanford Univ 5] J. Robert Jurnp. YACSIM Reference Manual. Rice University, 1993 16 Charles I. Viles and James C. French. Dissemination of collection wide information h and
Iniormation retrieval system. In Proceedings of the 18h International Conierence o"

* Development in IR, Seattle, WA, 1995

tributed

ibuted

Research

ibuted
1 lan A. Macleof, T. Patrick Martin, Brent Nordin, and John R. Philips, Strategies for building as systems, Information Processing & Management, 23 (6):511-528, 1987

1abey-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cy Kogalniceanu 1, România. Oca, str. M.

E-mail address: dadi@cs,ubbcluj. ro

106

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

