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STOCHASTIC OPTIMIZATION FOR JOIN GF THREE

RELATIONS IN DISTRIBUTED DATABASES I. THE THEORY
AND ONE APPLICATION

VIORICA VARGA

ABSTRACT. The query optimization problem for a single query in a dis-
tributed database system was treated in great detail in the literature. Most
of the articles search for a deterministic strategy assigning the component
joins of a relational query to the processors of a network that can execute
the join efficient and determine an economic strategy for the data transfer-
ring. For each new type of query that arrives at the system, a new optimal
strategy is determined. A distributed system can receives different types of
queries and processes them at the same time. In this case the determination
of the optimal query processing strategy is a stochastic optimization problem.
Query processing strategies may be distributed over the processors of a net-
work as probability distributions. The stochastic query optimization problem
was solved for a single-join and a multiple join of three relations, where the
operand relations are stored at two sites. In this article we treat the join of
three relations, which are stored at three different sites. This problem leads
to a nonlinear programming problem, which is solved in this article. We in-
tend to solve the general problem of the sequential and the parallel operation
for two queries of the specified type, in a next article, these problems leads
to the same type of nonlinear programming problem.

1. INTRODUCTION

Many algorithms were elaborated for minimizing the costs necessary to per-
frfrm a single, isolated query in a distributed database system. The capacity of
distribyted systems for concurrent processing motivates the distribution of a data-
.)am.: in a network. There is a different approach to query optimization if tbe system
5 Viewed ¢ one, which receives different types of queries at different tungs and
PLOCESS More than one query at the same time. The multiple-query problem is not
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er S a probability distribution. The ”decision variables erator of
Y Optimization problem are the probabilities that a component Opere
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duery is executed at a particular site of the network.
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of the Lmodel is to give query-proces:

. n 1. TIT . L .

Defintio 1o section 3 we present the stochastic model fo.r the join of three
In this article in s tofud at three different sites. This stochastic query Optirniy,.

store g . . 1 ] e1fie .

o1 problem leads to a nonlinear programming prob%em, wilich is Specific ue o
o 2 we give an algorithm to solve this nonlinear programming probje,,
In the next article we will present general models, (':ontam Illlg ;l . and pyr.

llel operation of two queries of type treated in section 3. These leads to the sap,
al ¢ ' . ; : S
tvpe of nonlinear programming problem as the probiem fé(l)m Sgctlont}& which we

) : i s. From the examp)
solve for different cases and the results are presented in table iples

we can see the global optimality of the stochastic query optimization model.

relations, which are

2. THE NONLINEAR PROGRAMMING PROBLEM

: n i iti olynomial functions and let
Let f1, fa,..., fp : [0,1]® - R4 be strictly positive poly ;
g1+ .qn : R™ = R linear functionals of form gy 5 ¥ E sy = Z a;;x;, where
j=1

a;; € {0,1} and i = 1,7 We consider the next problem:
Nz, z0) <y
fazy, -+ zn) <y

fp(xla'” 73771) S Yy
Q](xli"' 7-,1;71) =1

qr(l'l,”' 7$n) =1
miny, y € R, y > 0.

In the following we state
problems in the

= (21, 2y).
Theorem 2.1:The proble

two results, with aid

) -
. we solve the nonlinear programming
next sections. In the rest,

of this section we use the notatio?

\ P) has at leqs -
Proof: We conside m ( at teast one solution,.
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1T s compact subset, of R™ 1 f---MNg ' (1). Beca .

: We get that the get
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the funct; .
! 1} il;u:(,t,l(fn defined by f(z) = max{ f, (z), fo(z), .- ,fp(l’)}-
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Let f.x 5 g be

Becauge the

X is a compact subset of

: functio
Wcu:rst,rass theore

We prove
f($0)




STOCHASTIC OPTIMIZATION IN DISTRIBUTED DATABASES 35

fi (T(*)) < o
f‘z(-??a) < o

fp(-”a) < Yo
We obtain f(xg) = max{fl(*l*a)yf'z(-'fa), con Sp(g)} <o < f(zp) which contra-
dicts with the fact that @9 € X is the global minimum of the function f.
Now we give an algorithm, which give the solution of the problem (7). Let
oo

4, C Ay C--- C A, C... be asequence of finite subsets of X such that U A,

n=1
is dense in X thus

— 1 1
Al —{al,..,,aql

— 2 2
442 - {al,...,a’q2

— [a7 n
An—{al,...,aqn

We calculate |
v = min{max{ f1(z}), fa(ed), ..., folaD}, ..., max{fi(zy,), falg,)s - - folmg,)}}
vy = min{max{ f1 (z2), f2(23), .., fp(eD)}, ..., max{fi(2},), f2(23,), - - G

Yn = min{max{f1(z}), f2(7), - > fp(=1)}s - - ymax{f1(z" ), f2(22 ), .., fo(zl )}
We obtain the sequence (yn)nen+ Which is monoton and decreasing, therefore is
convergent. We have the following result:

Theorem 2.2: The sequence (Yn)nen+ converge to the solution of the problem

(P).

O
Proof: We suppose that y, = y* > f(zo). Because the set U A, isdensein X

n=1
O

and the function f is continuous results that, there exists a sequence {zn} C U A,

n=1

such that z, — 2y and f(zn) — f(zo). Without loss of generality we suppose
that z, ¢ Ay, ..., xn € Ay, .... Then f(zn) > yn for every n € N* I o o0 we

obtain f(zo) > y*, which is a contradiction with the presumption y* > f(zo).

- Remark. From the algorithm we see that for every n € N7, there exists
tn € {1,...,¢,} such that y, = max{fi («"),..., fp(a7)}. Thus we obtain a
s {2} Ynen-. Then every accumulation point of this sequence gives a
solution of the problem (P).
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that the input to the system consists of a single stream of type Qs.
For the purpose of stochastic query optimization we enumerate a] logically valid
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A,B"

A & Br}' %2 = g
c.Cr

; ‘ ¢ T A BCH
Bz: 1 e C3 1 A r = B
/ K93 =
| / \ o

Al 2 \\\ y ’-,;/ . .
Xy =| BB |< .
¢ A
. Xy = | B, B.C"
c
Fig. 1

fumber of the chosen strategy, (in our example © = %, 2, 3,,4) and J li ?h‘e' itep in
COmputing the multiple join. In order to compute C = B' x C, 1.f t 12 bf)‘b em t1s
I state z,, it may transfer relation B' from site 2 to site 1 or re}atmnl - rom si ;
310 site l and if the system is in state 2 1t may transfer relation B’ from site
10 site 3 or relation C' from site 3 to site 2.
Theorem 3.1 The stochastic query optimt:
query of type Qs defines a nonlinear programining pro

ization model for the multiple join
blem.
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Proof:
transition &r
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Tu U_;!) - fl(A M I.)’) + C21 (lj)

EMM:MANW+”*%
'l‘{g(C'\ = ta(B' ™ O)+ (‘m(_B )
Ty (C) = (B % O) + e (C )
Ti(C') = t3(B' % C) + cx3(B)
Te(C) =t(B' » C) + c32(C)

where t;(E) denotes the necessary time to calculate the expression E in sjte ; and
¢;;(R) is the time of transmission the relation R from site ¢ to site j. The expected
delay due to computing the join is the product of the delay and the correspondiy,
transition probability. The mean processing time 7; at site 7 can be obtained bs
summing for each state for which there is something to work in the site i, the
product of the necessary time for processing multiply by the probability that the
svstem is in the corresponding state.
. Let us suppose that input queries of type ()3 arrive at the system at average
intervals of length § and successive inputs are statistically independent. It is
reasonable to require that none of the processors in the network be allowed to
take longer on the average than the period d to execute its task. If it did, the
icsénglat}l)ve delay at each site could increase indefinitely due to queuing, requiring
nite buffer storage at each site. The System may be regarded as overloaded if

the mean processing ti : .

g time 7; is permitted to exceed ¢ at i erload
' i ' ’ . . Such overloa
can be avoided if the inequalities: B 5 .5

Ti<ALS

are satisfied, where A +

i net\:vorku(i A represents a common upper bound on T;, for each process”
g . In » imj m i
through e ok 1/2‘ otimr 0 maximize the System query-processing capacity !
where (5 A)> (s thle System’s mean interarrival time A may be i
) S chosen e . ‘ "
r{fqulmments. osen mfhmently large to provide adequate buffer storagt

The g1, i

> Stochastic
~HUery optimiyats

Ptimizatiop problem

T =T
3= 7‘12((/");1:)'21 N F“(C’)p”,‘zlpzl,‘:'z <A
Po,yy 4 ')’“pl,l’li") + T‘”(C')Po 21P21,32 < A
’ I)U,'Zl — l ! WE =
Piy g 4 Pty — |
P2y 3y 4 D2y 4y — 1

Inin A

for Q3 is given by:

Ponpiigs <A
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i e table fro i N algorithm from secti
9 and in th om Figure 2 we give some examples to 1] section
obtained. S to illustrate the results

The continuous functions, which are the inputs for the
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algorithm are:
fi(z1,72,73,T4,T5,T6) = c121 + Co T4

fo(21, T2, T3, T4, T35, Te) = C3x9 + C4ToTq
fa(T1, 22,23, T4, T5,T6) = c5T123 + CeLaly
where L1 = Po,11; T2 = P0,215 T3 = P} 12; T4 = pyy
a1 = Tu(B');ex = Top(C');c3 = T (B')
cs = Taa(C7); 65 = T12(C"); 6 = Tay(C)

We consider a communication network with a speed of 60 Kbits/s, which is very
slow compared with the speed of local read /write of 3Mbyte/s, s’o the required
time for local processing is unsignificant regard to the nevcessary time for data
transfer. In the computation of the results we ommit the local processing time.
We consider every connection has speed 60 Kbits/s. The model is more general,
can take into account connections with different speed, i. e. the speed of transfer
between the site 1 and site 2 is different from the speed of transfer between the
site 2 and site 3. We consider relation A with tuples of length 100 bytes, relations
B and C with tuples of length 50 bytes.

22y T = P21,32; T = Paj 42;
;

)

[

i Case a) b) ) )
'NT. of bits for A | 8.000.000 | 8.000.000 | 1.000.000 | 1.000.000
Nr. of bits for B | 4.000.000 | 1.000.000 | 10.000.000 | 30.000.000
Nr. of bits for C | 10.000000 | 5.000.000 | 1.000.000 | 1.000.000
A 85259 | 51,544 | 26,53 30,99
I Po,11 0,715 0,762 0,145 0,06
_ pa 0985 | 0238 | 0855 0,04
P 0,685 0,39 0,022 0,005
 pum 0315 | 0,61 0,078 0,995
_ Pug 0005 | O 0,137 0.025
P 0,995 1 0,863 0,975
Fig. 2

Let us analyze the results obtained: | |
* In case a) the size of relation A is double regard to the size of r'elamc.)?tf,
50 thus the result show to choose state i1 1t the most of thg casl;zs tl) ; g
system is in state zg, when the system has to transfer re}z;m;l)n B, el:vg
the smaller. The efficiency of the model can be seen m’ thcb o ox:z:lil\l\;fel
without this model a heuristic for query executil('m' c.ant (t,.h: ;,iterof e
always the smaller relation from the operands of a jomn to :

[) 1 i ace ¢ l > T ,quil‘ed ti or
1 e ( U]LO al (,()lllll, ‘Alldt’ me f
theI Ielatlon (0] ,ralld, tdklng “ lev” (“‘ - !
1 g IS unsiglliﬁ(‘.mlt I'Ugal.(l t:() the Il(—‘,(,edel) tim (0] a,t a
C a'l pIOCGSSIII me I I (]
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[n this case the heuristic can)b‘czvr(:lat.,lor‘l B 1% transferred fire
_ e the smaller, so the system in state z, alwayg 4 m
site 2 to snt,c.],, b(.miiti(m pr()ba.l)ility 1, which needs 16,66 Soee Cmog,ﬁs
state T11 “']H'l't":::]: \v’ill (ransfer relation C from site 3 sit(‘.umds
state It “‘f‘ T:n the result of join A« B, the necessary time ig j¢p -
it 18 Sma”\(ﬂ tt’wlt(-llizod 233.32 seconds. If query ()3 is execnted e
N\(‘On'ds-\ ?(:("\(1' ;ﬁm this "pure” strategy the mean pProcessing
::‘S(-;;;‘gg}g(:conds and both of the quc'ricsli’s‘e'xlecut,.ed.in :‘;ite L. 1PHs
mean processing time in the case of the StOC'ldbt,l(, Optimization mode) ;,
$5.259 seconds, which gives the nfzxt stratcglesz fron.1 100 querieg (f type
Qs for 72 A X Bis excecuted in site 1 r.elatlon' B being transferreq from
site 2 in site 1, the mean processing time being 47,99 seconds, anq 94
queries are executed in site 2 relation A being transferred from s;te lin
site 2, the mean processing time being 38,33 seconds. From 72 querie
688" x (' is executed in site 3 transferring relation B’ from site 1 t,
site 3, the mean processing time being 84,93 seconds, and for 32is site
1 transferring relation C' from site 3 in site 1, the mean processing time
being 38,33 seconds. In site 5, the system always choose relation ('
to transfer from site 3 in site 2 and execute the join in site 2, the mean
processing time being 46,66 seconds. If we calculate the mean processing
time for each site, then take the maximum of them we obtain 85,26 s.
Case b) doesn’t differ significant from case a), so the obtained resulr
Is similar, because the relations are smaller, the mean processing time
obtained is smaller too. If In this case we choose a ”pure” strategy with
the same heuristic such as in case a), the system undergoes transition
from state x, to state Z11, the required time being 16,66 seconds, from
it;t: izlégtgs)stsztce 11732 the transferring time is 83,33 secoilds, 50 thj tottg‘i
mean Prééessin OtrilmS: thl'C-h y Ile"dl'ly the double.of 51"64'4 S?COH rfc;del-
In case c) rela%iorl ;3 0} t(.nned with the stochastic opt.umzat.loneise. \
Dure” strategy in thiq >Cemg ‘the larger tl}e resu‘lts will be I(I;Vto e
in the firgt step, relation acsve.(,an- o rclaF o 4 15 transferrethese rela-
tions being the S,mz;lle/rf .In site 2 too in Fh.e second stcp',‘ i for
this * puper D rom the operands of joins. The .requne e 265
scconds of e . 8y 18 33,33 seconds, which is appropriate to the o
> Stochastic Optimization model, because the differen® |

1,W(-(x“ 1} . )
A2 e bl'/le ()f r . . O((l
A o3 elationg i N : ; astic m
“an give g "pure” g lONS 1S great and in this case the stochas
- Slrategy o
We try ¢ &Y too.

(]i”'u(',n('m Loo, ) ’ appropriate to a’
b ) f o . .
See o ' HEstochagic mode

transfer.

B I]
] ) bQ('H”K{,

in ‘fV‘:rv’,
e v;j}“i

these E‘J“mt

) PG ) B PRI or .
pure” strategy, but a but We cal

I gives a better strategy

ure” strateg

I strategy. of a O™

e wil] o . i 5 £

A Spe Will give the obtained results in cas¢ spee of
Peed of data transfer of 2,4Mbps and th
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Jocal read/write is 3Mbytes/s, So the rate between the loc

: al processing and data
cransfer is 10:1. In this case we consider the local proce :

ssing time too in our com-

puta‘tion.
~ Case a) | by [ )
"Nr. of bits for A | 8.000.000 | 8.000.000 | 1.000.000 |
“Nr. of bits for B | 4.000.000 | 1.000.000 | 10.000.000 |
“Nr. of bits for C | 10.000000 | 5.000.000 | 1.000.000
A 2,93 2,03 1,88
Po,11 0,7 0,725 0,283
Po,21 0,3 0,275 0,717
b 0,735 0,51 0,013
P11,22 0,265 0,49 0,987
D21,32 0 0 0,395
D21,42 1 1 0,605
Fig. 3

There is ng general way to estimate the cardinality of a join without additional
information. There is a case, which occurs frequently, where the estimation is
simple, we use this one. If the join attribute for relation A and B is K, which is
primary key for relation B and is foreign key for relation A, so cardinality of the
result can be estimated by

card(A MA K=B.K B) = cm‘d(A)

because each tuple of A matches with at most one tuple of B. However, this
estimation is an upper bound since it assumes that each tuple of relation A par-
ticipate in the join. The length of a tuple of the join is the sum of the length of
the operand relations minus the length of the join attribute. A DBMS can take
the join selectivity factor from the statistical information of the database. The
necessary time for join execution can differ in function of the method used. If
there exists an index file for relation B with the join attribute as key, the indexed
oop join is an adequate method, but it needs in some cases the transfer of index
file too. We consider the unindexed loop join method in our calculations.
) The analysis of results can be made similar with the precedent case, but for the
‘pure” strategy we have to take into account the local processing time too.
ACKNOWLEDGMENT. The third author would like to thank Professor A.
“ehczur for introducing her to reference [4] and for the interesting discussions.
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