
IDA UNIV. BABE^-BOLYAI, INFORMATICA, Volume XLIII, Number 2, 1998

APPLICATION FRAMEWORK REUSE
USING CASE' TOOLS

DAN MIRCEA SUCIU

Abstract. The drawbacks of using the generated source code with CASE tools
are examined. The major problems found are mainly related to source code
generation for architecture classes. This code is incompatible with the application

frameworks supported by different development tools. An extension of UML
object model with application architecture classes is proposed. Is proved as well
that according a special significance to those classes affects the flexibility of
generated code and support round-trip engineering.

Key words: object-oriented analysis and design, application framework

round-trip engineering, CASE tools, UML

1. Introduction

The user interface is an important component of an application. However, the
design, implementation and test of complex user interfaces are very expensive.

The appearance of visual development tools and environments plays an
important role in lighten graphical user interface development. These development
environments contain graphical editors, class libraries and/or sets of tools that assist the
developer in implementing interfaces functionality.
especially the object-oriented ones) provide generic application architectures and
design-patterns which allow developers to focus their attention on specific elements and
functionality of applications.

Many of these environments

In parallel with development environments, were elaborated object-oriented
methods and methodologies for analysis and design of applications and CASE tools that
Support them. Many of these tools yield substantial improvements in programmer

productivity through code generation. Unfortunately, it seems to be many reservations

about using the generated code in implementation of final applications.
reservations are mainly induced by the illegibility of generated code and by the contlicts
nat appear between CASE tools and the code wizards provided by development

nvironments. These conflicts are strongly related with application architecture classes
and lead to impossibility of using round-trip engineering

The

solve Some of these solutions were applied in differcnt CASE tools that support
will i sCussed in this section too. Next is proposed an extension of UML language

CASE cronym for Computer Added Software Engineering8

Section two are analyzed these conflicts and the early proposed solutions to

nodeling language, Each of these solutions has significant drawbacks, Which

anL Pp1cation architecture classes, which represents the connection between

design models and different application frameworks. In our opinion an

acronym 1 for Unified Modeling Language
83

DAN MIRCEA SUCU

application
framework is characterized by certain classes from class 1:1

tools for automation of implemcntation (called code WIzards) provided by do D libraries beside
velopment

In the third section is presented the implementation of nr

extension in Rocase, a tool for analysis and desIgn of object-oriented
tion of proposed UML

environments.

applications
ng using Class (MFC) class brary the application framework provided by Microsoft Foundatio

and Microsoft VisualC++ environment.

[CHI97], [SUC96b]. The actual implementation support round-tri engirnee

and
The fourth section contains a concise enumeration of main advant

drawbacks of this proposed solution, and future work proposals.

2. Application framework reuse

2.1. Application architecture classes and frameworks
The graphical operating systems and environments existent on all platforms

implies developing of applications with complex graphical user interfaces. The efforts
made to realize these interfaces are considerable, even for middle or simle

applications.
One of the main goals of visual development environments is to allow

application developers to focus on elements related to problem domain. Under
operating systems from Microsoft Windows family, environments like Visual Basic, Delphi, Visual C++ or C++ Builder (to enumerate just a few from them) contain
resource editors and tools that automate the process of implementation of user interface
functionality.

For object-oriented development environments, class libraries play an

A framework is an important role in providing effective application frameworks. integrated set of components that collaborate to provide a reusable architecture for a family of related applications. Object-oriented application frameworks are a promising technology for reifying proven software designs and implementations in order to reduce the cost and improve the quality of software. According to [FAY97], "a framework id reusable, semi-complete application that can be specialized to produce Cusiou applications".
n contrast to earlier object-oriented reuse techniques based on class libraries frameworks are targeted for particular business units (such as data processing or communications) and application domains (such as user interfaces or avionics). Frameworks like MacApp, ET++, Interviews, ACE, Microsolt's nl

DCOM, JavaSoft's RMI, and implementations of OMG's CORBA play an in
important role in contemporary software developnment.

ellular
l-tine

and

Application frameworks are composed of general-purpose all then
are intended by their creators to be adapted by others in the future. application architecture classes. These classes define the structure O

Subclassing is the usual way that frameworks are meant to be adapted.
architecture classes are kept pristine, and implementation-specific cna
subclasses.

ically, the

Adaptation by subclassing, however, presents special probIems
and specialized user knowledge are required. This is the reason toOr

-Source code

of
on for which most

84

APPLICATION FRAMEWORK REUSE USING CASE TOOLS
doelopment environments provide tools that generate code for generic applications r aid developers on entire cycle of application implementation. In our opinion, these special tools (called "code wizards") are intimately related with application

an

frameworks.

Many a time, application frameworks are confounded with simple class ihraries. The difference between these two concepts is essential. While a class library is composed by classes designed for comprising or deriving into a program, an application framework detines the structure of the program itself. In figure 1 is shown
the relationship between these two concepts (note that architecture classes can be included into a more general class library, that contains general-purpose classes as
well).

Application framework
| Resources

Class library Editor

Code General Application
Architecture

Wizards
Purpose
Classes

Source code
Classes Editor

Figure 1. The relationships between class libraries, application frameworks and other components
of application development tools

A good example of application framework is, as we said, provided by
Microsoft Visual C++ development environment. This framework is composed by
application architecture classes from MFC class library and two tools that assist the
developer to describe and implement a particular application. These tools (called
AppWizard and ClassWizard) together with the resource editor lighten design and
mplementation efforts for graphical user interfaces. They realize the link between
application resources and source code that handle these resources, code thatis
implemented into application architecture classes.

AppWizard is used just for starting an application development and generates
SEveral ypes of applications, all of which use the application framework in differing

Single Document nterface (SDI) and Multiple Document Interface (MDI)
Pcations make full use of a part of the framework called document/view
ecture. Other types of applications, such as dialog-based applications, form-based
PPcalions, and DILLs, use only some of document/view architecture features.

ways.

Class Wizard helps developers to create and manage the classes in your

ram. Class Wizard works both with the classes ereated initially with AppWizard
e classes created later with ClassWizard. Class Wizard also lets the developers to

and edit the classes in their program. They can create classes, map messages,
Crride virtual functions, navigate through their application files, and more.

The core of the Mierosoft Foundation Class Library is an encapsulation of a

d.portion of the Windows API in C++ orm. Library classes represent windows,
gboxes, device contexis and other standard Windows items. These classes provide

85

DAN MIRCEA SUCIU

a convenient C++ member function interface to the structures in w:.
Wind that they

encapsulate.
Nevertheless, as we showed previously, the Microsoft Foun.

dation Class
encapsulation of the Windows API. This layer is a working application fram
Windows that provides most of the common user interface expected of e

Library also supplies a layer of additional applicatia functionality built
on the Ct+

work for
Classes in this category contribute to the architecture of a iramework for Windows.

application. They supply functionality common to most applications.
In figure 2 are shown the principal architecture classes from MEC tos

with an example of using them for developing a Multiple Document Interface Pa
applicatiom.

MFC Architecture Classes
CObject

(from MFC)

CCmdTarget
(from MFC

CWnd CDocTemplate
(from MFC) (from MFC)

CWindApp CView CFrameWnd
(from MFC)

CDialog CDocument
(from MFC) (from MFC) (from MFC) (from MFC)

o***ew* *

********"

CSampleApp CChildFrame CMainFrame CSampleDoc
(from SampleMDI)]from SampleMDI) (from SampleMDI)(from SampleMD)

CSampleView
(from SampleMDI)

Sample MDI Pattern Application Classes

CAboutBox

(from SampleMD)
*** **************°°"a*" ***"****s**u*** nen*.*************

igure 2. Class hierarchy for MDI applications architecture
All MFC applications have at least two objects: an applica directly)

derived

from CW inApp, and some sort of main window object, derivea (o CWnd (most often, the main window is derived from CFrame wna or CDialog, all of which are derived from CWnd).

CMDIFrame W

86

APPLICATION FRAMEWORK REUSE USING CASE TOOLS

Application architecture classes from MFC model two design patterns: Chain
af Responsibility pattern and Model View - Controller pattern.

The Chain of Responsibility pattern is used for windows messages and user
commands routing through objects from application architecture. The classes that
model this design pattern are those derived from CCmdTarget. CCmdTarget class from
MFC library is the basc class that encapsulates code for handling commands and

messages and managing message maps. The message maps make the link between
windows messages/user commands and member functions implemented to handle them.

CCmdTarget together with its subelasses use a set of C++ macros for declaring
and defining these message maps. Because there isn't any language mechanisms able to

control messages, there are used protocols specific to application framework.
ClassWizard helps developers to use this pattern. Nevertheless, this approach supposes

insertion of specific comments that limit handling messages source code. It is obvious
that this fact induces a particular programming discipline, increases code legibility and

eases automatic management of these message maps.
Unfortunately, this specific approach of implementation lead to conflicts when

the code generated by a classic CASE tool is used. Therefore, it is impossible to use the

both tools (ClassWizard and CASE tool) for automatic implementation of archite cture
classes. These conflicts are analyzed in detail in next section.

The second design .pattern, Model-View-Controller, is modeled through
CDocument and CView classes. This pattern conceptually separates a program's data

from the display of that data and from most user interaction with the data. In this

The pattern, an MFC document object reads and writes data to persistent storage.

document may also provide an interface to the data wherever it resides (such as in a

database). A separate view object manages data display, from rendering the data in a

window to user selection and editing of data. The view obtains display data from the

document and communicates back to the document any data changes.

CDocument and CView are architecture classes. However, they can be

exploited into object-oriented models to reuse the design pattern implemented by them.

Most of actual CASE tools allow importing of class libraries and reuse of their classes

in specific application models.

cOde in final application implementations because CDocument and CView classes are

Closely related with other architecture classes from MFC (like CWinApp,

CDocTemplate, CFrameWnd etc).
Contemporary CASE tools don't take in consideration the concepts that lay on basis of

rapplications architecture. Consequently, the developer is constrained to add code

anually for linking generated architecture classes. This task is commonly performed

y lass Wizard but, as we sow, this tool is helpless to automate it.

Unfortunately, is difficult to integrate the generated

Classical code-generation mechanisms of

env and a CASE tool have determine us to think more generally at contlicts his second example of conflict in implementation using both a development

LWCen these tools. We tried to find a solution that combine both the automation

OWer of application frameworks and modeling power of CASE tools with the methods

Supported by them.

2.2. Round trip engineering of application architecture classes

87

DAN MIRCEA SUCIU

tool to generate
Code In this moment, many CASE tools assist

automatically
from a design

model.

developers on analysis and design phases of applicati

great proportion.

Code generation
represents

the ability of a CAS

allow code generat in a

requires
opers t However,

devcloping
applicalions

with graphical user interfacec

oth in

analysis/design stages and in implementation,
debugging and testing stages

very
diflicult and laborious task. In addition, the complexity of such tools is

feature of a CASE

Reverse engineering is another powerful feature of a CASE too

de
represents the ability to create an analysis/design

model automatically from souure

resource
editors. Although ideal, building a CASE tool that assists develon

presents a

written into a particular programming language.

represents the combination of modeling, code generation, Coding, and rever se

In most cases, this task assumes generation ofa

Round-trip engineering (or cod-to-model and model-to-code ration)

particular code, which uses specific language mechanisms for preserving the code

The code that

engineering into an iterative cycle.

added manually between generation and reverse engineering phases.

allows this feature is cryptic and not legible.

As we shown previously, the design and implementation of CASE tools that

aid developers in all phases of applications life cycle is an expensive task.

Consequently, we must focus on optimizing the efforts spent for alternation between
model and source code (more precisely, CASE tools and development environments).
For this reason, round trip engineering is indispensable in CASE tools functionality.
This feature must be flexible so that generated code to be compatible with code wizards

from different application frameworks.
In the same vein, another important feature is the quantity of gencrated code

for architecture classes. If a CASE tool don't have any information about application

framework structure and architecture classes bchavior, the code generated for them 1s

dramatically reduced.
n our opinion, it is very important that a CASE tool to be more related with

t must know the architecture and "philosophy" ot the application framework.

architecture classes from this framework. In the same time, it must play entire or st

partial role of code wizards from framework. Of course, these features must not cak
the generality of the CASE tool or of the method supported by it.

After our knowledge, don't exist an approach that takes in consideration tne aspects into a comprehensive way. problems enumerated above, but these approaches can't be considered solutions ade

We can distinguish three approaches ot
The simplest approach, frequently encountered in practice, is to us

the generator of CASE tools just for classes from problems domain, classes tnat a using a development environment. The links with the user intertace C anaged
for the developed application. The generated code is then transferreu

specilic

Cxclusive manually and/or using a code wizard. This approach is inein analysis/design models are present architecture classes, because u
considered by code generator or reverse engineering tool. Consequc
architecture classes will be written "by hand". For applications w
interface this code used to be massive.

ented

even il in

Ses are no
code for

ical user

inconsistencies betwcen objecl-oriented models and source code.

As well, this approach can
ead to

88

APPLICATION FRAMEWORK REUSE USING CASE TOOLS
The second approach consists of importing the class library (especially the

hitecture classes) into a CASE tool project. The imported classes can be derived into
analysis/design modcl to instantiate a particular application architecture. Unfortunately, this is not enough for eliminaling problems in transition to programming environments

hecause the code for architecture classes is generated into a "classic" manner.
The

oenerated code doesn't take in account the patterns, macros and/or comments needed by

Therefore, the code wizards become useless.
Moreover, the connections between interface resources and generated classes must be
done from programming environment, because the CASE tools don't have any

environment application frameworks.

information about them.

The third approach supposes generation of generic application using code

wizards from programming environments. Then, the generated architecture classes will
be integrated into a model made with a CASE tool using reverse engincering. In

addition, in this case we will encounter the same problem from above paragraph. If the
code generation tool from CASE tool is used, then the framework's specific comments,
patterns and macros will be destroyed. The advantage of this approach is that
architecture classes can be used into an analysis/design model. However, the source

code for these classes must be introduced with programming environment's code

wizards
Although the third approach of implementing architecture classes using CASE

tools seems to be more suitable, is far to solve the problems stated in the beginning of
this section, because the generation code can be applied only for classes from the

problem domain. Nevertheless, the task of implementing architecture classes can also
be automated. Consequently, the integration of architecture classes in analysis and

design models is just partial.
Therefore, the classical code generation and importing class libraries through

reverse engineering are not efficient processes for handling architecture classes from

application frameworks.
In our opinion, to solve this problem the CASE tool must be conf+gured in

accordance with the framework used in implementation of final application. Our

Solution implies that the CASE tool can yield some actions proper to framework code

wizards. This fact implies that the CASE tool will be "specialized" (it becomes

edicated to one or another programming environment or framework). In practice, this

act aoesn't restrict the generality of tool, because the "classical" code generation may

DE used as well. However, for developers who use the frameworks supported by CASE

10o1, this "specialization" will be very important.
UML (Unified Modeling Language) is the standard object oriented modeling

age adopted by the Object Management Group and became the standard support

cc-oriented analysis and design. Because UML is the modeling language that

nposed as standard, we will propose an extension of it to allow application

ure classes handling. Therefore, in our extension, the architecture classes are

a represented in the same manner as ordinarily UML classes with two

has

suppl optional compartments (figure 3). These compartments show special

s and attributes, those are overriding and/or intluence the application framework.

ne attributes and methods managed by framework will have specitic

Polues imposed by the framework and its handling features (names, types or

prope

89

DAN MIRCEA SUCIU

etc). We
parameters imposed, links with resources, messages or commands handlad ocase tool,

will see in section three a particular
implementation

of these classes into

with respect of Microsoft
VisualC++°s

application
framework features

ArchitClassName

al:typel
attributes and methods

managed by application
framework

:ype

m(..type3

archMethodT

Figure 3. Graphical representation of application architecture classes

in our UML extension proposal

From UML models' point of view, the architecture classes have the same

behavior like the common classes. There are cases when these classes are not used just

for application architecture model. Reuse of design patterns (like Model-View.
Controller and Chain of Responsibility patterns from MFC) is just an example of

involving architecture classes in problem's domain model.
However, from CASE tools point of view these special classes have a different

treatment. The attributes and methods specified in those two new sections will benetit

by particular code generation and reverse engineering processes, which must satisty the
characteristics of the framework. In consequence, a CASE tool must contain special
modules for source code analysis to perform an exact integration of this code in

application framework and to ensure the round-trip engineering accuracy.

3. MFC architecture classes reuse in Rocase
UML is dedicated for a wide range of applications [RAT97}. Object-orient analysis and design of application using UML is inconceivable in absence of a CAd tool.

Rocase application is a CASE tool that support UML [CHI97]. The extensi presented above was implemented in Rocase for Microsoft Visual C++ applca framework. The architecture classes exposed in section 2.1 are handled in ko
case SO

that the generated code respects the ClassWizard's needs from structural pointolied iew The associations between Windows message in the same way as Class Wizard do, respecting the same patterns ana us comments and macros.
ges and classes methods are real

Ientical
g

programming environment is used just for eenerating a generic applica resources editing.
Practically, when prototypes are implemented, the

or

In release application implementation made code

any
optimizations, Visual C++ programming environment cant o
restrictions. Manually added code will be imported through revei
Rocase projects.

phase, when are

neering in

the 1 his process is realized in two phases: first wil D
90

APPLICATION FRAMEWORK RFUSE USING CASE T0OLS in formation about architecture classes, and then a "classic" reverse enginecring is used, to update problem domain's classes.

ROCASE {SampleModel) [Classes diagtam tor Samplej BEe Edi View Ophons Tools Window Help

PN? atbl 7
CWinApp Appframework class propeuties

Atrbues
CMDIChildWnd CDocunent (from MFC) frorn MFCc) (frorn MFC Methods

Winiessages hadlers CSampleApp CSampleView
New WinMs9
wM_LEUTTONUP
wM_MOUSEMOVE
wM_LBUTTONDOWN WM DESTROOY

CSampleDoc wM_PALETTEI
WM_MENUSEL
wM KILLFOCU

WM_LBUTTONUP
VwM_MOUSEMOVE
WM_LBUTTONDOVI

WM_CHAR
WM_SPOOLER
WM_MOUSEAC
WM CANCELM

CMDIFrameWnd CMDIChildWnd
(from MFC) (from MFC)

CMainFrame CChildFrame

Pro Dve. es Pop VoM_CREATE

Ready NUM,

Figure 4. Round-trip engineering of architecture classes in Rocase

MFC ClossWizard
Mesiage MapsMember Viables AOmaion ActvEven Clars Info

Class b30me Eigect Add Class
Sampe 1CSangleView

DNTempNSampe iSampleviewh D:TemplSenoelSampleview cep
Nesages

WM_HELPINFO
WM_HSCAOL

WM_KEYDOWN
WM_KEYUP
WM KILLFOCUS
wM LBUTTONDBLCLK

WM LBUTTONDDWN

Delele Functon Obiect1Ds
CSampleNiew
D_APP_ABOUT

IDAPP_EXIT
ID EDIT COPY
ID_EDIT_CUT
ID_EDIT_ PASTE

iD_EDIT_UNDO

Ed Code

Mamber lunction
OnlnitalUpdate

OnLButonDown
W OnlLButtonUp
WOnMouseMove

IOnPiedaiePriruna

ON WM LBUTTONDOWN
ON_WM_LBUTTONUP

ON_WM_MOUSEMOVE

Doscription Indicates when lefi nouse bulton piessed

Cancel

Figure 5. Modifications made into architecture classes from Rocase

are visible in Class Wizard window

addition/deletion of
Moreover, modifications (especially later model

Cnltecture classes) will be rellected in code without affect the code structure. Thus,

p engineering if full supported and the stated contlicts are excluded. ro

91

DAN MIRCEA SUCIU

Figure 4 shows a sample model realized in Rocase that contains

WM LBUTTONUP, WM_MOUSEMOVE and WM_LBUTTONDOWN

messages. The generated code, presented below, is recognized by Cla

5). To perform this generation was implemented a specC1al interpreter that nare

.CPP and .CLW files.

information about architecture classes.

classes. From Rocase was added three methods for class CSampleVie. indows ccture ndle

ClasssWizard (fig

The .CLW file is used by Class Wizard to stock escan ntial

//{AFX_MSG (CsampleView)

afx_msg void OnLButtonUp (UINT nFlags, CPoint point) ;

afx_msg void OnMouseMove (UINT nFlags, CPoint point);

afx_ msg void OnLButtonDown (UINT nFlags, CPoint point)

//)APX_MSG

SEGIN_MESSAGE_MAP (CS amp leView, CView)
// {AFX_MSG_MAP (CSampleView)

ON_WM LBUTTONUP ()
ON WMMOUSEMOVE ()
ON WM LBUTTONDOWN ()

//}AFx_MSG_MAP
7Standard printing commands

ON_COMMAND (ID_FILE_PRINT, CView: :OnFilePrint)
ON_COMMAND (ID_FILE_PRINT_DIRECT, CView: : OnFilePrint)
ON_COMMAND (ID_FILE PRINT PREVIEW, CView: :OnFilePrintPreview)

END_MEsSAGE_MAP ()

Figure 6. Declaration of methods that handle three Windows messages. The highlighted lines are

generated with Rocase, and they respect the ClassWizard conventions

4. Conclusions

In this paper we analyzed the conflicts arise between CASE Lools and programming environments. These conflicts consist in incompatibility of source couc generated by CASE tools with code wizards specific to application frameworks provided by programming environments.
At this time there are CASE tools that avoid developer intervention in sou urce code (Rhapsody [HAR97], COVERS [EXP98). These tools provide compilers and Simulators and don't need a programming environment for manually compleno generated code. bf

for Unfortunately, this tools are suited just for prototypes and
not release applications. They don't provide resource editors and/or debugging tooi result, when a final application is implemented, the conflicts pointed m

As a

persist. aper

For ameliorating these conflicts, our approach involve a
dependence of CASE tools by programming environments. The dependen
tool by a certain environment seems not to be a satisfactory soluuou
generality of incipient stage of application development is reduced. Also, i
that both analysis and design of an application must be accomplished wu
consideration a particular language or environment.

inevitable

solution, because
ll known

plished without taking
However, our method has the advantage that the

classes into a model can be realized in any stage of application life cy
age that the inclusion of

architecture

92 his method

APPLICATION FRAMEWORK REUSE USING CASE TOOLS

is very useful for prototyping phase, when the intervention in code is eliminated. When
the release application is implemented, the generated code can be improved using the
code wizards provided by environment. In this way, round-trip engineering is well
code

supported.

The approach analyzedin this paper was experimentally implemented into
Rocase, a CASE tool that support UML, for Microsoft Visual C+s application
framework. At this time in Rocase is implemented just code generation for methods

that handle Windows messages. In future, code generators for methods that handle user
Commands and member variables associated to dialog controls will be implemented.

References

Dorel BOZGA, Dan CHIOREAN, Alin FRENTIU, Bogdan RUS, Vasile SCUTURICI, Dan SUCIU,
Dan VASILESCU, O0A&D: the transition among models, Preprint No. 5, 1994, Pp. 37-44
Dorel BOZGA, Dan CHIOREAN, Alin FRENTIU, Bogdan RUS, Vasile SCUTURICI, Dan SUCIU,
Dan VASILESCU, RO-CASE -CASE Tolfor Ohject-Öriented Analysis and Design, Preprint No. 5,

1994, pp. 29-36
Dan CHIOREAN, Instrumente CASE pentru analiz� _i proiectare orientat�-obieci, PC REPORT, 46,

1996, pp. 24-27
Dan CHIOREAN, Iulian OBER, Marian SCUTURICI, Dan SUCIU, Present and Perspectives in the

Object-Oriented Analysis & Design - The RO-CASE Experience, The Third International Symposium

in Economic Informatics, Bucharest, May, 1997, pp. 23 -29
Experimental Object Technologies, COVERS - Reference Manual, Release 3.1, 1998
Mohamed FAYARD, Douglas SCHMIDT, Object-Oriented Application Frameworks, guest editorial

for the Communications of the ACM, Special Issue on Object-Oriented Application Frameworks,
Vol. 40, No. 10, October 1997., available on internet at http://www cs.wustl.edu-schmidt/CACM

frameworks.htmi David HAREL, Eran GERY, Executable Object Modeling Using Statecharts, IEEE Computer,

30(7):.pp. 31-43, July, 1997
Fritz ONION, Andrew HARRISON, Chain of Responsibility and Command Targets, C++ Report,

vol. 8(7), July 1996, pp. 57-63

RATIONAL Software Corporation, UML Proposal to the Object Management Group, version l. I, 1

Sept. 1997, available on Internet at http./www.rational com/

[BOZ94a]

(BO7946]

ICHI96]

[CHI97

EXP98]
FAY97]

[HAR97]

[ONI96
[RAT97]

RED96] David REDMOND-PYLE, GUI Design Techniques for Object Oriented Projects, Object Expert, vol.

2(1), November/December 1996, pp. 24-28

Dan SUCIU, O analiz� a trei instrumente CASE: S-CASE, Rational ROSE �i Rational CRC, PC

REPORT, July, pp. 32-35, 1996,
[SUC96a]

SUC96b] Dan SUCIU, RO-CASE- Istoria dezvol1äri unui instrument CASE autohton, PC REPORT, July, pp.

40-41, 1996
SUc98) Dan SUCIU, lulian OBER, Contruc�ia sistemelor sofware - OPEN/OML, PC REPORT, Feb. 1998,

pp. 28-32

5abe_-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, str. M.

Kogalniceanu 1, România.
E-mail adadress: tzutzu@cs. ubbcluj. Iro

o3

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

