STUDIA UNIV. BABES-BOLYAI INFORMATICA, Volume XLITI, Number 2, 1998

APPLICATION FRAMEWORK RFEUSE
USING CASE' TOOLS

DAN MIRCEA SUCIU

Abstract. The drawbacks of using the generated source code with CASE tools
are examined. The major problems found are mainly related to source code
generation for architecture classes. This code is incompatible with the application
frameworks supported by different development tools. An extension of UML
object model with application architecture classes is proposed. Is proved as well
that according a special significance to those classes affects the flexibility of
generated code and support round-trip engineering.

Key words: object-oriented analysis and design, application framework |
round-trip engineering, CASE tools, UML

1. Introduction

The user interface is an important component of an application. However, the
design, implementation and test of complex user interfaces are very expensive.

The appearance of visual development tools and environments plays an
important role in lighten graphical user interface development. These development
environments contain graphical editors, class libraries and/or sets of tools that assist the
developer in implementing interfaces functionality. Many of these environments
(especially the object-oriented ones) provide generic application architectures and
design-patterns which allow developers to focus their attention on specific elements and
functionality of applications.

In parallel with development environments, were elaborated object-oriented
methods and methodologies for analysis and design of applications and CASE tools that
support them. Many of these tools yield substantial improvements in programmer
Productivity through code generation. Unfortunately, it seems to be many reservations
about using the generated code in implementation of final applications. — The
'éservations are mainly induced by the illegibility of generated code and by the conflicts
that appear between CASE tools and the code wizards provided by development
“nvironments. These conflicts are strongly related with application architecture classes
and lead to impossibility of using round-trip engineering. .

. In section two are analyzed these conflicts and the early proposed solutions to
si,lvc them, Some of these solutions were applied in different CASE tools that support

ML, modeling language. Each of these solutions has significant dr:.»nwbacks, which
Will be discussed in this section too. Next is proposed an extension of UML language
Yithapplication architecture classes, which represents the connection between

'd P Ve : . N v o . mi
ndlyblb/desxgn models and dilferent application frameworks. In our opinion an

|
, CASE .

UML acronym for Computer Added Software Ingineering

- acronym for Unified Modeling Language
83

DAN MIRCEA SUCIU

rized by certain classes from class libray
er

. . €S beg; &
tation (called code wizards) provided by de

.work is charact
n framework 1 Velopmem

applicatio tion of implemen

oma

tools for aut ' .
i ementation of

environments. is prcscnted thc implem pro

' ' :) Posed [y
In the third ,Sctc(::;nfol' analysis and design of object-quenteq app““‘aliont
1C 9(21‘;0‘ 'T‘hc actual implementation support round-trip engineerip
UCI6b|.
[CHI9T], [S

. Ao . | !
lication framework provided by Microsoft Foundation Class (MFC) ¢|,
the applhice

i nvironment.
and Microsoft Visual C++ environme

The fourth section contains a concise enumeration of main adVantagcs and
\

' uture wor Is.
of this proposed solution, and future work proposa

extension in Roc g Usmg
SS “brary

drawbacks
2. Application framework reuse

icati] classes and frameworks _

2.1 Applfl?:(;’:a‘;rhci’;:le C;sgfating sys.tem{ and environ.melnts ex.lstten; on allﬂ;}alat\t‘?‘rms
implies developing of applications with comple*:x graphical user inter 3}3351-‘ S a.flor'th
made to realize these interfaces are considerable, even for middle or simple
applications.) _

One of the main goals of visual development environments Is to allow
application developers to focus on elements related tg problem .doma-m. Und;r
operating systems from Microsoft Windows family, environments like Visual BaSl'C,
Delphi, Visual C++ or C++ Builder (to enumerate Just a few from them) contain
resource editors and tools that automate the process of implementation of user interface
functionality.

For object-oriented development environments, class libraries play an
important role in providing effective application frameworks. A framework is an
integrated set of components that collaborate to provide a reusable architecture for 4
family of related applications, Object-oriented application frameworks are a promising
technology for reifying proven software designs and implementations in order to reduce
the cost and improve the quality of software. According to [FAY97], "a framework isa
reusable, - semi-complete - application that can be specialized to produce custom
applications",

In contrast to earljer object-oriented reuse
frameworks are targeted for particular busines

co;nrr?unications) and application dom
avionics). Frameworks like MacA

pCOM, JavaSpft's RMI, and implegxpe’n
Important role in contemporary software

techniques based on class libraries,
S units (such as data processing or ccllglﬂf
ains (such as user interfaces or real-time
ET++, Interviews, ACE, Microsoft's M}:C, and.
tations of OMG's CORBA play an increasingly
development. are
cre: Composed of general-purpose classes that d:;
ed by others in the future. We will Cu!l t}']:n.
C usual way oy i mse clas’ses define the structure of Al dpplllﬁ;“;w
aSSeS are kepy pristin eWorks are meant (o be adapted. Typict

. » . . e] , dc)
subclasses. ¢, and implementation-specific changes are mé
Adaptation b
Y subclassjp g ode
-~ ‘ | | N
and specialize user knowlcdgc ;»e hiweycr, pPresents special problems - sourc
>quir

. " . ‘. S[()
ed. This is the reason for which mo
84

APPLICATION FRAMEWORK REUSFE USING CASE TOO1 8

development environments provide tools that generate code for generic applications
and/or aid developers on entire cycle of application implementation In mfrpo inion‘
these special tools (called "code wizards") are intimately related with appl;i)catior;
frameworks.

Many a time, application frameworks
libraries. The difference between these (wo conce
is composed by classes designed for comprising or deriving into a program, an
application framework defines the structure of the program itself. In figure 1 is sh,own
the relationship between these two concepts (note that architecture classes can be
included into a more general class library, that contains general-purpose classes as

are confounded with simple class
Pts is essential. While a class library

well).
Application framework
Resources
Class library 4| Editor
— Cod
General Application B Wi;)areds ‘:
Purpose Architecture &7 \a/Source code
Classes Classes Editor

Figure 1. The relationships between class libraries, application frameworks and other components
of application development tools

A good example of application framework is, as we said, provided by
Microsoft Visual C++ development environment. This framework is composed by
application architecture classes from MFC class library and two tools that assist the
developer to describe and implement a particular application. These tools (called
AppWizard and ClassWizard) together with the resource editor lighten design and
implementation efforts for graphical user interfaces. They realize the link between
application resources and source code that handle these resources, code that is
implemented into application architecture classes.

AppWizard is used just for starting an application development and generates
several types of applications, all of which use the application framework in differing
Ways. Single Document Interface (SDI) and Multiple Document Interface (MPI)
“pplications make full use of a part of the framework called docmem/vlcw
architecture, QOther types of applications, such as dialog-based applications, form-based
applications, and DLLs, use only some of document/view architecture features. '

ClassWizard helps developers to create and manage the c!asscs in_ your
Program. ClassWizard works both with the classes created initially with AppWizard
and the clasges created later with ClassWizard. ClassWizard also lets the developers to

TOWse and edit the classes in their program. They can create classes, map messages,
override virgyga| functions, navigate through their application files, and more. . ‘

The core of the Microsoft Foundation Class Library is an cncapsuluu.on of a
lgrgc portion of the Windows API in C++ form. Library classes represent wmdo\.vs,

lalog boxes, devige contexts and other standard Windows items. These classes provide

85

h

DAN MIRCEA SUCIU

a convenient C++ member function interface to the structures ip Windows .
al the
encapsulate. . | y
p Nevertheless, as we showed previously, the Microsoft
Library also supplies a layer of additional application functionality
clncapsjulalion of the Windows APL. This layer is a working applica;

Fogndaﬁon |
bUllt on the lass

on fr -+

i " the n user interf: . ameworkf

Windows that provides most of the commo ace expected of Progra, or
Windows. Classes in this category contribute to the architecture of S for

‘ : ' o a ff'dmcwork
application. They supply functionality common to most applications,
In figure 2 are shown the principal architecture classes from

L - developing a Multiple D MEC togeqhey
with an example of using them for developing a Multiple Document In

terface Pattery
application.
________]n
MFC Architecture Classes CObject
(from MFC)
CCmdTarget
(from MFC)

_—

v I]
@ ' CDocTemplate | |
(from MFC) | | (from MFC)

|

|
|
1
|
|
|
|

|
CWindApp CView CFrameWnd | LCDiang J CDocumeﬂ
(from MFC) (fromTMFC) (from MFC) | | (from MFC) | | (from Lz
— -
feeserecnnne. Y { ..

: CSampleApp ||| CChildFrame r ‘CMainFrame ”587555‘?3006' k
; (from SampleMDI) | | | (from SampleMDI) | | (from SampleMDI) ||| (from SampleMD!

........

{ — 7+

—_— 1

| CSampleView CAboutBox J
: | (from Samplempi (from SampleMDI). :
Sa@;l_eﬂ_l)il’ altern Application Classes e ;

e
.....

--

I

‘ /.\ll MFEC applications have
fr'om CWinApp, and some sort o
CWnd (most often, the main wi;

or CDialog, all of which are

ect erived

Aly) from
ectly. Wid

at least two objects: an application Ot-)'}
f main window object, derived (often mChIrFramC
Wdow is derived from CFrameWnd, CMD
derived from CWnd).

BE

-8

APPLICATION FRAMEWORK REUSE USING CASE TOOLS

App.li.cation architecture classes from MFC model tw
of Responsibility pattcrn and Model - View - Controller pattern,

The Lham of RCSponS.‘b‘l'ty pattern is: used for windows messages and user
comman('iS routing through objects ﬁ:om application architecture. The classes that
model this dengn pattern are those derived from CCmdTarget. CCmdTarget class from
MFC library is the pasc class that encapsulates code for handling commands and
messages and managing message maps. The message maps make the link between
windows messages/user commands and member functions implemented to handle them.

CCmdTarget together with its subclasses use a set of C++ macros for declaring
and defining these message maps. Because there isn't any language mechanisms able to
control messages, there are used protocols specific to application framework.
ClassWizard helps developers to use this pattern. Nevertheless, this approach supposes
insertion of specific comments that limit handling messages source code. It is obvious
that this fact induces a particular programming discipline, increases code legibility and
eases automatic management of these message maps.

Unfortunately, this specific approach of implementation lead to conflicts when
the code generated by a classic CASE tool is used. Therefore, it is impossible to use the
both tools (ClassWizard and CASE tool) for automatic implementation of architecture
classes. These conflicts are analyzed in detail in next section.

The second design .pattern, Model-View-Controller, is modeled through
CDocument and CView classes. This pattern conceptually separates a program’s data
from the display of that data and from most user interaction with the data. In this
pattern, an MFC document object reads and writes data to persistent storage. The
document may also provide an interface to the data wherever it resides (such as in a
database). A separate view object manages data display, from rendering the data in a
window to user selection and editing of data. The view obtains display data from the
document and communicates back to the document any data changes. ‘

CDocument and CView are architecture classes. However, they can be
exploited into object-oriented models to reuse the design pattern implemented by them.
Most of actual CASE tools allow importing of class libraries and reuse of their classes
in specific application models. Unfortunately, is difficult to integrate the 1g<~:neratcd
code in final application implementations because CDocument and CYle\v c %3§ei\ are
closely related with other architecture classes from MF.C (like hC. in pp,f
CDocTemplate, CFrameWnd etc). Classwal_ codc-generatlor‘l;h mlecl a?llsbrzssis gf
contemporary CASE tools don't take in consideration the con_cepts aF aj t0 ente
MFC applications architecture. Consequently, the developer 1S constraine : 0 formed
manually for linking generated architecture classes. This t'flsk is common yp
by ClassWizard but, as we sow, this too! is -hcl.plcss to automate sl:n oth a development

This second example of conflict In lmplemcma_tlon using nerally at conflicts
environment and a CASE tool have determine us to think more gcn;rathy‘ omation
between these tools, We tried to find a solution that‘comb{ne blx:twnhcthc o
Power of application frameworks and modeling power of CASE 100
Supported by them.

0 design patterns: Chain

2.2. Round trip engineering of application architecture classes

87

DAN MIRCEA SUCIU
s the ability of a CASE tool to generate
ation .rcprescn el In this moment, many CASE tools ,
from a design moce™ of applications and allow code generatjqy,

0de
SSist
N 4

ons with graphical user interfaces e Quires
Howere? h ideal, building & CASE tf)ol that a.S,S{Stf d:,w,l,Opch both ip
resource cditors. Althoug - imp’lcmemution, debugging .and tc‘stmgD s ages rcprcs.cmy, a
analysis/design Stages .z_m ‘]llw%k In addition, the complexity of sugh tools is very high,
very difficult and Iabm'louﬁri:l‘g .is another powcrful feature Qt a CASE tool, and
tRfl:rcr:Eiliflvlgti)nZicate an analysis/design model automatically from source ¢oq,
represents the aObHL

' age.

L <icular programming languag -

written mlt{oa%anllrti;uldclnzmirmg (or cod-to-model and model-to-code generation)
ound-

: i coding, SVerce
. (he combination of modeling, code generation, 5 ‘md_rt\c{m
represents the ¢ In most cases, this task assumes generation of 4

oo into an iterative cycle. : '
engineering Into an iera : reserving ode
pagticular code, which uses specific language mech.amsm s Tor pre g the cods

added manually between generatio? ar:j reverse engineering phases. The code that

's thi i tic and not legible. '
3110\\5111isfe$t: rfhlcfv:rrlygreviously, theg design and ifnplcmentat.lon of CASE Fools 'that
aid developers in all phases of applications life cycle 1s an expensive tgsk.
Consequently, we must focus on optimizing the efforts spent for altematn(?n between
model and source code (more precisely, CASE tools and development envxror?mcn.ts).
For this reason, round trip engineering is indispensable in CASE tools functionality.
This feature must be flexible so that generated code to be compatible with code wizards
from different application frameworks.

In the same vein, another important feature is the quantity of gencrated code
for architecture classes. If a CASE tool don't have any information about application
framework structure and architecture classes behavior, the code generated for them is
dramatically reduced.

In our opinion, it is very important that a CASE tool to be more related with
the application framework. It must know the architecture and "philosophy” of
architecture classes frf)m this framework. In the same time, it must play entire or jus!
?}?en lilnml?' of code wizards from framework. Of course, these features must not break

generality of the CASE tool or of the method supported by it.

aspects i/:geraotl;):‘nowhledg.e » don't exist an approach that takes in considcration thc;‘c
prehensive way, We ¢ L . . es of (N
problems enumerated above, but these g an distinguish three approache:

The simplest a 1¢3¢ approaches can't be considered solutions ot’thcm.]
generator of CASE loolf Proag‘h, frequently encountered in practice, is to use the €U
for the developed app; ‘J,u-Sl for Flasses from problems domain, classes that are speci'™
using a dcvclopmcntp in;‘iﬁ:(l)?]n. The generated code is then transferred and mande®
exclusi ment. The links wi L C o lemenies
exclusive manually and/or using Ihe links with the user interface are implem<=

¢

analysis/desi 0 2 . A I LI
Conls}les/dcslgn models are Brésent .de yvuard. This approach is inefficient ever
ldered by ¢ode generator o rcvdrChl

N nO[
architectyre Classes will

oreat pl.oportion. developing applicati

tecture classes, because these classes 47 i

interface h; be written uge E“glneering tool. Consequently, the COIL'I‘SUr

» " N . " . . . ; 4"‘ LIS

inconcicin o> 0de used 1 . Y hand". For applications with graphicd 0
onsistencies between € massjve e

object-oria « As well, this approach can
JCCl-oriented models and soyree pproz
88 urce code.

APPLICATION FRAMEWORK REUSE USING CASE TOOLS

The second approach consists of importing the class library (especially the

architecture_classes) into a CASE tool Dl'O.iccl. The imported classes can be derived into
analysis/design mOd\CI to instantiate a parllcu!ar application architecture, Unfortunately,
this is not enough 1.“" ehm.matmg problems in transition to programming environments
because the code for‘ archltf:cture classes is generated into a “classic” manner. The
gencrated code do.esnlt lak.e In account the patterns, macros and/or comments needed by
environment apPl'Ca"O_n frameworks. ‘Therefore, the code wizards become useless,
Moreover, the connections between interface resources and generated classes must be
done from programming environment, because the CASE tools don’t have any
information about them.

The third approach supposes generation of generic application using code
wizards from programming environments. Then, the generated architecture classes will
be integrated into a model made with a CASE tool using reverse engincering. In
addition, in this case we will encounter the same problem from above paragraph. If the
code generation tool from CASE tool is used, then the framework’s specific comments,
patterns and macros will be destroyed. The advantage of this approach is that
architecture classes can be used into an analysis/design model. However, the source
code for these classes must be introduced with programming environment’s code
wizards.

Although the third approach of implementing architecture classes using CASE
tools seems to be more suitable, is far to solve the problems stated in the beginning of
this section, because the generation code can be applied only for classes from the
problem domain. Nevertheless, the task of implementing architecture classes can also
be automated. Consequently, the integration of architecture classes in analysis and
design models is just partial. o

Therefore, the classical code generation and importing class libraries thrqugh
reverse engineering are not efficient processes for handling architecture classes from
application frameworks. ,) _

In our opinion, to solve this problem the CASE tool must be Fonﬁgured in
accordance with the framework used in implementation of final application. Our
solution implies that the CASE tool can yield some a_ctlons grope.r tp frimc?work code
Wizards. This fact implies that the CASE tool will be “specialized” (it b.ccon;Ie‘%
dedicated to one or another programming environment gr frax'ncviork). In prﬁlct}ce, t 1\5/
fact doesn’t restrict the generality of tool, because the “classxcal code ge:neg zglog /T;E
be used as well. However, for developers who use the frameworks supported Dy
lool, this “specialization” will b? very importanF. - andard object oriented modeling

UML (Unified Modeling Language) is the stan ‘) e standard support
lgnguagc adopted by the Object Management Group and. ‘becz‘xme de“r} languz{gc .
for object-oriented analysis and design. Because UML 1s the mo llgwba i,
has imposed as standard, we will propose an cxtension of it to' a 0.‘ ‘IIJIP o
architecture ¢lasses handlfng Therefore, in our extension, the architecture ¢ aﬂsses are

‘ ' ’ inarily slasses with two
graphical represented in the same manncr as ordinarily UML cla o
' . . (fi These compartments show special
Supplementary optional compartments (figure 3). : application framework.
methods and attributes, those are overriding and/or l“““c,n ce the d-El Wi‘“ have specific

The attributes and methods manugcd by l'mlyﬂCl'\j{lollurcs‘ (names, types or
Properties imposed by the framework and its handling (eatures

89

DAN MIRCEA SUCIU
messages or commands handled etc).
- We

. i ources, !
i links with resot ' classes i
parameie lmpose(:ilrcc a particular implementation of theske foat res nto Rocase too]
i i i ; ‘cati ewor ures. ’
will see Se-(;t;\?l?crosol‘t Visual C++'S application fram
with respect 0
[
™ ArchitClassName
hitClassiNa
*“-f‘\"ri'll/ attributes and methods
al:type 2tho
managed by application
W/ framework
mlI(...):type3
—TeedT A
Figure 3. Graphical representation of application architecture classes

in our UML extension proposal

From UML models' point of view, the architecture classes have the same
behavior like the common classes. There are cases when these classes arc not used just
for application architecture model. ~Reuse of design patterns (like Model-View-
Controller and Chain of Responsibility patterns from MFC) is just an example of

involving architecture classes in problem’s domain model.

However, from CASE tools point of view these special classes have a different
treatment. The attributes and methods specified in those two new sections will benefit
by particular code generation and reverse engineering processes, which must satisty the
characteristics of the framework. In consequence, a CASE tool must contain special
modules for source code analysis to perform an exact integration of this code in
application framework and to ensure the round-trip engineering accuracy.

3. MFC architecture classes reuse in Rocase

analysis 511:141&;; dedlgated] for a wide range of applications [RAT97]. Object-orientcd
O o o . . . @ ~ Al J
Y gn of application using UML is inconceivable in absence of a CASE
Rocas ication i
presented abs 7picaion is a CASE tool that support UML [CHIOT]. The extersof
framework. The archiigll: ¢mented in Rocase for Microsoft Visual C++ application
that the generated code rccs:erztsc ltisszs exPO.Sed in section 2.1 are handled in Rocase 50
_ The associations betweene Wl-asswllard's needs from structural point of vieW. -
in the same way ag ClassWizard ¢ ndows messages and classes methods are rcall"/ iy
0, respecting the same patterns and using identc®

comments and

macr :

Programming environory . . octically, wh : d
Ng environment jg ’ €n prototypes are implementcd,

res . used . .
sourcesledmng, Just for generating a generic application 2
N release applicar:
Lo pplica '
;)p }'mffallons, Visual C+44 ton 'Mplementation phase, when are made
Reg[r'lmons'. Manually addedproggamn?mg environment c,an't be used witho
FAS¢ projects. - This prOCesco' ¢ Will be imported through reverse engineeri" -
e

s Al)
1S realized ip two phases: first will be UPdawd

90

APPLICATION FRAMEWORK REUSE USING

information about architecture classes, and th
R IRAR A TR ¢ » s
to update problem domain’s clagses e

CASE TOOLS

LI ML)
classic” reverse engineering is used,

3¢ ROCASE {SampleModel) - (Classes diagram for §

RN . . ampl
Bl e E& Yon Dovone Toe oy oy
(D@ & B oo i“*"'”x"‘“'“““"‘;*” R g e el
S SR e e s UV VNS B 9 g g i A
Appﬁ\aﬁ\a'ﬁ\\drk class propeéities CWinApp k CM_D|Ch;|dV\/nd A A
S U Atibates (from MFC . COocurment |= g5
e S C) | L (from MFC) , 1.
A Ty mmsanny | 1 i 21\’ it : /} { SmrS ’”’?ME&)_J,,f L7t
> < ye RN . . IR LY UM i : X .
N WmNess\)ge‘shadlers\j;:‘;‘?;i-\‘ § ™ ‘ Csa,:n;@'/igw““' 4 I :
gmuﬁ_ it ,~ ‘ tg;; FaT- PP _.-,',-’:“.‘
WM_LBUTTONUP WM_RALETTEI?TI 14 WM_LBUTTONUP "/ ~>empleDoc |7
| WM_MOUSEMOVE m_m[lusa‘r:: ¥ (] WM_MoUSEMOVE -
WM_LBUTTONDOWN FOCU i M LBUTTONDOWN ¢ 7%
WM_CHAR || PR g R Y g
wn_a%%nsﬁ:g: CMDIFrameWnd CMDIChildWnd | ,T
N . \WM_CANCEIM(> (from MFC) (fromMFC) | —
CMainFrame | CChildFrame
T_CREATE !

0 Clesepane:
>] {csampieview
emp\Sample\Sampleview cop

‘|ipeoI_copy
ID_EDIT_CUT
Ji0ZepiT"PASTE
i/ JIDZEDIT_UNDO ‘
Membey Jurctions: | L
[:A4¥ OninitialUpdate
m OnlButtonDown
7% onlButonlp ON_WM_LBUTTONUP
" |W OnMouseMove ON_WM_MOUSEMOVE
-1V DnPreoaiePrintina

shbabuik el AR e ;‘;;\
Descipfion! ‘Indic ates when left mouse bullon is pressed SR

K

AT} .:,:~ i i ‘,‘f"". 3:..3

Figure 5. Modifications made into architecture classes from Rocase
' are visible in ClassWizard window

modifications (especially addition/deletion of
ithout affect the code structure. Thus,
ated conflicts are excluded.

o Moreover, later model
architecture classes) will be reflected in code W
round-trip engincering if full supported and the st

91

DAN MIRCEA SUCIU

alized in Rocasc that contains archj
Figure 4 ghclg'ﬁwc;:izglz lgligzlelzmods for class C%gmpleView thatlt

classes. F'rfmll\l){l(;]c)a» WM MOUSEMOVE and WM_LBUT IONDOWN
WM_LBU FO) :r'ued code, presented below, 1s recog“fzed. by ClasssWizard
mESSa gw1 e E’T;:;/s‘‘,s_:clwration was implemented a special interpreter that pa
5()*'Pl>12nsm((‘)lm\:\«' ﬁics. The .CLW file is used by ClassWizard to stock e

information about architecture classes.

CClure
'handle
Indowg
(ﬁgUm
rse H,
Ssentig]

R ———

| 7/ ({AFX_MSG (CSampleView) . o :
! af;{msg“void OnLButtonUp (UINT nFlags, CPo+nt po%nt):

| afxfmsg void OnMouseMove (UINT nFlags, CP01n? po;nF), ‘
afx msg void OnLButtonDown(UINT nFlags, CPoint point),

'/})}AFX MSG

—_—
e

BEGIN_MESSAGE_MAP (CSampleView, CView)
//{{AFX_MSG_MAP (CSampleView)

ON_WM_LBUTTONUP ()

ON_WM_MOUSEMOVE ()

ON_WM_LBUTTONDOWN ()
//}}AFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView: :OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT, CView: :0OnFilePrint)

ON_COMMAND (ID_FILE_PRINT PREVIEW, CView::0OnFilePrintPreview)
END_MESSAGE MAP () '

/

L

Figure 6. Declaration of methods that handle three Windows messages. The highlighted lines are
generated with Rocase, and they respect the ClassWizard conventions

4. Conclusions

lr‘1 this paper we analyzed the conflicts arise between CASE tools and
programming environments. These conflicts consist in incompatibility of source code

generated by CASE tools with code wizards specific to application frameworks
provided by programming environments,

At this time there are CASE tools i i jon i C
8 that iree
code (Rhapsody [HAR97], Cx)VERS [E aveld developer intervention in so

simulators and don’y’ These tools provide compilcfs andf
generated code. Unfo onment for manually completion
ited just for prototypes and not for
editors and/or debugging tools. AS®
the conflicts pointed in our Papre!

L dl)pllcat on is i >
rsisL 10n s lmplembnted,

For ameliorating

s : these : L le
dependence of CASE tools b o contlicts, —our approach involve an inevitable

- S
ments. The dependency of @ C*

o

111 . N r'n(l n
ar 1unguage OF Envi On must be accomplished without taking
X, our mcthod |

e as the qadv, _ _ o
del can be realized advantage (hat the inclusion of arc
92

. hiteeture
1l any stage of application |ife cycle. This meth?

APPLICATION FRAMEWORK REUSE USING CASE TOOLS

is very useful fo.r pr.olot?'pi.ng phase, when the intervention in code is eliminated. When
the release apphcat_non is lmple‘mented, the generated code can be improved using the
code wizards provided by environment. In this way, round-trip engineering is well

suppOﬂCd.

The approach analyzed in this paper was experimentally implemented into

Rocase, 4

CASE tool that support UML, for Microsoft Visual C++s application

framework. At this time in Rocase is implemented just code generation for methods
that handle Windows messages. In future, code generators for methods that handle user
commands and member variables associated to dialog controls will be implemented.

References

(BOZ94a]

[BOZ94b)

[CHI96]
[CHI9T]

[EXP98]
[FAY97]

[HAR97]
[ON196]
[RAT97]
[RED96]
[SUC96a)
[SUC96b]

(SUC98)

Babes-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj

Dorel BOZGA, Dan CHIOREAN, Alin FRENTIU, Bogdan RUS, Vasile SCUTURICI, Dan SUCIU,
Dan VASILESCU, OOA&D: the transition among models, Preprint No. 5, 1994, pp. 37-44

Dorel BOZGA, Dan CHIOREAN, Alin FRENTIU, Bogdan RUS, Vasile SCUTURICI, Dan SUCIU,
Dan VASILESCU, RO-CASE - CASE Tool for Object-Oriented Analysis and Design, Preprint No. 3,
1994, pp. 29-36

Dan CHIOREAN, Instrumente CASE pentru analizd si proiectare orientatd-obiect, PC REPORT, 46,
1996, pp. 24-27

Dan CHIOREAN, Iulian OBER, Marian SCUTURICI, Dan SUCIU, Present and Perspectives in the
Object-Oriented Analysis & Design — The RO-CASE Experience, The Third International Symposium
in Economic Informatics, Bucharest, May, 1997, pp. 23 - 29

Experimental Object Technologies, COVERS - Reference Manual, Release 3.1, 1998

Mohamed FAYARD, Douglas SCHMIDT, Object-Oriented Application Frameworks, guest editorial
for the Communications of the ACM, Special Issue on Object-Oriented Application Frameworks,
Vol. 40, No. 10, October 1997, available on internet at http/www cs wusth.edw/~schmidv/CACM-

frameworks html
David HAREL, Eran GERY, Executable Object Modeling Using Statecharts, IEEE Computer,

30(7):,pp. 31-43, July, 1997 :
Fritz ONION, Andrew HARRISON, Chain of Responsibility and Command Targets, C++ Report,

vol. 8(7), July 1996, pp. 57-63
RATIONAL Software Corporation, UML Proposal to the Object Management Group, version 1.1, 1

Sept. 1997, available on Internet at htp.//www.rational com/
David REDMOND-PYLE, GUI Design Techniques for Object Oriented Projects, Object Expert, vol.

2(1), November/December 1996, pp. 24-28
Dan SUCIU, O analizd a trei instrumente CASE: S-CASE, Ra

REPORT, July, pp. 32- 35, 1996,
Dan SUCIU, RO-CASE — Istoria

40-41, 1996
Dan SUCIU, Iulian OBER, Contrucfia sistemelor software - OPEN/OML, PC REPORT, Feb. 1998,

pp. 28-32

tional ROSE §i Rational CRC, PC

dezvolidrii unui instrument CASE autohton, PC REPORT, July, pp.

-Napoca, str. M.

Kogalniceanu 1, Roménia.
E-mail address: t zutzu@cs .ubbcluj. ro

93

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

