
STUDIA UNIV. "BABES BOLYA", INFORMATICA, Volume XLIIL, Number 2, 1998

DATA DISTRIBUTIONS FOR PARALLEL PROGRAMs

VIRGINIA NICULESCU

ABSTRACT. The data distributions have a serious impact on the time com-

plexity of parallel programs. This paper presents simple distributions of ar

rays and matrices and introduces set distributions of same kinds of data. The
set distributions are used when the number of processors is greater than the

data input size. The work-load properties of these distributions and their im-

pact on the number of communications are discussed. In order to illustrate

the possibilities to chose the best distribution for a program, some examples

are presented.

1. INTRODUCTION

Many models of parallel programs use distributed data objects, like arrays or

matrices. Each part of a data object is assigned to a process. In a parallel pro-

gram, processes can independently perform operations on their data until a global
information is needed. The communication processes are responsible for combining
and collecting global information via message passing. This causes synchronisa

tion points in the parallel program, which usually lead to waiting times. The

impact of distributions on the time complexity of a parallel program is theretore

an important issue.

A model for parallel programs design can consider a parallel program as
number of cooperating parameterised processes with similar structures. Thes

are inperative programs. A parallel programs is specified using para
eterised functional specifications, for each process, with parameterized precon
tions and postconditions (given in a Hoare form):

Qg}S.q{R.q}, 0 <q<p.
Such a specification forms the starting point for a parallel prograu derivato

formal construction of parameterised processes constituting a parallel progrant

Here are diseussed stutic distributions, and the possibilities to chose the r
distribution for a parallel progran, before developing it. u a static distribu

best

ution

the assignments does not change during the execution of the progran. i ine
are

presented two kind of distributious, classified on the ratio between the data
SIze

T, and the processes number p:

lf n 2pthere are simple distributions defined by single-valued funct tions

64

DATA DISTRIBUTIONS FOR PARALLEL IPROGRAMS
65 Tf 1 p there are set distributions defined by set-valued mappings.

11. Notations. A notation tor quautifications is used

(ok: Q E)

hereis a quantitier (2, V, max, .. .), k 1s the list of bound variables, O is the
predio dieate describing the domain ot the bound variables, and E is an expressio. Ption application is denoted by an intix, left associative dot '.' operator. The lambda calcul is used in the definition of the distribution functions.

i: 0<i<n: i) is denoted by n. The integer division and remainder use the
The set

symbols / and , respectively.

2. SIMPLE DISTRIBUTIONs

The simple distributions are characterized by:
the number of elements assigned to one process,
the data distribution on processes.

f the data input is a vector, the simple distribution is called one-dimensional dis-

tribution, and if it is a multi-dimensional array, the distribution is called Cartesian
distribution [1].

2.1. One-dimensional Distributions.

defintion 1. D = (6, A, B) is called a distribution, if A and B are finite sets, and
2S amapping from A to B. Set A specifies the set of data objects (an arTay with
elements), and the set B specifies the set of processes, which is usually p. The

JUnction o assign each indexi: 0<i < n (and its corresponding element) to a

process number.

wel-known ways of distributing an array are: every element to one unique

dentaty), assigning p equally-sized consecutive array segments (47 ear)
assigning elements cyclically (wrap):

Well

identity = ((Ai i), 7, p)
linear ((Ai i/(n/p), n, P), provided that p |

((A i (i\P), 7, P). uwrap
defintion

PTOCeSs , 0< P, is given by O.q:
DEn 2s a distribution (8, +, D), the set of elements from n assigned

ardinalities of the sets O.q is meaningfull in timne compleXIty

h e à good indication of the amount of work per process. The

O.q= (Vi: i¬ iA d.i = q: i).

Counting analysis. That gi sets
form a artition of T.

VIRGINIA NICULESCU

defintion 3. The mazimum/minimum
number of data objects assinme.

cess for a
distribution (0, n, P) are defined by:

66 ned to a pro-

Ma(8)= (mar q:0Sq<p: |0.ql)

Mi(6)= (min q: 0Sq <p:|0°-g).

defintion 4. A distribution (8, 7n, p) is called w-balanced, w >0 iff:

Ma(5) - Mi(0) S

A distribution is called homogencous if w = 1, a7d is called perfect if n -.

The cardinalities of the O.qs are the same for the lanear and wrap distributic e.

Both distributions assign a maximal number of elements to process 0:

Ma(linear) = Ma(urap) = (n +p- 1)/p

= 0.

OnS.

A measure of the load imbalance is the difference between the Ma(6) and Mila

For certain class of computations the wrap distribution is a good candidate

The following example prove this.

example 1. Given is a parallel program consisting of n steps. In step k,0 k<n

computations are done only for the first k elements of the program's arrays, (all

arrays have length n and are distributed in the same way). Each array reguires

a constant number of elementary operations. The marimal number of elementary

computations in step k, for any array distribution (8, +,) is bounded from belou

by:
maa q: 0 Sq<p: |0°.qn k1) 2 (k +p- 1)/p).

This follous from:

p* (maz q:0<q<p: |0*.qn k|)
{calculus}

(:0q <p: |0®.qn k|])
{0.q forms a partition of k}

(Ug: 0 q <p:0°.q n k)|

calculus}
k.

The lower bound is attained by the wrap distribution.

Orap q)
{definition}

1(Vi : 0 i <nAi\p=q: i)||
calculus, runge splitting}

IVi:0Si< (n/p) * pA i\p = q: i)]+|(Vi: (n/p) * p[ikT/N
calculus

n/p+ 1(Vi :0<i<n\pA i\p = q: i) {calculus}
(74+P-1- q)/p.

1:

DATA DISTRIBUTIONS FOR PARALLEL PROGRAMS 67
The macimum value 18 obta7 ed for q =0. Replacing n =k gives the result.

dot au step in such a parallel program, the marimuTn number of computa- n sin a process for any dastribution 1s at least the nmnarimun Tumber of com-
ians in a process using the wrap disiribution. TherefoTe, in this case, wrap uta.

distribution is one of the best.

aaComposition of Distributions. Distributions can be composed to obtain
new distributions
defintion 5. The composition of two distributions D0 = (60, m, M), D1 = (61, 7, N).

with M = n is defined by:
D1o D0 = (01 o 60, m, N).

The properties of a composed distribution can be obtained from the properties

of its constituents.

A distribution called wrap-of-linear can be obtain, from linear = (8ear, T+, T), m | n,

and wrap = (0r", m,p) as folows:

wrap - of - linear = (Ai (i/(n/m)) \P), n,)

The number of elements assigned to a process q,|Ourap - of -iear ql, can be

obtained by counting:

(i,: 0Si<maQurapi = qA0Sj<nA S"nearj = i: })
For homogeneous distributions DO = (50, m, M), D1 = (1, 7, N), with M = n

Mi(61)* Mi(60) < |0°1o00.qlMa(61) * Ma(60).
Conposition of distributions does not always preserve homogeneity.

ractical applications of composed distributions are, for example, parallel pro-
Brans using different data distributions. By introducing a parameter like m n

up-o-lurnear, it is possible to trade off the load balance for each individual part
d to avoid expensive redistributions during computation.

Cartesian Distributions. Distributions of multi-dimensional arrays can o

r by Cartesian distributions. In the following, it is assumed that a m by n

114trix is distributed across processes.
LAROn 6. The Cartesian product of two one-dimensional distrioutiOTS

100,171, M), D1 = (61,7, N), is defined by:

The Cartesian product of two one-dimensional
distributions uses a a process pair

DOx D1 = (60 x 61, mx n, M x N).
uhere the functi

LL0 00 x 01 assiqns to arTay index pair a pair of process nuTLOer's.

Formally:
60 x 81 = (Ai, j (60.i, ð1.j).

as identific

r a process. Cartesian distributions of matrices can be obtained

tio

68 VIRGINIA NICULESCU

by distributing the rows of the matrix independently from the columns. Since
nce

that p, the processes number is fixed, we can consicder all decomposition such that

p = M* N.

The set of elements assigned to cach process by a Cartesian distribution DOxD1

of a m by n matrix can be defined in a sinilar way as in Definition 2. It has the

following property:
Oxd (3, t) = O".s x 0.t,

with 0 s< M and 0<t< N.
Consider two honiogeueus distribution D0 and D1. Similar results hold for the

Cartesian distribution DO x D1 as for composition, for instance:

Mi(80) Mi(81) |O0xá1.(s, t)| Ma(60) * Ma(61)
Some examples of Cartesian distributions can be given, for p= MxV processes:

(6linear ,m, M) x (ginear, n, N), with M = N; called also block.

linear with N = 1.
= linear2 with M =1.

(6rap, m, M) x (8wrap, +, N), with M = N; called also grid.

wrap with N = 1.

=wrap with M = 1.

linear
Tow

column

wTap
wrap TOW

wrap- row

2.4. Counting Communications. During a communication, processes need val-
ues that are not available locally, values that have been assigned to some different
processes, and hence have to be communicated. The distribution determines the

total umber of communications. It is also important that the communications
are spread evenly across the processes in such way that many communications
take place in parallel - if the communication network offers enough freedom to

inplement communication processes efficiently.
Given a program's postcondition and a distribution it is possible to count the

total number of communications. The program's postcondition is split in p local
postconditions according to the distribution used. With every local postcondition
a process is associated that will establish it. If is it assumed that every datum

is assigned to one unique process then the total number of postconditions tha refer to a particular datum is a measure of the number of communications of tha datum. However, it may happen that a subexpression containing several ua Occurs in different postconditions. One process can compute such a subexpressio and store the result in a variable, which is communicated to the other proce In this way, conimnunication is reduccd. This case is excluded from the tollowib
counting technique.

For the datum e it is introduced the quantity Nocc.e:
Nocc.e the number of local postconditions in which e occurs.

DATA DISTRIBUTIONS FOR PARALLEL PROGRAMS
69

mine over all e, it will be obtained the total number of communications

Ncom:
Ncom= (: Nocc.e- R.e)

where:
1. if e occurs in the post.condition of the process that contained it

R.e0. otherwise.
The value of Ncom is only determined by the way the progran's postcondition

is Split up and the distribution used. The communication complexity is bounded

from below by (Ncom +p-1)/p if a process can perform only one communication

action at each moment.

This technique of counting communications allows for a comparison of the dis-

tributions on the basis of their communication overhead. Even if, the applicability

of the technique is not possible when exist common subexpressions, it is useful
especially because the results that can be obtained are independent of any com-
munication network. To illustrate this technique, an example is given.

example 2. Given are two matrices a and b, of dimensions mxo, and oxn, re-
spectively. The problem is to compute the m by n matrir c, satisfying postcondition
R:

R: c=a b.
For matrir c is used a Cartesian distribution DO x D1, and are used p = M*N

procEsses; each process is identified by an ordered pair (s, t), 0 <s< M,0 <t<N.
The local postconditon R.s.t of process (s, t) is:

R.s.t (Vi,j:0<i<mAOSj<nA ð0.i =s A ð1.j =t

ci,j) = (k:0k <o:a(i, k) * b(k, j).
Note that:

(Vs,t: 0s <MA0<t< N: R.s.t) =R.
Ordder to count the number of communications, quamtities Nocc.a(i, k) ana

Nocc.b(k, j) are calculated:
Nocc.a(i, k)

Is,t:0 Ss <MA0<t< NA 60.i = s A (3j :: 81.j = t) : (s, t))|. the 61 is surjective:
Nocc.a(i, k)

defintion Nocc, 81 is surjective
Vs,t:0 s <MA0 <t<NA 60.i =sA true : (8, t))1
calculus}
N*|(Vs, t:0<s< M A 60.i = s : s)|

00 is a functionj N.

VIRGINIA NICULESCU
70

Similary: Nocc.b(i, k) = M, if 81 is surjective. Hence:

Ncom
{definition Ncom}

(i,k:0<i< mA0<k<o: Nocc.a(i, k) - 1)+

(k,j:0<k<o^0Sj<n: Nocc.b(k,i) - 1)

calculus}
o(m(N - 1) + n* (M - 1)).

Some observations can be made:

.For M = N = p = 1, Ncon = 0 and no communmcations are neces&

Ncom is indepcndent of particular choices of d0 and 61.
It is possible to determine M and N, p = M * N such that Nc

minimal. All possible values (M, N) are integer p0ints on the hyperbola

p M* N, 1 < M,N Sp, and the values of Ncom Jor Jred m, n, o lie

on the line with a slope dependent on n. Hence, the minimal value for

Ncom depends on the ratio and in particular foT m = n, Ncom

minimal value if p is square. This result confirm the results obtained bu

evaluation of parallel programs based 0n one-dimensional decomposition

and two-dimensional decomposition |2.

SSary

3. SET DISTRIBUTIONS

When the number n of data input objects is smaller than the processes number,
an element of data input can be assigned to more than one process.

defintion 7. A set distribution for n data input objects on p(> n) processes is
defined by a set-valued mapping T P; d.i represents the set of processes
containing data object i.

The set distributions are characterized by:
the number of processes containing one data object,
the data distribution on processes.

Examples of set distributions are linear and wTap:

8ineari (Vk:0<k <p/n: i(p/n) + k), if n | pP 6 ray.i = (Vk:0<k <p/n: kn +i), it n |P:
Similar properties with those for the simple distributions can be estab

ished.
But, because is not simple to work with a set of processes and, the choseL

ethod

to design parallel programs start from a global postcondition, which is °
in

parameterised postconditions, another approach is necessary. If data inpu le length vector, p is factorised in this way: p = M * Q; where M £ **
simple

distribution (8,7n, M) is replicated Q times. If data input is a m by n matrix, p the processes number is factor be M * N * Q, where M m and N< n. A Cartesian distribution DO V*

eplirated.
In fact a renumbering of processes is made, in order to simplify the

The parallel programs is split into two stages. In the first stage all processes

DATA DISTRIBUTIONS FOR PARALLEL, PROGRAMS 71

set of processes that contain same data.
ecification of the s

input, the global postcondition is split in M * N paraneterised
which some partial calculus occur. To calculate these partial

work to compute partial esults, and, the second, in which partial results are com-

bined. For a matrix

conditions, in

waes M * N *Q partial parameterised postconditions are defined.
The counting communications technique used for the simple distributions can

bo 1Sed also for the set distributions, with the difference that for the datum e the

vahue R.e is the mumber of processes where it is assigned.

example 3. We consider agan, two matrices a and b of dimensio7ns n x o, and

oXn, respectively (uwith p < mn * n * 0). To calculate the m by n product matrir c,

postcondition R must be satisfying:

R: c=a b.

For matrit c is useda Cartesian distribution D0 = (60, 7m, M) x D1 = (81,n, N),

and are introduced p= M * N *Q processes; each process is identified by an

ordered pair (s,t, r), 0 s<M,0 <t < N,0 < r < Q. Another distribution

D2 = (02,õ,) is used.
The parameterised postconditon R.s.t.0 of process (s,t, 0) is:

R.s.t.0 (Vi,j:0<i < mA0Sj<nA 60.i = sA ó1.j = t
ci,i) = (r:0<r <Q: c(i,j).r).

Values c(i, j).r are calculated based on the following parameterised postcondi
tons:

R8.t.r (Vi,j:0<i <mA0<i<nA 60.i = s Að1.j =t
c(i, j).r = (k:0<k<o^ 62.k = r: a(i, k) * b{k,j)).

Note that:

(Vs,t:0s< MA0<t<N:R.s.t.0) R.

the first stage, the number of communication.s 18 deterBI

Nocc.a(i, k)
,: 0<s < MA0 <t< NA0< r <QA 80.i = s A $2.k = rA(F) : O19

t): (8,, r)) - 1,
Unalogu Nocc.b(k, j) = 1. Therefore Ncom= 0.

VIRGINIA NICULESCU

72

For the second stage:

Nocc.(c(i.j).r)

I(Vs,t,: 0<s < MAOSt<NA dO.i = sA 01.j = t: s,t)

Hence Ncom = mn(Q - 1). If Q is taken the sTmall it is possible, the umhe

of communications decreases, but the work-load of thhe processes increases (n -

MN*Q).
It can be observed that M N communicati0ns can be performed in paralle!

Therefore, the communication complerity depends on N (-1).

4. CONCLUSIONSs

Static distribution of arrays and matrices are discussed. New complex dis-

tributions can be obtained by the composition and the Cartesian product. The

Cartesian distributions have the property to consider rows and columns as entire

units distributed across M ensembles of N processes, respectively. Additionally,
M and N may vary under the constraint p = M * N. Quantities like the sizes of

the set elements assigned to a process allow for a comparison of the load-balancing
properties of distributions.

Counting communications enables evaluation of different distributions. The
result obtained are independent of any communication network.

When the number of processes is greater than the number of input elements,
another kind of distributions are constructed, based on set-valued mappings. The
best way to arrange processes, can be chosen based on the distribution.

REFERENCES
1 Lol L.D. Loyens, A Design Method for Parallel Programs,Technische Universiteit Eln

hoven,1992.
2 1. Foster, Designing and Building Parallel Programs,1995.
3 I. Chiorean, Calcul paralel, "Babe_- Bolyai" University, Cluj-Napoca, 1995 (in Romana

"BABES BoLYAr" UNIVERSITY OF CLUJ-NAPOCA, DEPaRTMENT OF CoMPUTER SCIENE
E-Tnail address: gina@cs.ubbcluj.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

