5T

“BABES-BOLYAT”, INF
UDIA . S ABES I*ORM/\TICA, Volume XLIL, Nymy
» Number 2, 1998

WELL-TYPEDNESS VERIFICAT|(

PROGRAMMING WITH IN LOGIC

YPES

DOINA TATAR AND GABRIELA §irpan
N D1V A \

ABSTRACT. In this paper we show how the relationship between afir

grammars and logic programs, established in (6], (7], can lflw '::""L'»";"b'““i
Jogic programs with type. In this order the concept of » well-t td(rn: Q-d” .
introduced. The examples for typed logic programs are (lone‘ inl?;‘ll);;b(l; ’?’Sr(l I:
and one application for well-typedness verification in Pascal 7.0 is suppl;o(()f

1. INTRODUCTION

As observed by Deransart and Maluszynski [6], [7], there is an intimate rela-
ionship between the notion of a definite program and the notion of an attribute
-ammar, because a proof tree [4] of a definite program can be seen as a parse
wree of this grammar. This observation made possibly a transfer of methods from
‘e area of attribute grammars to the area of logic programming, as a complemen-
wary approach to the more utilised perspective of the first-order logic and theory
resolution. The paper studies the attribute dependency scheme related with the
lgic programs with types by a suitable modification of the methods introduced
6], [7]. The notion of well-typedness is applied to Turbo Prolog programs and
« brocedure ( realised in Pascal) to check up the well-typedness is developed.

2. DEFINITE CLAUSE PROGRAMS

t of atomic formulas

cconding 1o (1], [2], (3], a definite clause is & fnite
oms) {hyay, .- a,} written as

h("a]_,"' 7(1'!1'

ge considered

. The langua

| 7L = . o 3
~Uthen the formula is called a unit clause ot @ fact.

.'.(',’(4/ P . . . )" \ , ‘t':
. lé “ssentially that of the first-order predicate logic. Lt

i ; ; set of predicates.
e aset of functors.
4 set of constants.
An dt)(or: TQL (.)f V'dr-'%ables.
s of the form

7 e

])(“/1 y )“'n)a“’ 2 0

13




ABRIELA SERBAN
a term over CUV UF.

DOINA TATAR AND G
14

€
Whg:ffnition 2.1 am P (shortly DCP) is a sequence of definite Clayseg
A definite clause program a. are atomic formulas, the comma is t},,
...a, where h and'ql ; Mio,n”if” or reverse of the logical implicatioy,
»and”, and the sxgn‘_%"-} t:ll'llld side (ay, ..., an ) of a clause as its heqy ang
eft () onc FE t(:d as the universal closure of the mplicatig,

ity is T w18
P and his arrity 18 7. Each u;

)
h «— aiy-

operation
We refer to the . d right-
body. A clause 18 logically interpre
A - h. , T
alg A (Z{)qorvo that this definition considers only the class of positive logic
et us observe that t ns
5 1 lauses are positive).
rams( all atoms in all clauses ar . . | N
brg[gsr:ﬁni(tion 2.2 A goal g consists of a conjunction of atoms, and is denoted by.

by by

3. ATTRIBUTE GRAMMARS AND ATTRIBUTE DEPENDENCY SCHEMATA

The original motivation for introducing attribute g.ra:mmars'has been to_,SI.Hj"
plify compiler specification and construction [10]. This idea br1ng§ a decla%dm\e
ﬁotion, as a parse tree of a context- free grammar, with the operational notion of
dependency relation. More exactly, we give a general definition :

Definition 3.1 [7] A relational attribute grammar is a 7-tuple

G =(N,P,S, Attr, L, ¢, I)
where:

o\ is a finite set of nonterminal symbols .

*P is a set of context-free production rule.
S is a set of sorts.

e Attr is a finite set of attributes, such that each nonterminal X has associated 2
set of attributes Attr(X), each attribute g has a sort s(a) € S, and each attribute
occurence of a has also the sort s(a)

oL is an S-sorted logical lan
rences of attributes in Attr.

'[}.¢ 8 an assignment, of g logic formula, ¢ of L to each production rule 7 i !
i€ free variables of ¢ are attribute occurrence.

o/ is an interpretation of L.
A functional attribute

guage, whose variables include all attribute occul”

ot e ) Brammar is a relational at
set, 18 the union of twe disjoint, sets: Inp

(syntiu:sizcd attributes) for cach noonterminal X
of the attributce occurrencey iy bartitioned inte

® the set, (f input attributes ITLput('I" |
by the nonterminal head of tl,w rule p
nonterminals in ¢ ’

body of the ¢
e rule p
® the set, of output attribyteg
Ly

. . ne
tribute grammar such thatqthﬂ
(inherited attributes ) and ”:Uet
- For a production rule r the 5

), which coutains the attribute inheritlei
» and the attributeg synthesized by *
, and

Qutput(r) , which are obtained in opposites ca5¢




WELL-TYPEDNESS VERIFICATION IN LOGIC PROGRAMMING WITH TYPES 15

We denote by Pos(r) the set Input(r) U Output(r) The formul
unction of the form
| /\ W = tw

weOutput(r)
jere t,, are terms of L whose only variables are elements of Attr(r).
With every 7 in P is associated a binary relation of dependency D, . The family
of binary relation defines the notion of attribute dependency scheme (ADS).
Definition 3.2 [6] An ADS is a 4-tuple S=(N, P, Attr, D) where N, P, Attr
are defined as in definition 3.1 and D is a family of binary relations {D,},repP
defined on Pos(r), such that

{z|yD,z,y € Pos(r)} C Output(r).

a ¢, is a con-

wl

4. LOGIC PROGRAMS AND ASSOCIATED ATTRIBUTE GRAMMARS

Attribute grammars and definite programs can be compared with respect to the
declarative semantics. The study of dependency relation for definite programs is an
abstraction related to information flow through the parameters of the predicates.

Definition 4.1 [7] For a given definite program P the relational attribute gram-
mars G is defined to be the 7-tuple G= (N, P, S, Attr, L, ¢, I) where:

oV is the set of predicates symbols .
P is a set of context-free production rule of the form:

Do = P1," " ,Pm

iff

pO(tOl’ o ’tonO) ST pl(tll’ T 7t1n1)’ T ’pm(tml; T atmnm)
Is a clause ¢ of P. X
*5 is a singleton
*Attr is a finite set of attributes, denoting the arguments of predicates. The j-th
argument of the predicate p corresponds to the attribute denoted pj.
*Lis a first-order logical language, whose variables include all attribute occur-
fences of attributes of Attr.
*0ls an assignment of a logic formula ¢, of L to each production rule » in P. The
¢ variables of ¢, are attribute occurences of r. If the rule r is associated with a
Fause ¢ of the above form, then the formula ¢, is the following formula:

m Nk
V() A A@itk) = tey)
k=0 j=1

Pi(k) (¢) denotes existential quantification over all variables of the clause ¢,

aryj is.the k-th occurrence of the attribute pj of the nonterminal p, nx is the
_ 1Ey of predicate p.
Tample 1,

Cong;
1S _
ider the clasgical append program:

.



DOINA TATAR AND GABRIELA SERBAN

cappend([], X, X). . |
r .T.llpp(l.\n(l([[] N rl‘]\ ,\'\ Il] . \'/]): (\l)l)(,“(l( ' y X, Y)
2. C AN

16

e setAttr(append) is {appendl, append?2, :Lppm_ld.'_i}. '”'m 50t, /,m’(,,,” 3

Theset : ‘l\ 12(0), append3(0)} and the set Pos(ry) is {“'I)P‘””“”J)f o
{append1(0), appendcet®), ! (1), append2(1), append 3(1)}. The correspo,,
pend2(0), append3(0), append (1), crpand {[H:T), X, [H: Y], T, % o)
terms f; in definitidn 4.1 m‘(":{[]a X, X} for 7y anc DA ‘ A /J"
v .::plining of the set Attr in Inh and Syn can be ‘)b'f'?"i“"‘? if we (5"’f31(1‘:!' the
flow of data in a definite clause program. In connection with this fact we introd
the following definition: ’ ’

Definition 4.2(1], [2], (6], [7). Given a DCP, P, a direction assignement o
briefly d-assignement is a mapping of the arguments of each predicate sy
into the set {+, - }.
We will call an argument assigned to + "inherited” , and an argument assizned
10 -, "synthesized”.

In the presence of a splitting we can define the attribute dependency schema

ADS) associated with a DCP as follows:

Definition 4.3(6], [7] Given a DCP with a d-assignement d, the associated
ADS. S = (N, P, Attr, D) defined as follows:

* N. P Attr are defined as in definition 4.1.

* D is a family of binary relations {D,;},r € P defined on Pos(r)
aD.biff

) a € Input(r) and b € Output(r)
(1) the terms corresponding

lee

such that

)

to these positions have a commmon variable.

Ezample 1 ((:().ut,inued): '
Hd(append)={+ +, -}, then Imput(r,) = {appendl
{a prendl(0), append2( 0), append3(1) }.

Definition 4.4

An ADS S is well-forme

von D is a partia) order.

(0), append2(0)} and I nput(rl®

d (or non-circular) if the tranzitive closure of the rela-

We ass s 3 Lt oo e

EEHIme n the following that, o DCP is augmented with a goal . To simplify

Cassume the the goal clayse is an additional clause whose left

spec): ar : 65

! PA( tal nullary predicay, goal, which does not occur in the clauses
W A augmented HCP will be denoted (P, 9), where
D ) < g

the construction we
hand side 18 ¢

of the progry

Y goal < b b,

1S the additiona] clause.




WELL-TYPEDNESS VERIFICATION IN LOGIC PROGRAMMING WITH TYPES 17

Definition 4.5 Let (P, g) be an augmented DCP . A
to be a proper d-assignement, for (P, g) iff the
DCP is well-formed.

d-assignement d is said
associated ADS of the augmented

5. LOGIC PROGRAMS WITH TYPES

We consider in the following the case of Turbo Prolog, as example of language of
logic programming with types. Let a set of lines from an first author’s automated
theorems prover :

Ezample 2.

domains

term=var(symbol); con(symbol); cmp(symbol, terml)

terml=term*

form=s(symbol); and(form, form); or(form, form); impl(form, form); neg(form);
atom(symbol, terml); all(term, form); ex(term, form)

forml=form*

predicates

arg(integer, terml, term)

conj(form)

disj(form)

member(form, forml)

append(forml, forml, forml)

From the section domains results that a term is constructed from the vari-
ables (denoted by var(symbol)), constantes (denoted by con(symbol)) and that
a composed term is constructed with : the functor cmp , the name of term, and
the list of his arguments: :

Ezample : f(a, x) , where a is a constant and x is a variable, is introduced as
cmp(f, [con(a), var(x)]). ‘

Observation: The set of all terms correct constructed , can be considered as a
set which we denote the type term.

A declaration in section predicates as of predicate ”arg(integer, terml, term)”
means that the third argument of this predicate must be contained in the type
term.

( The predicate ” arg” selects the ”integer”-th element of a list "terml” of terms.)
Analogously, in this program exists the type form . The following formula:
and(atom(p, [var(z), con(b)]), atom(q, [emp(f, [var(y)])])) is in the type form and
fepresents the usully writted logical formula :

p(z,0) Aa(f(y))-

We can now define the notion of type:

Definition 5.1

The type T; of the i-th arguments of a predicate p is the set of all values which
this argument can get. (This set is ostablished in the declarations as domains in



ABRIELA SERBAN

DOINA TATAR AND G

18
Turbo Prolog)-
: truction of the form p(T1 Tk (as in
ation of type 182 cons ‘ e ‘ e
i , dicci?crates of a program in Turbo Prolog), w?ele T; is a type. Let COnsjde
r : °
zlk?:tlz; predicate p can have only one declaration of type

¢ of arguments of a predicat p is divideg

nement is done, the se . |
(assomated with +) arguments, a4

When a d-assig e !
ts: the set of "input

in two set of argumen ) t
" ” °] jith -) arguments.

of "output” (assoC iated with -) argt
Definition 5.2 Let p(t1, -+ ,tx) be an atom and p(T1,- - > Tk) the declaratio

of type for this. Let I1C{1,- - .k} the set of indices of input posit.iqns (accordingiy
with a d-assignement ) , and O the set of indices of output positions. The aton
p(ty, - - tk) 18 input well-typed , briefly input w-t , if for every J € I results
that t; € Tj. Analogously is introduced the notion of output w-t.
Let observe that the well-typedness is a notion related with a d-assignement.
Hence. we assume anywhere in the following that a d-assignement is done.
Definition 5.3
e A goal (query)

bl,"' >bn

is called well-typed if from e by, -+ ,bj_1 output w-t results b; input w-t, for
each j € [2,n]. '

e A clause

h ai, -+ ,0am
is called well-typed if
(1)fror.n h input w-t , and a1, - ,a;—; output w-t results:
K mput w-t, for each j € [2,m], and '
(ii)from h input w-t , and q, - ,

h output w-t. "' Gm output w-t results:

o A r i
program P is well-typed if every clause of it is

* An augmented
L. - program (P, :
In particular an atomic goal (is ,illlf well-typed if both P and g are.

h, «— . is - . t e ] 3 : . 2
Eza w?l} typed if from h input yped if it is input w-t and a unit claust
zample 3 put w-t results h output t

The followine i« w-t.

zoal :‘me;-) 154 non well-typed

(let - ¢ member(X, [s(a) s(b), s duery for the
1(-t<>r§j l;{mef“b(ﬂ' that in Tu,rbo ],’S(C)])
SHEIS). Here from oyt

" . put well-

not results inpyg W"‘“—typ(m(,’,](l type
” )’S

5 program in Ezample 2 -

ol e (X, X, 1

D10 ¢t ot : "

»dmis olf rr(mdbles are written with the upp?

s of the 'LL()I“‘ 1:’ atOf(Ill(member(X, [s(a), S(b); s(¢ ])
‘ append(X, X, Y)




WELL-TYPEDNESS VERIFICATION IN LOGIC PROGRAMMINC;

In [9] i proved the following result :

Theorem 5.4 Let (P, g) be an augmented DCPp I
i (P,g) and if P is well-typed then g,is well-
( [}

WITH TYPES 19

d is a proper d-assignment
typed.

For the above example of not well-typedness of the goal

. _ (example 3) it can
he checked that d is not a proper d-assignment for (P, g)

6. VERIFICATION OF WELL-TYPEDNESS OF A LOGIC PROGRAM

The application is written in Turbo Pascal 7.0. Having as input
gram, given as a text file, it verifies if the input program is well-t
plication will be send at request by the second author. In the foll
describe shortly this application.

We assume that the Prolog program works with two domains: the first named
form (as a symbol, integer or character) and the second forml (as a list of forms).

The input data are read from the text file named logic.txt, which contains the
Prolog program, in fact the sections domains, predicates, goal and clauses.
In this file, in the description of the clauses, the comma, representing the logic

operation "and” and the sign ”:-” representing ”if” (the reverse of the logical
implication) are replaced with a blank.
Data types:

a Prolog pro-
yped.The ap-
owing we will

functie=function (x:string):boolean

defines the type of a criterion function, which verifies if its argument (given as a
string) is a symbol, an integer or a character
nod=record
nume:string[20] ;
C:integer;
end

where nume is the name of a predicate or the name of the domain corresponding
to an argument of the predicate, ¢ is the number of a predicate arguments or the
ype of a predicate argument (0 if it’s an input argument and 1 if it’s an output

argument,)

Variabila=record

JUme:String[20]; - the name of a variable

tip:string[QO]; - the name of the domain corresponding to the variable
end '

defineg

the type of a variable from a clause

S

“Y-Varsarray(1,.20] of variabila

Presents the type corresponding to the array of the variables from a clause
Sirs

TATay (1. 120 of nod

.



DOINA TATAR AND GABRIELA SERBAN

is the type used to represent a predicate with its arguments; the first rec,

ict er of i
the array contains the name of the predicate and the n}tlmb f IES ?fxrguments an
the rest of the records from the array contains for eac ?rgtumen 0 the predic
y ) ) A » \ " g g > ) i '
the name of the a.rgument’s domain and the argument’s type (0 if it’s an iy

put
argument and 1 if it’s an output argument )

sird=array[1..20] of sir f
> arre ‘he predicates from the Pr (
is the type used to represent the array of the predicat olog brogra

20
d frop,

ate

sirs=array[1..20] of string[50]

is the type used to represent the clauses from the program; each clause is Ietaine
as a string; the first element from the array is the goal

Global variables:

* dom - a variable of type functie; represents the type corresponding to a forr

* pred - a variable of type sir representing the array of the predicates from the
Prolog program

* Notations

pred/i/[1].nume - the name of the i-th predicate

pred[i][1].c - the number of arguments of the i-th predicate

pred[i][j].nume - the name of the domain of the j-th argument of the i-th pred-
icate

pred]i[jl.c - 0 if the j-th argument of the i-th predicate is an input argument
and 1 if it’s an output argument

* np - an integer variable representing the number of predicates

* clauze - a variable of type sirs representing the clauses, including the goal

* nc - an integer variable representing the number of clauses, including the goal

The algorithm consists of:

* read of the input data from the text file and identification of the predicates,
the clauses and the goal

* verification if an atom is well-typed, in fact if it is input well-typed and output
well-typed

* verification if a clause is well-typed

* verification if the goal is well-typed

7 if all the clauses, including the go: -
definitions from the theory part{;r, the o i

Subprograms used:

(F) e_symbol(z string) : boolean

- Yeriﬁes if the argument is g symbol

(F) r:.,'.im,«g(r'r(a: s string) booléan

-( ;;»r:fj;ln(f;hcb ,'(V,L'?;r;’u'rlunle, Is an integer

PR, var cap, coada : string) : boolean,

- verifies if the arpument e ;
snd oo o rsument is a variable (simple or a list); if it’s a list, ther
‘turns the head and the tail of the list

5 e
(Corl‘espondmg to th
n the program is well-typed, otherwise 10

(‘(lp




\,VELL‘TYPEDNESS VERIFICATION IN LOGIC PR()GR,AMM]N(' WITH TYPES

F) o lista(z : string; f © functie) : boolean
fies if the argument is a

21

- veri list with elementg verifying the

criterion function
ancuire . _
_read the input dz}ta from .t.he text file logic.tat
(F) elimin( : string) : string
_eliminates the blanks from the beginning of a strin
(P) construire(x : string;vary : sir)
_forms the predicate y from the string x
(P)identificare(a: string;varn : integer; vary : SiTs;varm integer);
- processes the string x representing an atom and identifies the name of the
corresponding predicate and its arguments
- n represents the index of the predicate in the array pred
- y represents the array of the predicate arguments (as an array of strings)
- m represents the number of the predicate arguments
(P) prelucrez(z : string;t : string; var cont : boolean; var l_var : SiT_var;varnuv :
integer)
- processes a variable from a clause (the variable is named z and it’s domain is
t) and point out if the variable was found once more in the clause, but with an
inadequate domain
- lvar represents the array of variables from the clause
- nv represents the number of variables from the clause
- the variable cont is true if a contradiction (shown above) is found
(P) atom_i_ow_t(z : string;varl_var : sir_var;var nv : integer;
varaiw t,a_ow-t : boolean)
- verifies if the atom 2z (as a string) is well-typed, corresponding to the Definition
5.2
- lvar represents the array of variables from the clause
~ W represents the number of variables from the clause
- the variable a_i_w_t is true if the atom is input well-typed
- the variable a-o-w-_t is true if the atom is output well-typed
) goal w _t(na : integer;iw_t,o_w_t : sirb) : boolean o
- Verifies if the goal is well-typed, corresponding to the Definition 5.3
" represents the number of atoms in the goal

N ill.w_t is an array of boolean values specifying if the atoms of the goal are input
“typed

T 0w t ig
Uthut we)yq

g and returns the result

cpis ; oal are
an array of boolean values specifying if the atoms of the goa
yped .

Qause,w_t(yla sinteger;iaw-t,ow-t : szv'l‘)) : boolean s

lause is well-typed, corresponding to the Definition o.

cza“zaiw_t(i integer) : boolean




TXTAR AND GABRIELA SERBAN
22 DOINA TATAR

verifies if the i-th clement of the array clauze is well-typed (this o]
be the goal or a clause)
(F) program_w_t : boolean | » |
verifies if the Prolog program is well-typed, corresponding to the D‘fﬁnitjm
) < ¢ .
5.3

ment Coulq

Framples | . )
1. If the input file "logic.txt” contains the following Prolog program

domains

form=symbol
predicates

member (form, forml)

-+

append (forml,forml,forml)

++-
goal

member (X, [a,b,c]) append(X,X,Y).
clauses

member (X, [X]|_]).

member (X, [_|L]) member(X,L).

append([],X,X).

append ([H|T],X, [(HIY]) append(T,X,Y).

the application’s result is ” The program is not well-typed”
2. If the input file ”logic.txt” contains the following Prolog program

domains
form=symbol
predicates
member (form, forml)
-+
append (forml,forml, forml)
++-
goal

member (X, [a,b,c]) append ([X], [X],wW).

clauses
member (X, [X|_]).

member (X, [_|L]) member (X, L) .
append([],% %) .

append([HIT],X,LHIYJ) append(T,X,Y).

Lheapphcuhuuslwmﬂtih”ﬂlnepuuwuuxh;wuH%ypvd”




1]
g
3]
n

1

22

-
|

tt

o)
8

WELL-TYPEDNESS VERIFICATION IN 1,0 PROGRAMMING wipy TYPES 99
REFERENCRg
R. Apt M.H.van Emden: Contribution to the
K.R. Apt, A &
0l.20, 1982, pg.841-862.
‘Oﬁ :\pt D. Pedreschi: Studies in pure Prolog:
K.R. ¢ ) ’ K
l(\n]bcr\ 1990. . . N ‘-' § " . ;
p.Bonacina, J.Hsiang: On rewrite programs: se
M. Programming, 1992, vol.14, pp.155-180. |
Loilccmrk- Predicate Logic as a computational formalism, Res.Mon., 79/59 TOC, Imperial
K.L.Clark:
“olege, london, 1979. | | .
(glef;rea\ P.Mishra: Denotational and operational semantics for PROLOC, J. of Logic Pro-
S.Debray, .V ,
ramming, vol.5, nr.1, 1988, pp.33-61.
g !

theory of logie programming J. of ACM,
t(’,rmin.ul,zun,, CWI Report €y 19048, Sep.

mantics and relationship with Prolog, J.

Deransart, J.Maluszynski: Relating logic programs and attribute grammars, J.of Logic
A P erans 'y o4

Programming, nr.2. 1985, pp.119-155.

y ) ] T N T ;\‘l. -()93.
P.Deransart J Maluszynski: A giammatz’cal view Of [Og’t(,‘ programming, ['he MI'T FTPSS, 1
brd| . O ) >

D.Tatar: Logic grammars as formal languages tool for studying logic programs Studia Univ.
Tatar:

" "Babes-Bolyai”, 1993, nr.3.

g

y ™ (O i 4 'Y(;S’g{s, Ia.Si,
D.Tatar: Attribute grammar and Logic Programs with types, Proceedings ROS
mai 1996, pp 57-69.

D » COMPUTER SCIENCE
“BABES-BOLYAT” UNIVERSITY OF CLUJ-NAPOCA, DEPARTMENT OF CO
E-r.naz'l address: {dtatar,gabis}@cs.ubbcluj.ro





{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

