
BS-BOLYAT", INFORMATICA, Volume XLII1, Number 2, 1998
$TUDIA UNIV.

TYPEDN ESS VERIFICATION IN LOGIC PROGRAMMING WITH TYPES

DOINA TATAR AND GABRIELA ^ERBAN

AusTRACT. In this paper we show how the relationship between attribute

grammars and logic programs, blished in 6}, [7), can be extended to

logic programs with type. In this order the concept of " well-typedness "is

introduced. The examples for typed logic prograrns are done in 'Turbo Prolog
and one application for well-typedness verification in Pascal 7.0 is supplyed.

1. INTRODUCTION

As observed by Deransart and Maluszynski [6], [7], there is an intimate rela-

tionship between the notion of a definite program and the notion of an attribute

grammar, because a proof tree 4 of a definite program can be seen as a parse

tree of this grammar. This observation made possibly a transfer of nethods from

the area of attribute grammars to the area of logic programming, as a complemen-

tary approach to the more utilised perspective of the first-order logic and theory

esolution. The paper studies the attribute dependency scheme related with the

gIC programs with types by a suitable modification of the methods introduced

9, 1. The notion of well-typedness is applied to Turbo Prolog programs and

procedure (realised in Pascal) to check up the well-typedness is developed.

2. DEFINITE CLAUSE PROGRAMS

oms) {h,ai,"*" written as t g to |1, 2], [3], a definite clause is a finite set of atomic torinilads

the formula i is called a unit clause or a fact. The language
consicderext

h -a1,** , an

f n=0 then
essentially that of the first-order predicate logic. Let:

Pbe a set of predicates. be a set of functors. Cbe a set of constants. be a set of variables. An atom is of the forin
P(U1,' , Un), 7t20

13

DOINA T�TAR AND GABRIELA ^ERBAN

where p E P and his arrity is n. Each uj is a term over CUVUF.

Definition 2.1

A definite clause program P (shortly DCP) is a sequence of definite

ha1,., an where h and aj,., Qy are atomic tormulas, the comma is th

operation "and", and the sign t- is "if" or reverse of the logical implicatior

14

ite clauses,

logjic
ion.

We refer to the left (h) and right-hand side (a1,.., an) Of a clause as its head. and
body. A clause is logically interpreted as the universal closure of the implica cation

a1 A A an h.

Let us observe that this definition considers only the class of positive lois

programs(all atoms in all clauses are positive).
Definition 2.2 A goal g consists of a conjunction of atoms, and is denoted by:

b1,b

3. ATTRIBUTE GRAMMARS AND ATTRIBUTE DEPENDENCY SCHEMATA

The original motivation for introducing attribute grammars has been to sim-

plify compiler specification and construction 10. This idea brings a declarative
notion, as a parse tree of a context- free grammar, with the operational notion of

dependency relation. More exactly, we give a general definition

Definition 3.1 [7 A relational attribute grammar is a 7-tuple

G (N, P,S, Attr, L, o,)
where:

N is a finite set of nonterminal symbols .

P is a set of context-free production rule.
S is a set of sorts.

Attr is a finite set of attributes, such that each nonterminal X has associated3 set of attributes Attr(X), cach attribute a has a sort s(a) E S, and each attriDlu occurence of a has also the sort s(a). Lis an S-sorted logical language, whose variables include all attribute oc cur rences of attributes in Attr.

te

is an assignment of a logic formula d, of L to each production rule r in P. The free variables of o, are attribute occurrence. is an interpretation of L. A functio7al attribute grammar is a relational attribute grammar sucn uCal
the set Attr is the union of two disjoint sets: Inh (inherited attributes) a synthesized attributes) for cach noonterminal X. For a production rule

of the attribute occurrences is partitioned into the set of input attributes, Input(r), which contains the attribute il he
by the nonterminal head of the rule r, and the attributes synthesizea u
nonterminals in the body of the rule r, and

Syn
set

erited

the

the set of output attributes, Output(r) , which are obtained in opposite
.

WELL-TYPEDNESS VERIPTCATION IN LOGIC PROGRAMMING WITH TYPES
15

1/ denote by Pos(r) the set Input(r) U Output(r) The formula , is a con-

junction of the form

A w= t
wEOutput(r)

rhere tare terms of L whOSe only variables are elements of Attr(r).

With every r in P is associated a binary relation of dependency D, . The family

lhinary relation defines the notion of attribute dependency scheme (ADS).
Definition 3.2 [6) An ADS is a 4-tuple S={N, P, Attr, D) where N, P, Attr

aTe defined as in definition 3.l and D is a family of binary relations {D,},r EP
defined on Pos(r), such that

alyD,x, y¬ Pos(r)} C Output(r).
4. LoGIC PROGRAMS AND ASSOCIATED ATTRIBUTE GRAMMARS

Attribute grammars and definite programs can be compared with respect to the
declarative semantics. The study of dependency relation for definite programs is an
abstraction related to information flow through the parameters of the predicates.

Deinition 4.1 [7) For a given definite program P the relational attribute gram-
mars G is defined to be the 7-tuple G= (N, P, S, Attr, L, d, I) where:

.N is the set of predicates symbols
Pis a set of context-free production rule of the form:

Po p1,* * , Pm

iff

Po(to1, , tono)Pi(t11, ,tin), Pmtmi,** , tmnm)
is a clause c of P.
S is a singleton
Atr is a finite set of attributes, denoting the arguments of predicates. The j-th

gument of the predicate p corresponds to the attribute denoted pj.
15 a first-order logical language, whose variables include all attribute occur-

Tences of attributes of Attr.
an assignment of a logic formula o, of L to each production rule r in P. The
larables of d, are attribute occurences of r. If the rule r is associated with a
dSe c of the above form, then the formula , is the following formula:

Tk

V()A A(Pi(k) = tas)
k=0 j=l

existential quantification over all variables of the clause c,
h occurrence of the attribute pj of the nonterminal p, nx is the

where 3V(c) denotes ex vi(k) is the k-th arrity of predicate P Example 1.
onsider the classical ppend program:

DOINA T�TAR AND GABRIELA ^ERBAN
6

T1: append(, X, X).

r2: append(|H : T}, X, [H: Y}):-append(T, X, Y).

The set Attr (append) is {appendl, append2, append3. The set. Pos(r,

append1(0), append2(0), append3(0)} and the set Pos(ra) is appendi(0), A

pend2(0). append3(0), appendl(), append2(0), append 3(1)}. The corresp

terms fk in definition 4.1 are:{, X, X} for ri and {[H: T}, X, [H: Y), T, X, Y}
for T2

A splitting of the set Attr in Inh and Syn can be obtained if we consider the
fow of data in a definite clanse program. In connection with this fact we introdue

the following definition:
Definition 4.2[1], [2, [6], [7]. Given a DCP, P, a direction assignement or

briefly d-assignement is a mapping of the arguments of each predicate syrnbol
into the set {+, }.
We will call an argument assigned to + "inherited" , and an argument assigned
to "synthesized".

In the presence of a splitting we can define the attribute dependency schema
(ADS) associated with a DCP as follows:

Definition 4.316, [7| Given a DCP with a d-assignement d, the associated ADS, S = (N, P, Attr, D) defined as follows:
.N, P, Attr are defined as in definition 4.1.

D is a family of binary relations {D,},r ¬ P defined on Pos(r), such that aD,b iff
) a E Input(r) and be Output(r)
11) the terms corresponding to these positions have a common variable.

EraTmple 1 (continued):
lf dappend)={+, +, -}, then Input(r1) = {append1(0), append2(0)} and Input appendl(0), append2(0), append3(1)}.
Definition 4.4
An ADS S is well-formed (or non-circular) if the tranzitive closure of the tion D is a partial order. ela-

We assume in the following that. a DCP is augmented with a qoal . To Sinp
the construction we assune the the goal clause is an additional clause whose ie
hand side is a special nullary predicat goal , which does not occur in the ckau
of the progran. An augmented DCP P will be denoted (P, g), wBhere

iy

es

g goal- b1,. ,b
is the additional clause.

wELL-TYPEDNESS VERIFICATION IN LOGIC PROGRAMMING WITH TYPES
17

Definition 4.5 Let (P, 9) be an augmented DCP . A d-assignement d is said

so he a proper d-assignement for (P, g) iff the associated ADS of the augmented
DCP is well-formed.

5. LoGIC PROGRAMS VWITH TYPES

We consider in the following the case of Turbo Prolog, as example of language of
logic programming with types. Lct a set of lines from an first author's automated

theorems prover
Example 2.

domains

term=var(symbol); con(symbol); cmp(symbol, terml)
terml=term*

form=s(symbol); and(form, form); or(form, form); impl(form, form); neg(form);
atom(symbol, terml); all(term, form); ex(term, form)

forml=form*

predicates

arg(integer, terml, term)
conj(form)
disj(form)
member(form, forml)
append(forml, forml, forml)
From the section domains results that a term is constructed from the vari-

ables (denoted by var(symbol)), constantes (denoted by con(symbol)) and that
a conposed term is constructed with: the functor cmp , the name of term, and

the list of his arguments:
Baample: f(a, x) , where a is a constant and x is a variable, is introduced as

cmp(f, [con(a), var(x)]|).
Observation: The set of all terms correct constructed , can be considered as a

set which we denote the type term.
A declaration in section predicates as of predicate " arg(integer, terml, term)"

neans that the third argument of this predicate must be contained in the type

term.

he predicate "arg" selects the "integer"-th element of a list " terml" of terms.)
Allalogously, in this program exists the type form. The following formula:

una atomn(p, [var(r), con (b)1), atom(g, [cmp(f, [var(y))]})) is in the type form and

Tepresents the usully writted logical formula

p(r, b) A q(f(y).

We can now define the notion of type:

Definition 5.1
he type T; of the i-th argunents of a predicate p is the set of all values which

Ls argument can get. (This set is established in the declarations as domains in

DOINA
T�TAR AND

GABRIELA

^ERBAN

18

A
declaration of type is a

construction of the torm p(T1, ,T.)(

tion predicates of a program
in Turbo Prolog),

where 1; is a type. Iet

that a predicate p can have only one
declaration of type.

Turbo Prolog).
Sec-

When a d-assignement is done, the set of arguments of a predicat p is disd 1

in two set of arguments:
the set of "input (assoclated

with +) arguments.

of "output" (associated with -) arguments.

Definitiou 5.2 Let p{t1,* , tk) be an atom and p(i,** , lk) the declaratinn

of type for this. Let IC{1,* ,k} the set of indices ot input pos1tions (accordingly

with a d-assignement) , and 0 the set of indices of output positions. The atom

p(t1, ,te) is input well-typed , briefy input w-t , if for every j EI results

that t, E 1. Analogously is introduced the notion of output w-t.

Let observe that the well-typedness is a notion related with a d-assignement.

Hence, we assume anywhere in the following that a d-assignement is done.

Definition 5.3

ded
(associated with t) argunents, and

ation

.A goal (query)
1, D7

is called well-typed if from e b1, , b;-1 output w-t results b; input w-t, for

each j e [2, n).

A clause
h -a1,'** , am

is called well-typed if
i)from h input w-t , and a1, ,aj-1 output w-t results:

input W-t, for each j¬ 2,m], and
(i)from h input w-t , and a1, ** ,am Output w-t results:

h output w-t.

A program P is well-typed if every clause of it is.

An augmented program (P,9) is well-typed if both P and g are. In particular an atomic goal is well-typed if it is input w-t and a uh h+.is well-typed if from h input w-t results h output w-t. Ezunple 3
The following is a non well-typed query for the program in Exampo goal:-nember(X, s(a), s(b), s(c)]), append(X, X, Y) (let remember that in Turbo Prolog the variables are written witn elc)

leters). Here from output well-ty pedness of the atom member (X, s{a), stdy
not results input well-ty pedness of the atoin append(X, X, Y).

ause

2.

TTYPEDNESS VERIFICATION IN LOGIC PROGRAMMING WITH TYPESs 19

In 9 is proved the following result
heorem 5.4 Let (P,9) be an augmented DCP.If d is a proper d-assignment (P.a) and if P is well-typed ,then g,is well- typed.

or the above example ot not well-typedness of the goal (example 3) it can
he checked that d is not a proper d-assignment for (P,g)

6. VERIFICATION OF WELL-TYPEDNESS OF A LOGIC PROGRAM

The application is written in Turbo Pascal 7.0. Having as input a Prolog pro-
gram, given as a text file, it verifies if the input program is well-typed.The ap- plication will be send at request by the second author. In the following we will
describe shortly this application.

We assune that the Prolog program works with two domains: the first named
form (as a symbol, integer or character) and the second forml (as a list of forms) The input data are read from the text file named logic.txt, which contains the
Prolog program, in fact the sections domains, predicates, goal and clauses.
In this file, in the description of the clauses, the comma, representing the logic
operation "and" and the sign ":-" representing "if" (the reverse of the logical
implication) are replaced with a blank.

Data types:

functie=function (x:string) : boolean
defines the type of a criterion function, which verifies if its argument (given as a
string) is a symbol, an integer or a character

nod=record

nume:string [20);
c:integer;

end

where nume is the name of a predicate or the name of the domain corresponding
an argument of the predicate, c is the number of a predicate arguments or the
pe of a predicate argument (0 if it's an input argument and 1 if it's an output
argument)
variabila=record

Lne:string [20]; - the name of a variable
i

ngl20J; - the name of the domain corresponding to the variable

end

efines the typ of a variable from a clause

Var=array [1.. 20] of variabila
the type corresponding to the array of the variables from a clause

Sr=array [1. .20] of nod

DOINA T�TAR AND GABRIELA ^ERBAN

is the type used to represent a predicate with its arguments; the first roe

the array contains the nane of the predicate and the number of its aro

the rest of the records from the array contains tor each argument of the nd

the name of the argument's domain and the argument's type (0 if it's ate

argument and 1 if it's an output argument)

20

ord from
1ents and

sird=array [1. .20] of sir

Ogram is the type used to represent the array of the predicates from the Prolor n

sirs=array [1. .20] of string[50]

is the type used to represent the clauses from the program; each clause is retaina

as a string; the first element from the array is the goal
Global variables:

ined

dom a variable of type functie; represents the type corresponding to a fora
pred a variable of type sir representing the array of the predicates from the

Prolog program
* Notations

predil 1].nume - the name of the i-th predicate

predi[1].c - the number of arguments of the i-th predicate

predi.nume the name of the domain of the j-th argument of the i-th pred
Icate

predij.c - 0 if the j-th argument of the i-th predicate is an input argument
and 1 if it's an output argument

np - an integer variable representing the number of predicates

clauze a variable of type sirs representing the clauses, including the goa
nc - an integer variable representing the number of clauses, including the go0al

The algorithm consists of:
read of the input data from the text file and identification of the predicates,

the clauses and the goal
* verification if an atom is well-typed, in fact if it is input well-typed and output

well-typed
*verification if a clause is well-typed
verification if the goal is well-typed
if all the clauses, including the goal, are well-typed (corresponding definitions from the theory part), thern the program is well-typed, Otnerw Subprograms used:
(F) e syrnbol(s: string) : boolean

- verifies if the argument is a symbol (F) einteger(r : string) : boleun
- verifies if the argunent is an integer (F) e_var (s : string; var cap, coada : string): boolean -verifies if the argument is a variable (simple or a list); if it's a 1st; and coada returns the head and the tail of the list

the

10

list, then caf

TTYPEDNESS VERIFICATION IN LOGIC PROGRA MMING WITH TYPES
w

21

-verifies 6os if the argument is a list with elements verifying the criterion function

(F) elista(r: string; f: functie) : boolean

(P)citire
read the input data from the text file logic.tat

(F) elimin(r: string) : string
liminates the blanks from the beginning of a string and returns the result (P) construire(T: str71g; var y: sir)

forms the predicate y from the string z

(Plidentificare(t : string; var n : integer; vary : sirs; var n : integer); Drocesses the string t representing an atom and identifies the name of the
corresponding predicate and its arguinents

n represents the index of the predicate in the array pred
y represents the array of the predicate arguments (as an array of strings)
m represents the number of the predicate arguments

(P) prelucrez(r: string;t: string; var cont : boolean; var lLvar : sir-var; var nu integer)
- processes a variable from a clause (the variable is named r and it's domain is

t) and point out if the variable was found once more in the clause, but with an
inadequate domain

- var represents the array of variables from the clause
nu represents the number of variables from the clause
the variable cont is true if a contradiction (shown above) is found

P) atom_i.o-w_t(z : string; varlvar : sir_var; var nu : integer;
var aiw_t, a_ow_t : boolean)

verifies if the atom z (as a string) is well-typed, corresponding to the Definition
5.2

var represents the array of variables from the clause
*

nU represents the number of variables from the clause
Lhe variable a i w_t is true if the atom is input well-typed
ne variable a o.w.t is true if the atom is output wel-typed
goal w_t(na : integer; i_w_t, o-w-t: sirb): boolean

erifie: nes if the goal is well-typed, corresponding to the Detinition 5.3

represents the number of atoms in the goal
l 1s an array of boolean values specifying if the atoms of the goal are input

wel-typed
Dit l array of boolean values specifying if the atoms of the goal are

Output well-typed
Cause w t(na : inteaer: i-wt, o-uwt : sirb): boolean

verifie
(F) clauzawt -t(i: integer) boolean

a clause is well-typed, corresponding to the Definition 5.3

DOINA T� TAR AND GABRIELA ^ERBAN
22

verifies if the i-th element of the array clauze is well-typed (this eleme

be the goal or a clause)
(F) program.wt: boolean

- verifics if the Prolog program is well-typed, corresponding to the Defi..

ment could

Definition
5.3

Eramples
1. If the input file "logic.txt" contains the following Prolog program

domains

form=symbol
predicates

member (form,forml)

append (forml , forml, forml1)

goal

member (X, [a,b,c]) append (X,X, Y).
clauses

member (X, [XI])
member (X, U_IL]) member (X,L).
append (),X,x).
append ((HIT) ,X, [H|YI) append (T, X, Y).

the application's result is "The program is not well-typed"
2. If the input file "logic.txt" contains the following Prolog program

domains

form=symbol
predicates

member (form, forml)
--

append (forml,forml, forml)
++

goal
member (X, [a,b, c]) append([X], [X], W). clause8

menber (X, [XI_]).
member (X, [-IL]) member(X,L).
append (0,X,X).
append ([HIT],X, [HIY]) append (T, X, Y) .

the application's result is ""The progran is well-tyjped"

EL.TYPEDNESS VERIFICATION IN TOGIC PROGRAMMING WrTH TYPES 23
REFERENCES

r11 K.R. M.H.van Emden: Contribution to the theory of logie prograTnning J. of ACM, vol.29, 1982, pg.841-862.

Ant, D. Pedreschi: Studies in pure Prolog: termination, CWI Report CS-R9048, Sep- tember, 1990.

a1 P.Bon acina, J.Hsiang: On rewTate programs: semantics und relationship with Prolog, J. Logic Programmin8, 1992, vol.14, pp.155-180.
I.Clark: Predicate Logic as a computational formalism, Res.Mon. 79/59 TOC, Imperial College, london, 1979.

IEt s Debray, P.Mishra: Denotational and operational semantics for PROLOG, J. of Logic Pro-
gramming, vol.5, nr. l, 1988, pp.33-61.

6 P.Deransart, J.Maluszynski: Relating logic programns and altribute grammars, J.of Logic
Programming, nr.2. 1985, pp.119-155.

7P.Deransart, J.Maluszynski: A grammatical view of logic programming, 'The MfT Press, 1993.

SD.Tatar: Logic grammars as formal languages tool for studying logic programs Studia Univ.
"Babes-Bolyai", 1993, nr.3.

9 D.Tatar: Atribute grammar and Logic Programs with types, Proceedings ROSYCS'96, Iasi,
mai 1996, pp 57-69.

BABES-BoLYA" UNIVERSITY or CLUJ-NAPoCA, DEParTMENT OF CoMPUTER ScIENCE

E-mail address: {dtatar,gabis)0cs.ubbcluj.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

