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sTOCHASTIC OPTIMIZATION FOR JOIN OF THREE 
ELATIONS IN DISTRIBUTED DATABASES I. THE THEORY 

AND ONE APPLICATION 

VIORICA VARGA 

ABSTRACT. The query optimization problem for a single query in a dis- 

tributed database system was treated in great detail in the literature. Most 
of the articles search for a deterministic strategy assigning the component 
joins of a relational query to the processors of a network that can execute 

the join efficient and determine an economic strategy for the data transfer 
ring. For each new type of query that arrives at the system, a new optimal 

strategy is determined. A distributed system can receives different types of 
queries and processes them at the same time. In this case the determination 
of the optimal query processing strategy is a stochastic optimization problem. 

Query processing strategies may be distributed over the processors of a net- 
work as probability distributions. The stochastic query optimization problem 
was solved for a single-join and a multiple join of three relations, where the 

operand relations are stored at two sites. In this article we treat the join of 
three relations, which are stored at three different sites. This problem leads 
to a nonlinear programming problem, which is solved in this article. We in- 

tend to solve the general problem of the sequential and the parallel operation 
for two queries of the specified type, in a next article, these problems leads 
to the same type of nonlinear programming problem. 

1. INTRODUCTIOON 

M Many algorithms were elaborated for minimizing the costs necessary to per 

d S1ngle, isolated query in a distributed database system. The capacity of 

hace d systems for concurrent processing motivates the distribution of a data- 

i a network. There is a different approach to query optimization if the syste 

Droac as one, which receives different types of queries at different times and 

deterministic; 
networ 1or executing the multiple-query is distributed over the sites of the 

COrk as a probability distribution. The "decision variables" of the stocnastic 

The strategy 
Lhan one query at the same time. The multiple-query problem is not 

IC; the multiple-query input stream constitutes a stochastic process. 

query optimization 
the au auon problem are the probabilities that a component operator of 

Cxecuted at a particular site of the network. 
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In 41 the authors extend the state-transition model proposed by Lafors. 

1 2]. The main ot 

34 
ne and 

Wong (5] and the original multiprocessing 
model of 3 and |2. The maine 

optinal. of the model is to give query-processing strategies, which are globallv o ctive 

Defintion 1. ztr 

In this article in section 3 we present the stochastic model for the ioin .e 

relations, which are stored at three difterent sites. This stochastic query ontin 

tion problem leads to a nonlinear programming problem, which is specifc 
the section 2 we give an algorithm to solve this nonlinear programming probias eu. 

In the next article we will present general models, containing sequential and nar 
allel operation of two queries of type treated in section 3. These leads to the same 

type of nonlinear programming problem as the problem from section 3, which we 

solve for diferent cases and the results are presented in tables. From the exanples 
we can see the global optimality of the stochastic query optimization model. 

In 

2. THE NONLINEAR PROGRAMMING PROBLEM 

Let fi fe,..,fp: [0, 1]" R4 be strictly positive polynomnial functions and let 
g1 gn > R linear functionals of form q:(T1, , Tn) = aijlj, where 

j=1 
E {0,1} and i = 1,r We consider the next problem: 

$2(1,. ,Tn) y 

(P) 
fp(1, ,n) y 
41T1,' , Wn) = 1 

4r(1,* ,Tn) = 1 

min y, yE R, y > 0. 
In the following we state two results, with aid we solve the nonlinear prograin problems in the next sections. In the rest of this section we use the nola 
= (1, ,n). 

Theorem 2.1:The problem (P) has at least one solution. Proof: We consider the set X = [0,1]" n(1) n...n(1). Because 0,1" is compact subset of R" we get that the set X is a compact sub» 
because the functions q1,. ,4r are continuous. Let f: X R be the function defined by f(r) = max{fi (r), S2(z),.* 

ming 

ation 

Because the function f is continuous and X is a compact metric spa 
) S)} 

Weierstrass theoren, then there exists a point ro E X such that f(To) ¬X 
We prove that f(ro) = miny. We suppose, that exists yo E t+ 

S(zo) = min f(7) 
We suppose, that exists yo E R, Su 

co)>o and yo satistied the inequalities from the problem (P) for To 

thar 
i.e. 
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Ja(To) vo 

fplro) S vo 
We obtain f(t6) = max{fi(r5), fa(t5),... , Sp(t)} S vo< f(ro) which contra- 

dicts with the fact that zo ¬ X is the global minimum of the function f. 
Now we give an algorithm, which give the solution of the problem (P). Let 

A C AC..C An C... be a sequence of finite subsets of X such thatU An 
n=l 

is dense in X thus 

A = {a., a,} 

A= {a, 

An ={a..., 

We calculate 

V = min{max{f («}), fa(ri),... , f,(=i)},...,max{fi (), fala), fp(r)} 

V = min{max{fi (r), fa(=f),... , fp#)},... , max{fh(), falr), Spr)}} 

n minfmax{fi(r?), fa(#f),.., f»(t)},., max{h(=4,), fala=4),.. Sp()}} 
We obtain the sequence (yn)nEN- which is monoton and decreasing, therefore is 

convergent. We have the following result: 
Theorem 2.2: The sequence (yn)neN COnvege to the solution of the problem 

(P). 
Proof: We suppose that yn y> f(ro). Because the setU An is dense in X 

n=l 

and the function f is continuous results that, there exists a sequence f#n} C UAn 
n=l 

Such that sn do and f(r) -> f(#o). Without loss of generality we suppose 

at E A1,... , sn E An,.... Then f(*7) 2 yn for every n E N*. If n - we 

obtain f(#o) 2 ', which is a contradiction with the presumption y' > f(ro). 

Remark. From the algorithm we see that for every n ¬ N", there exists 

in E {1,..., gn) such that va = max{fi ( ),...,Splri.)} Thus we obtain a 
sequence {u )nEN. Then every accumulation point of this sequence gives a 

Solution of the problem (P). 
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3. JoIN OF THREE RELATIONS 

We present the stochastic ojptimization model for the ioin cc 

when the relations are stored at ditterCnt sites. Let Q3 denote. 
ree relation 

the single-query 
type consist ing of two joins: 

Qa= A M BmC 

where A nB # 0; BnC # 0 and relation A is stored at site 1, relat 
2 and relation C at site 3. So the initial state of relations referenced b a site 

Q3 in the thrce-site network is the next column vector: 

elation B at. site 

A 
B 

C 
where the i-th component of the vector to 1s the set of relations stored at site i(i = 1,2.3) at time t = 0. The initial state zo 1s given with time-invarian: probability po = p(zo), i.e. po is the probability that relation A is available at site 1, relation B at site 2 and relation C at site 3 and there are not locked for updating or is unavailable for query processing for any other reason. We assume that the input to the system consists of a single stream of type Q3 For the purpose of stochastic query optimization we enumerate all logically valid joins in the order in which they may be executed. We suppose that Q3 has two valid execution sequencesS 

Q3S1 = (A n B) « C 

Q3S2= A « (B » C) where S1 and S2 denote the scquences, so under sequence S B' = A MD cornputed before C" = B' » C, and under sequence Sa C' = B «C is executa 
before B'= A « C'. In this way, the computation of multiple-join quere 
be defined in terms of precedence of the join operator. The symbols 
Q:S2 will be regarded as subtypes of the query type Q3 and using t 

he used a 

sition principle of separable nonlinear programming, the symbols will De t 
conditioning variables that divide the original problem into a set of subpio 

ed 

may 

and 

compo 

m into a set of subproblems. 
The state-transition graph for sequence S of Q3 is given n 

ns 

one state of the state-transition graph the i-th line contains tne 

at site i. We will associate a transition probability to each tra. 
State-transition nmodel. Let pi; denote the conditional, time-m 

e 1. For 

stored 

of the that the system undergoes transition from state Ti to state 
B from 

nvariant robability 

initial 

state o, we can execute the first step of S,Q3 
to site 1, or transferring relation A fron site 1 

te ? 
ion B from the systern undergoes transition from state co to *i1 wlL 
when t s the 

transferring rela 
roln site 1 to site 2. Using the first tegy system mnay choose the second strategy with pr 

undergoes transitiou to state w. The notation for sua 

Ostrate o to 11 with probability Po,11 
probability po,21 

ystem 

w 

ij, where 
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(A.B 
B1:3y 12 B 

C.C 
(A,B 

11 

C (A, B',C 
B2: 1 C3: 1 B 

0 

C A 
T32=B,B' 

c.C 
Al:2 B 2:3 

(A 
a1B,B 

C A 
C3: 2 2 B, B',C"| 

C 

Fig. 1 

Er Ot the chosen strategy, (in our example i = 1, 2, 3, 4) and j is the step in 

ng the multiple join. In order to compute C" = Bn C, if the system is 

2 

in 
ii t may transfer relation B' from site 2 to site 1 or relation C from site 

f el and if the system is in state r21 it may transfer relation B' from site 2 

O Site 3 or relation C from site 3 to site 2. 

EOrenm 3.1 The stochastic query optimization model for the multiple join 

type Q3 defines a nonlinear progrumning problem. 
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nodes of the state- 
38 

Proof: We will associate the joil-procesSIng 
tines with the nod 

transition graph and communication times to the arcs of the graph. Let 

T{X state i. So we have denote the total processiig 
time required tor computing in stat 

Tiu (B') = ti (A w B) + ©21 (B) 

Tan (B') = t2(A w B) +C12(4) 

Ti2(C)= t2(B * C) +Ci3(B')) 

T22(C)=th(B * C)+ cs1(C) 
Ts2(C) = ts(B N C)+ C23(B) 

Ta2(C")= t2(B' n C) + C32 (C) 

where t,(E) denotes the necessary time to calculate the expression E in site i and 
C(R) is the time of transmission the relation R from site i to site j. The expected 
delay due to computing the join is the product of the delay and the corresponding 
transition probability. The mean processing time Ti at site i can be obtained by 
summing for each state for which there is something to work in the site i, the 

product of the necessary time for processing multiply by the probability that the 
system is in the corresponding state. 

Let us suppose that input queries of type Q3 arrive at the system at average intervals of length d and successive inputs are statistically independent. lt is reasonable to require that none of the processors in the network be allowed to take longer on the average than the period 6 to execute its task. If it did, the cumulative delay at each site could increase indefinitely due to queuing, requirng infinite buffer storage at each site. The system may be regarded as overloadea the mean processing time 7; is permitted to exceed at any site. Such overu can be avoided if the inequalities: 

Ti SA < 8 

are satistied, where A represents a common upper bound on Ti» O 
in the network. In other to maximize the system query-proce throughput A = 1/6, the system's mean interarrival time may ar storage werC(0A)>0 is chosen sufficiently large to provide adequate Du 

nd on T, for each proces 
or 

processing capacity

requirements. 

by: 

The stochastic query optimization problem for Q3 is giveu T1 Tu(B )Po,11 + T22(C")po,11 Pii,22 A TT2 B')Po,21 + Ta2(C")po,21P21,42 T3Ti2(C")p Po,11P11,12 +Ts2(C)po,21P21,32 A Po,11 +P0,21=1 
P11,12 + Pi1,22 = T 
P21,32 +1P21,42 = 1 

inin A 
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We solve this nonlinear programming problem with the algorithm from section and in the table from Figure 2 we give some examples to illustrate the results 
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2 

obtained. 
The continuous functions, which are the inputs for the algorithn are: 
f(T1, T2, T3, T4, T5, T6) = C1 ®1 +C2t1T4 

f2(T1, 2 T3, T4, T5, T6)= C3t2 +C4t2a6 
fa(T1,*2, T3, T4, T5, T6) = C5®1#3 t C625 

where ti = Po,11, t2 = Po,213 P11,12; T4 P11,22; T5 = P21,32; T6= P21,42 C = Tu(B'); c2 = 122(C"'); c3 = T21 (B'); 
C4T42(C)}cs = Ti2(C"); cg = T32(C"); 

We consider a communication network with a speed of 60 Kbits/s, which is very 
slow compared with the speed of local read/write of 3Mbyte/s, so the required 
time for local processing is unsignificant regard to the necessary time for data 
transfer. In the computation of the results we ommit the local processing time. 
We consider every connection has speed 60 Kbits/s. The model is more general, 
can take into account connections with different speed, i. e, the speed of transfer 
between the site 1 and site 2 is different from the speed of transfer between the 
site 2 and site 3. We consider relation A with tuples of length 100 bytes, relations 

B and C with tuples of length 50 bytes. 

Case a) b c) d) 
Nr. of bits for A | 8.000.000 8.000.000 1.000.000 1.000.000 
Nr. of bits for B4.000.000 1.000.000 10.000.000 30.000.000 

1.000.000| 1.000.000 

26,53 
0,145 
0,855 

| Nr. of bits for C 10.000000 5.000.000 
30,99 
0,06 
0,94 
0,005 
0,995 
0,025 
0,975 

A 51,544 85,259 

0,715 
0,285 

0,685 
0,315 

0,762 
0,238 

Po,11 
Po,21 
P11,12 
P11,22 
P21,32 

0,39 0,022 

0,978 
0,137 

0,863 

0,61 
0 0,005 

0,995 P21,42 
Fig. 2 

Let us analyze the results obtained: 

ln case a) the size of relation A is double regard to the size of relation B, 

$O thus the result show to choose state i1 in the most of the cases if the 

System is in state ro, when the system has to transfer relation B, being 

the smaller. The efficiency of the model can be seen in the following way: 

Without this model a heuristic for query execution can be: we transfer 

always the smaller relation from the operands of a join to the site of the 

Other relation operand, taking into account that the required time for 

local processing is unsignificant regard to the necessary time for data 
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transfer. In this case the heuristic can be: relation Ric 

site 2 to site 1, being the smaller, so the system in stater . 

B is transferred from 
40 

state 
with transition probability 1, which needs 

state the system will transter relation C from site 3 t 
ways choos 

16,66 seconds. 
In site 1, because 

it is smaller than the result ot join A M B, the necessary ti. 

sCconds, so otalized 233,32 seconds. If query Q3 is executed in ever Very 
case it appear 

be 233,32 seconds and both 
with this "pure" strategy the mean processing time will of the querics is executed in 

The mization model is mean processing time in the case of the stochastic optimization 

$5,259 seconds, which gives the next strategies: from 100 queries of t 
Qa for 72 A M B is executed in site 1 relation B being transferred fr type 

ron 
site 2 in site 1, the mean processing time being 47,99 seconds, and 98 

queries are executed in site 2 relation A being transferred from site 1 i 

site 2, the mean processing time being 38,33 seconds. From 72 querie 
68B N C is executed in site 3 transferring relation B' from site 1 to 
site 3, the mean processing time being 84,93 seconds, and for 32is site 
1 transferring relation C from site 3 in site 1, the mean processing time 

being 38,33 seconds. In site x21 the system always choose relation C 
to transfer from site 3 in site 2 and execute the join in site 2, the mean 
processing time being 46,66 seconds. If we calculate the mean processing 
time for each site, then take the maxim1um of them we obtain 85,26 s. 

.Case b) doesn't differ significant from case a), so the obtained result is similar, because the relations are smaller, the mean processing time 
obtained is smaller too. If in this case we choose a "pure" strategy wItn 
the same heuristic such as in case a), the system undergoes transiblo from state zo to state zu, the requircd time being 16,66 seconds, ro State i1 to state r22 the transferring time is 83,33 seconds, so the tou ime is 99,99 seconds, which is nearly the double of 51,544 seconds, 

n case c), relation B being the larger the results will be invet 

nodel. 

he 

nean processing time obtained with the stochastic optimization i 
pure strategy in this case can be: relation A is transrerte 11 the first step, relation C in site 2 too in the second step tions being the smaller from the operar this "pure" strategy is 33,33 seconds, which is Seconds of the stochastic optimization model, because wecn the size of relations is great and in this case In ca pure" strat 8Cat and in this case the stochastic in Can give a " 

pure" strategy too. 

site 

rela- 

time 
rands of joins. The required 

onds, which is appropriate the 26,53 
difference be- 

node! 

the 

In case d) we try to appropriate to a" pure" SUraub 
diferences too, the stochastic model gives a 
see the approach t0 the " 

pure" strategy 

but for these gre. 
Teat 

In the table from Figure 3 we will give the obtaineu 

tegy, but we. 

munication network with a speed of data tra 

on- 

results in case of 

transfer of 2,4Mbps and 

eed of 
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al read/write is 3Mbytes/s, So the rate between the local processing and data 
In this case we consider the local processing time too in our com- 

transfer is 10:1. 

putation. 

Case a) 
Nr. of bits for A 8.000.000 8.000.000 1.000.000 
Nr. of bits for B4.000.000 1.000.000 10.000.000 
Nr. of bits for C 10.000000 5.000.000 1.000.000 

b) c) 

A 2,93 2,03 
0,725 0,283 
0,275 

0,735 0,51 0,013 

1,88 
0,7 
0,3 

Po,11 
Po,21 

P11,12 
P11,22 
P21,32 

0,717 

0,265 0,49 0,987 
0,395 
0,605 

0 0 

P21,42 
Fig. 3 

There is ng general way to estimate the cardinality of a join without additional 

information. There is a case, which occurs frequently, where the estimation is 
simple, we use this one. If the join attribute for relation A and B is K, which is 
primary key for relation B and is foreign key for relation A, so cardinality of the 
result can be estimated by 

card(A MA.K=B.K B) = card(A) 

because each tuple of A matches with at most one tuple of B. However, this 
estimation is an upper bound since it assumes that each tuple of relation A par- 
ticipate in the join. The length of a tuple of the join is the sum of the length of 

operand relations minus the length of the join attribute. A DBMS can take 
the join selectivity factor from the statistical information of the database. The 

essary time for join execution can differ in function of the method used. If 

there exists an index file for relation B with the join attribute as key, the indexed 

loop join is an adequate method, but it needs in some cases the transfer of index 
hle too. We consider the unindexed loop join method in our caleulations. 

ne analysis of results can be made similar with the precedent case, but for the 

pure strategy we have to take into account the local processing time too. 
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