STUDIA UNIV. “BABES-BOLYAT", INFORMATICA, Volume XLITI, Number 2, 1998

DATA DISTRIBUTIONS FOR PARALLEL PROGRAMS

VIRGINIA NICULESCU

ABSTRACT. The data distributions have a serious impact on the time com-
plexity of parallel programs. This paper presents simple distributions of ar-
rays and matrices and introduces set distributions of same kinds of data. The
set distributions are used when the number of processors is greater than the
data input size. The work-load properties of these distributions and their im-
pact on the number of communications are discussed. In order to illustrate
the possibilities to chose the best distribution for a program, some examples
are presented.

1. INTRODUCTION

Many models of parallel programs use distributed data objects, like arrays or
matrices. Each part of a data object is assigned to a process. In a parallel pro-
gram, processes can independently perform operations on their data until a global
wformation is needed. The communication processes are responsible for combining
and collecting global information via message passing. This causes synchronisa-
tion points in the parallel program, which usually lead to waiting times. The
impact of distributions on the time complexity of a parallel program is therefore
an important issue.

A model for parallel programs design can consider a parallel program as a
number of cooperating parameterised processes with similar structures. These
processes are imperative programs. A parallel programs is specified using param”
eterised functional specifications, for each process, with parameterized precond’-
tions and postconditions (given in a Hoare form):

{Q.q}S.q{R.q}, 0 < q < p.

Such a specification forms the starting point for a parallel program derivation; &
formal construction of parameterised processes constituting a parallel program)
di ”(.:lm are (il.lsm'w'd static distributions, and the possibilities to chose the best
1stributio “a paralle YO . . .] eihution
e assic nfor a parallel program, before developing it. In a static dlSLllbUth)
the d‘.smgrmu—:m,s.dm:s not change during the execution of the program. There ar¢
presented two kind of distributions, classified on the ratio between the datd s12¢
n, and the processes number p:
[] T 7 WO AT QI 1
I > p there are simple distributions defined by single-valued function®

64

T R R ek

DATA DISTRIBUTIONS IF'OR PARALLY PROGIA M
AMS

S . 2l -] ." 1 1 1 (;r’
o If n < p there are set distributions define by set-valued yy; ppi
) =valie appings.

1.1 Notations. A notation for quantifications ig used:
(Ok: @: R)

where @ is & qua._nt,iﬁcr (>o,V, T'na,xZ), ks the list, of bound variables, () is the
prodicate (i(as(t1'i1)1}1g t:lle domain of the bound variables, and £ is an (:xp;e.’s%ir,m.
punction application is denoted by an infix, lef, associative dot *. operator. The
lambda calcul is used in the definition of the distribution functions. The set
wi: 0<i<n: ¢) is denoted by m. The integer division and re

' mainder use the
svmbols / and \, respectively.

2. SIMPLE DISTRIBUTIONS

The simple distributions are characterized by:

e the number of elements assigned to one process,
e the data distribution on processes.

If the data input is a vector, the simple distribution is called one-dimensional dis-
tribution, and if it is a multi-dimensional array, the distribution is called Cartesian
distribution [1].

2.1. One-dimensional Distributions.

defintion 1. D = (6, A, B) is called a distribution, if A and B are finite sets, and
0isa mapping from A to B. Set A specifies the set of data objects (an array with
" elements), and the set B specifies the set of processes, which is usually p. The
function § assign each index i : 0 < i < n (and its corresponding element) to a
Process number,

Well-known ways of distributing an array are: every element to one 111'111(1113
ess (4 . . : - ments (linear
Process (identity), assigning p equally-sized consecutive array segments (line
and geqi g .
8signing clements cyclically (wrap):

identity = ((X\i-4),7,p) . .
linear = ((Ni-i/(n/p), 7, D), provided that p | n .
wrap = ((A i (Z\[));TL_, ﬁ)

d(:ﬁnti()n ' n (LSSZ‘(/’IN‘(Z'

o . . . > — — e S p o LtS 1‘0,7
O rog, 2. Given is o distribution (8,7,), the set of clemer f
SCsy

©O< q<p, is given by O.q:

| O.q=Ni:ienA 04 =q: 1) omplexity
Ount; ofull in time € -
arlaly:iml“g the cardinalities of the sets O.¢ is meaningfull 11\11 t:r process. The
s, e T) . , " work pe)
s 0 1at gives a good indication of the amount of w

or . s - .
M a partition of .

o,

VIRGINIA NICULESCU
66

defintion 3.
cess for a distrt

The mazimum/minimumn number of data objects assigneq 4,

pution (8,7,D) are defined by: @ pry
Ma(§) = (mazraq: 0<q<p:|0°.q])
Mi(d) = (min q:0<g<p: 0% q)).

A distribution (8,7,p) 18 called w-balanced, w > 0 iff:

Ma(d) — Mi(6) < w

A distribution 13 called homogeneous ifw=1, and is called perfect if 4 —

The cardinalities of the O.¢s are the same for the linear and wrap distribitio
. ions,
Both distributions assigit & maximal number of elements to process (:

Ma(linear) = Ma(wrap) = (n+p— 1)/p

A measure of the load imbalance is the difference between the Ma(d) and Mi(5)
For certain class of computations the wrap distribution is a good candidate,

The following example prove this.
example 1. Given is a parallel program consisting of n steps. In step k.0 <k <n
computations are done only for the first k elements of the program’s arrays, (dll
arrays have length n and are distributed in the same way). Each array requires
a constant number of elementary operations. The mazimal number of elementary
computations in step k, for any array distribution (6,7,D) 8 bounded from below |

by:

defintion 4.

(maz ¢:0<g<p:|0°.qnkl) > (k+p—1)/p)
This follows from:

px(maz ¢:0<qg<p: IO‘S.qﬂ_IEI)

> {calculus}
(Dq:0<g<p:|0°.qnkl)

= {O.q forms a partition of k}
(Ug:0<g<p:0%.gNnk)

= { calculus}
k.

The lower bound is attained by the wrap distribution
|Ow'r'ap.q|) |
{definition}
(Vi 0 <i<nAi\p= q:i)
{ calculus, range splitting}

[(Vi:0 <i< (n
i< (n/p)xpAi\p=gq:q _ o
{calculus) J¥PAI\p=q D) +[(Vi: (n/p)+p<i <n AP

n/p (Vi O <
= ' ~r<n a\ .
. { calculus) M\PAi\p = q: i)

('n. +p—1 - '1)/’1).

f

)

DATA DISTRIBUTIONS FOR PARALLEL PROGRAM
+ PROGRAMS

The mazimum value s obtained for q = 0. Replacing n = k gi
. e dds, = /7,'”(,’
step in such a parallel progr —
S, at any step h a _pm'nll(’lh program, the mazirmum ny
jions in @ Process for any distribution is at least the mazimu
putations in a process using the wrap distribution,
Jistribution is one of the best.

67

8 the result.

mber of computa-
m number of comn-
n : . ’
T'herefore, in this case, wrap

2.2. Composition of Distributions. Distributions can be composed to obtai
new distributions. , ain
defintion 5. The composition of two distributions DO = (50,7, M), D1 = (61,7, V)
with M =n 1s defined by:), M 1, N,
D10 D0 = (§1 0 60,7, N).
The properties of a composed distribution can be obtained from the properties
of its constituents.

A dxst‘rlbut‘lkon calfd _wmp—of-linear can be obtain , from linear = (6% 7, 7m), m | n,
and wrap = (0¥, m,) as folows:

wrap — of — linear = ((X\i - (¢/(n/m))\p), 7, D).
The number of elements assigned to a process g, |OQwTaP—of=tinear g can be
obtained by counting:
(Vi,j: 0<i<mAdUPi=qA0<j<nAS j=1i: j).
For homogeneous distributions D0 = (60, m, M), D1 = (61,m,N), with M =n

Mi(61) * Mi(60) < |0°1°%.q| < Ma(d1) x Ma(80).

Composition of distributions does not always preserve homogeneity.
Practical applications of composed distributions are, for example, parallel pro-
grams using different data distributions. By introducing a parameter like m in
wrap-of-linear, it is possible to trade off the load balance for each individual part

aI 11 . 3 . . . -
d 10 avoid expensive redistributions during computation.
23. C 18 . o .

»‘lCartesmn Distributions. Distributions of multi-dimensional arrays can be
Nodeln i . o ’ . N
p ‘)(L (f](‘d by Cartesian distributions. In the following, 1t 1s assumed that a m by n
D4LrTy Te Afes
def 218 distributed across processes.

fint i, sy ') L
(40 iu%; 6. The Cartesian product of two one-dimensional distribt

./V,"‘ — NT . il
M), D1 = (81,7, N), is defined by:

, D(JxDl:(é()xdl,mxﬁ,MxN).
IU}L(:'/-(: th,l:

P Junction §0 x §1 assigns to array index pair a pair of p
onnu]]y: '

stions DO =

rocess numbers.

50 x 61 = (Ni, g - ((5().’5,51.]’)).
sional distributions uses
f matrices can

a process pair

The \
be obtained

Cartegi .
as idengify rtL-S lan product of two one-dimen
cation for o process. Cartesian distributions o

b o

68 VIRGINIA NICULISCU

by distributing the rows of the matrix independently from the columng, Since
p, the processes number is fixed, we can consider all decomposition sych tha'm
p=DM=xN.

The set of elements assigned to cach process by a Cartesian distributior, DO Dy
of a m by n matrix can be defined in a similar way as in Definition 2. Tt by the
following property:

(/)(\'()x(\'l .(h’, f) . ()(5().3 % ()ﬁl ./,‘,

with 0 <s< M and 0 <t < N.
Consider two homogeneus distribution DO and D1. Similar results hold for the

Cartesian distribution D0 x D1 as for composition, for instance:

Mi(80) % Mi(61) < |0°0%0 (5,¢)| < Ma(60) * Ma(d1)

Some examples of Cartesian distributions can be given, for p = M x N processes:

linear? = (g“mear 7 M) x (647eem 7, N), with M = N; called also block.
row = linear® with N = 1.

column = linear? with M = 1.

wrap® = (6vrer m, M) x (6¥*?,m, N), with M = N; called also grid.
wrap —row = wrap® with N = 1.

wrap —row = wrap® with M = 1.

2.4. Counting Communications. During a communication, processes need val-
ues that are not available locally, values that have been assigned to some different
processes, and hence have to be communicated. The distribution determines the
total number of communications. It is also important that the communications
are spread evenly across the processes in such way that many communications
take place in parallel - if the communication network offers enough freedom to
implement communication processes efficiently.

Given a program’s postcondition and a distribution it is possible to count the
total number of communications. The program’s postcondition is split in p local
postconditions according to the distribution used. With every local postcondition
a process is associated that will establish it. If is it assumed that every datum
is assigned to one unique process then the total number of postconditions that
refer to a particular datum is a measure of the number of communications of that
datjur.xf.. Hr‘)\yever, it may happen that a subexpression containing several datd
Zil(d“:(::i‘i‘}?(”l‘(:l:l 115(1?5(;)3?1(7“8 ()n.e‘ process can compute such a subcxpressiéfl

: arlable, which is communicated to the other processes

In this way, ¢ ication i i ing
o WAy, communication is reduced. This case is excluded from the following
counting techniqgue,

For the datum e it is intr]
c1tas introduced the quantity Nocc.e:

Noce.e — , o .
the number of local postconditions in which e occurs.

DATA DISTRIBUTIONS FOR PARALLEL PROGRAMS 69

amming over all e, it will be obtained the total number of communications
By §

Ncom: Ncom = (Z e:: Noce.e — R.e)

where: . - . .
1, if e occurs in the postcondition of the process that contained it
R.e=

0. otherwise.

The value of Ncom is only determined by the way the program’s postcondition
i« split up and the distribution u.sed. The communication complexity is bgumled
som below by (Ncom +p—1)/p if a process can perform only one communication
action at each moment.

This technique of counting communications allows for a comparison of the dis-
tributions on the basis'of their communication overhead. Even if, the applicability
of the technique is not possible when exist common subexpressions, it is useful
especially because the results that can be obtained are independent of any com-
munication network. To illustrate this technique, an example is given.

example 2. Given are two matrices a and b, of dimensions m x o, and o X n, re-
spectively. The problem is to compute the m by n matriz c, satisfying postcondition
R:
R: c=a -0
For matriz ¢ is used a Cartesian distribution DO x D1, and are used p=M=xN
processes; each process is identified by an ordered pair (s,t),0 < s < M,0<t < N.
The local postconditon R.s.t of process (s,t) is:

st @ (Vi,j:0<i<mA0<j<nA80i=5sA8lj=t
re(i,) = (0k:0<k<o:a(i,k)*bk,j)).
Note that:
(Vs,t: 0<s<MAO<t<N: R.s.t) = R.

. In ordef to count the number of communications, quantities Nocc.a(i,k) and
Hoceh(k, §) are caleulated:
Noce.a(i, k)

. I'(V'S'at 0SS <MAOSt<NAGSOI=sA (3] :0l)=t):(s1)]

e 1 g surjectipe-

Noce.a(i, k)
{defintion Noce, 51 is surjective }

(st 0 SS<MAO<t< NASOG=sAtrue: (s,t))]
{ calculus)

Nol(Vs,t:0<s < M A0 =s:9)

N{OO i a function)

VIRGINIA NICULESCU
70
Similary: Noce.b(i, k) = M, if 81 is surjective. Hence:

Ncom
{definition Ncom }
(Ei,l‘c:OSi<m/\()§k<0:Noc(;,u(i,/‘;)ﬁh+
(Ck,j:0<k<oA0<] <n: Noccbh(k,j)—1)
= { calculus}
o*(m*(N—1)+n*(.M—1)).

Some observations can be made:

I

e ForM=N=p=1, Ncom =0 and no communications qre necessay, |
e Ncom is independent of particular choices of 60 and 41. I 3
e It is possible to determine M and N, p = M x N such that N ¢, is 3
minimal. All possible values (M, N) are integer points on the hyperpy, -
p=MxN,1<M,N <p, and the values of Ncom for fized .y , il
on the line with a slope dependent on 7. Hence, the minimal value f5 -
Ncom depends on the ratio = and in particular for m =n, Ncom hes,
minimal value if p is square. This result confirm the results obtained by =

evaluation of parallel programs based on one-dimensional decomposition :
and two-dimensional decomposition [2].

3. SET DISTRIBUTIONS

When the number n of data input objects is smaller than the processes number, 1
an element of data input can be assigned to more than one process. !
defintion 7. A set distribution for n data input objects on p(> n) processes is 1

defined by a set-valued mapping § : T + P; 8.0 represents the set of processes
containing data object 1.

The set distributions are characterized by:

e the number of processes containing one data object,
e the data distribution on processes.

Examples of set distributions are linear and wrap:

Sran = kO Sk <pin s ilp/n) 4 K), iEn | p
A =

Vk:0<k<p/n:kn+i), ifn|p.

. Similar prqperties with those for the simple distributions can be established
ut, b?cause 1s not simple to work with a set, of processes and, the chosen method

to design parallel pro ’

, grams start from a global postcondition, which is spht inS
' i)e;fatl?etensed bostconditions, another approach is necessary. If data input 15 @ 1
4 gt ll> Vf‘?CtOr,\ p_lSlactorised in this way: p = M « Q; where M < n. A simpl
18;;‘1 iutlon (0,7, M) is replicated Q times ; <
data i is : ' inp=
Mx N *de& 1}11te 18 X/!m by n matrix, p the processes number is factorized in P]
’ M S mand N < n. A Cartesian distribution D0 x D1 will

DATA DISTRIBUTIONS FOR PARALLEL PROGRAMS 71

l.eplina.ted. In fact, a 1'enumbm'ing of processes is made, in order to simplify the
e cification of the set of }‘\l‘()CC‘?h‘(‘.S that contain same data.

" The parallel programs is split into two stages. In the first stage all processes
work to compute 1.);\‘1"t.ml results, and, the second, in which partial results are com-
yined. For @ matrix 111})11t., the glolm} postcondition is split in M » N parameterised
Poslmnditions. in Whlffll some pa.rl,%;\.l calculus occur. To calculate these partial
values M x N * Q partial parameterised postconditions are defined.

The counting communications technique used for the simple distributions can
be used also for the set distributions, with the difference that for the datum e the
walue R.e is the number of processes where it is assigned.

example 3. We consider again, two matrices a and b of dimensions m x o, and
ox n. respectively (withp <mxnxo). To calculate the m by n product matriz c,

postcondition R must be satisfying:
R: c=a-b

For matriz ¢ is used a Cartesian distribution DO = (60,7, M) x D1 = (61,7, N),
and are introduced p = M x N x Q processes; each process is identified by an
ordered pair (s,t,7),0 < 8§ < M,0 <t < N,0 <r < Q. Another distribution
D2 = (§2,0,Q) is used.

The parameterised postconditon R.s.t.0 of process (s,t, 0) is:

Rst0 : (Vi,j:0<i<mA0<j<nAd0i=sA0lj=t
c(i,j) = (Tr:0<r <Q:c(i,j)r)

Values c(i, j).r are calculated based on the following parameterised postcondi-
toms:

Ristr : (Vi,j:0<i<mA0<j<nAd0i=sAGL]
(i,))r=(k:0<k<oAN2k=r: at

=t
k) % b(k, 7)))-
Note that:
(Vs,t:0<s<MAO<t<N:Rst0)= R.
for the firgt stage, the number of communications is determined by:
) N‘)‘lff-a(i,k-)

=) .
) (3,l,r}) - l,

Ung

logue N g, :
NO(Jc.b(k,y) = 1. Therefore Ncom = 0.

...

72 VIRGINIA NICULESCU

For the second stage:
Noce.(c(iy))r)

(Vs,t,:0<s <MAD ST < NAGOG=8N0Lg =1:51)

l!
mn(Q —1). If @ s taken the small il is possible, the nump,,

Hence Ncom = A
but the work-load of the processes increases () ~

of communications decreases,
MxNxQ).
It can be observed that M - N communications can be performed in paralle]

Therefore. the communication complezity depends on $ (@ — 1).
4. CONCLUSIONS

Static distribution of arrays and matrices are discussed. New complex dis-
tributions can be obtained by the composition and the Cartesian product. The
Cartesian distributions have the property to consider rows and columns as entire
units distributed across M ensembles of N processes, respectively. Additionally,
M and N may vary under the constraint p = M = N. Quantities like the sizes of
the set elements assigned to a process allow for a comparison of the load-balancing
properties of distributions. '

Counting communications enables evaluation of different distributions. The
result obtained are independent of any communication network.

When the number of processes is greater than the number of input elements,
another kind of distributions are constructed, based on set-valued mappings. The
best way to arrange processes, can be chosen based on the distribution.

REFERENCES

—

(1] Lol L.D. Loyens, A Design Method for Parallel Programs, Technische Universiteit Eind-
hoven,1992.

[2] 1. Foster, Designing and Building Parallel Programs,1995

[3] 1. Chiorean, Calcul paralel, “Babeg- Bolyai” University, Cluj-Napoca, 1995 (in Romanian)-

“BABES-BOLYAI” UNIVERSITY OF CLUJ-N

3 . APOCA, DEPARTM ,) [ENCE
L-mail address: ginaQcs.ubbcluj.ro) ENT OF COMPUTER SCI

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

