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Abstract. A new evolutionary algorithm for detecting the hierarchical structure of a
data set 18 pro.pok\‘cd. The method is particularly suitable for clustering purpose. In this
case the considered approach may also supply the optimal cluster number in the data
set.

1. Introduction ,

This paper proposes a method to detect the hierarchical structure of a data set using
a genetic algorithm (see [1,2])

Let us consider a data set X={x’x’,....¥"}, and let d be a distance on X. Our aim is to
detect hierarchical cluster structure of X. The problem is particularly difficult when the
optimal cluster number n is unknown ([3]). The method proposed in this paper will give
the optimal number of classes as well as their hierarchical organisation.

For this purpose a genetic algorithm approach will be used. Each chromosome will
describe a cluster hierarchy. In order to obtain a feasible solution, we need a
chromosome representation, which ensures that the search space would be completely
explored. This means that all possible solutions may be generated.

2. Representing a hierarchy

To describe a hierarchy we have to follow some steps:
" a) First we will consider a binary tree having 2°* nodes. This nodes will bg labelled
Y numbers from 1 to 2”'2, starting with the root node (level zero). The i-th level,
USi<(p- 3) contains 2’ nodes. Taking the sum of the nodes from the first (p-3) levels
We have:
-3
pz 2 =2P72
i=0
J . C e : . v B "t
From this cquality we deduce that the first (27-1) nodes are distributed in the firs
evels of the 1ree. Therefore the level (p-2) will contain only one lwdc.’['h- desn
this llhc considered tree represents a skeleton ot a hierarchical S[l‘llt.,‘l'ulb-‘ g}i[e(l‘a"chy
l‘o‘r l}?:c Will be non-terminal nodes in the tree describing the classification 1 .
bs reason we call them non-terminal or skeletal nodes.
Dosilio) After we prepare this skeleton tree we consider a strin e
N containg i . 2 Rac Jtion indic
“Ontains an integer number ¢, 1 <e¢, <277 Each positiol

(p-3 )

g having p positions. Each
s a link
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between a data points v and a skeletal node. In our case because we use a genetic
algorithm, this string is represented by a chromosome with a real codification,
In the chromosome:
c=(cp Cy ... Cp)

the value ¢, of the gene J indicates the non-terminal node to which the point o
(rcprcscnlcd by a new terminal node) is attached. So, the data point that we wanq 14
classify will be represented by nodes that “hang” in the skeleton tree. These will be oy
terminal nodes.

¢) To obtain a data hicrarchy, after all attachments arc performed we have to dq
some transformations. We have to check bottom-up all nodes of the structure. If 4
skeleton node has maximum one descendant, the skeleton node is removed from the
structure and its son is connected to the upper node (see also [4]).

EXAMPLE:
We want to represent a space who has five data and the classes of these data are:
x'x7},
{x°x7), XY,
We will use a tree with 2°2 = § skeletal nodes. Let us now the chromosome ¢ = (3 545
2). The skeletal tree representing this chromosome is depicted in Figurel.

Figure 1. A skeletal tree for five data points

The corresponding decision tree is depicted in Figure?2.
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The proposed mechanism may generate a new tree which describ i
cluster structure on X. This tree has two kind of nodes. The skel :’C“ o 3 erarchy
terminal ones, and the data points are represented by terminal nkod 6': Oln n(')des oo 1
WO tcrminal nodes are connected with the same node we con:::c.i : tEIS ot lre?, !
1'epl'€Semed by these nodes belongs to the same cluster. So, each ot da}ta ol
represents a class in X. 7 non-terminal node
The proposcd approach allows us to obtain the optimal cluster numb
umber is given by the number of the non-terminal nodes. mber e
This mechanism may generate a non-binary tree. The following theorem en
that this method can generated all hierarchical structures corresponding to p points o

Theorem 2.1 Any hierarchy of p objects may be described by using the previous
method.

Proof 1t is done by induction with respect to p. The steps of the proof are given below.

1. If we have a data set with three objects (p=3) we can have two situations. This

situation are represented in Figure3:
~ O\.
(b)

hierarchical structures for three data points
r method. According to
ponding skeleton tree is

(2)
Figure 3. The

‘ We have to prove that these hi
this method we have 2°2=2 nodes in't

represented in Figure4.

erarchies are obtained by ou
he skeleton tree. The corres

Figure 4. The skeleton node for thre
led 2 two t
om the Figure 3(b).

e data points
ot If we attach to the non-terminal node label erminal nodf?Shfindh_t;)r:r‘zhri‘z‘ZI
S one terminal we obtain the structure fr This 1
ure is described by the chromosome c~(221)
Skclc::;t us consider that all tcrminal' modes are linkfd to lhc\){/0~0t};'1
Structure ;"Odc lubcll.cd 2 is deleted (it has not an ol{sprmg)‘. L_". N
epresented in Figure 3(a). The corresponding chromosome 15 €2

In this cas¢ the
ve obtained the
(1.




D N ’

k data points. We

ider |
2. Let us cons hierarchy. We suppose that a chromosome can represey

¢ who represent a

chromosom e
iced by A points.

anv hicrarchy indu

snsider (1 1) objects. This means that we add one new object t 1,
3. 1.ct us now otk }

, . «en 2. From the data set point of view this point can be added i3
tree considered at the step 2.
different Kinds: |

a) the point belong to a class (1) |

b) the point does not belong to §11y clas.s

¢) the point induce a new class in our hierarchy

The first two situations are treated in the same way. We gse the glelratr)clllly ;S'te'lb“}ih
to the step 2. We add one more terminal node tq the non-terminal node labelled 1 in the
frst case. or to the root node in the second situation. |

In the third situation the input space will have a new class so the tree structure will
have one more non-terminal node. The problem is if the skeleton node bas n%v igou%}}
nodes for representing this structure. The new skeleton tree will have with 27 -2 =2.
more nodes as the skeleton tree prepared in step 2. So, in the k-skeleton trec we will
complete the whole last level, and we will add a new level with one node only. The
aumber of the data classes is increased only with one, so the number of levels in the

hierarchy tree may also increase only with one level. But as we see this one more level is
prepared even from the skeleton tree.

3. Coding

Each chromosome with p genes will describe a cluster hierarchy on X. To CdC"{
hierarchy that we consider corresponded a number n of virtual clusters. The number of
tne non-terminal nodes gives this number, each non-terminal node corresponds t0 @
virtual class A4,.

~ The prototype of a virtual class 4, is a new data point L' who depends on all detd
point for class 4,. v irtual classes may contain data points as well as prototypes.

We may admit that two terminal nodes hanging the same parent belong to the snnu"

real class. Withi IS ass [ o,
_:b t]af d\)\lnhm 1215 assumption the real classes may be obtained from the Virtid
-:as5es by deleting the prototypes. Let B, b ‘ i - S
, , . , be the real class tual class =
We may formally write: ’ o dused by thevirt
Bo=a 15 1h e 4,y
Example 3.1 |et us ¢o
the chromosome ¢ (46
classes, T hese classes are:
§ 4 4
A Xy and the prototy
A=t 5

and
gure 2, anc

nsider the hierarchical structure described in Fi |
. Yy . ‘ o ‘1
points for our data set determine four virtt

563). The five

pe for this class is /.7
Vo 5
o ’, and the Prototype for this class is 1’
20X XY > pr ~ L
y and the Prototype for this class is L
S L,

6

: )
prepare a tree structure with 2% nodes -

%

4

|
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A,={L",L”} and the prototype for this class is ./ S

The hicrarchy can be expressed now as indicated in Figure §

Figure 5. A data hierarchy for five points

The class 4;,4,43A4, corresponding to the non-terminal nodes do not describe the

cluster structure. The cluster structure is represented by the partition B, 8,8, of X,
where:

B4= {xzny } b
B3= {xs}a
B={x"x’}.

4. Fitness function

Let us consider a data set X={x x°,..,x"}, Our aim is to detect the hierarchical
cluster structure of X, so we have to find a chromosome who represents the best Clustes
structure of X. For this purpose we will use a genetic algorithm. lity

For evaluating each chromosome we need a fitness function to measure the quality

of hierarchy that we obtain. This function must have the best value for the hierarchy tha
's the most suitable for the data set.

We propose to use the following fitness function:
m ik
f@=Max-y X d(L,x ),
i=1 xk EAi
Where:
m is the virtual cluster number,

L"is the prototype of the virtual class 4,
Max is a value such that f(c) > 0,Yc .

Ihe | A
he Prototype [ is the mean vector of the virtual class A
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Sy x

XE. 1,-

Il =
Pi
vee i< the cardinality of A |
W ."leL £ IN) tuL Lrs A | . |
We give two examples to illustrate how the values of this fitness function chare.
¢ give ¢ §
- aront hierarchy cluster structurc. o

- r different hierarchy clus : . -

for d'za is more convenient t0 consider the fitness function to be minimised is:
m i ik

g(c)= X ) d(l ,x ).

i=ly 'v:—:Ai

Example.

2.3 4 2
We consider the data set: X={x'x"x"x"}, XC R". ! 2 3_ 4_ e
2) Consider the data points as depicted in Figure 6: x'=(1 1), x=(2,1), x°=(2,3), x’=(5 4)

>

4=
..

®
xu

2 W
S

[
o -
o,

>
1 2 3 4 5

Figure 6. The data points distribution

Within this data set we can establish different hierarchies. We will consider those ¢

. Aoy o . . . . . . ol
consider are more important. We will describe the hierarchies by expressing the Virts®
classes.

Case | Qonsidcr the chromosome c¢,=(2 2 3 3). The virtual classes and (¢
corrc5pondmgnprototype are:

A={x x" ),
L*=(3/2,1),
A 1x' 6y,
L'(112,112),
A=4L0Ly,

I'he value of the litness function gis:

T -



Case 2. Consider the chromosome (4 4 2 1), The virtual classes and the
corresponding prototype are: .

A={x' X%},

L'=(3/2,1),

.“2:\-\'37143}!

L*=(7/4,2),

A={x* L.
The value of the fitness function gis:

gleny)=1+—L 4
2 2

~ 6.8776.

17 233
4

Case 3. Confidzer3th4e chromosome ¢;=(1 1 | I). The chromosome describes one virtual
class: 4,;={x"x

X7x"}. The class prototype is L1=(10/4,9/4). The value of the fitness
function g is:

V61 VB Vi3 Jw
g(c3) 2 + 2 + 2 + i ~7.2518
Case 4. Consider the chromosome c¢,=(2 2 |
corresponding prototype are:

A={x'x? },
L*=(3/2,1),
A=’ X" L%},
L'=(17/6,8/3).
The value of the fitness function gis:

V29 233 164

=1 + - ~ 6.5759.
g(C4) + 6 6 6

1). The virtual classes and the

Case § Consider the chromosome ¢s=(2 2 2 1). The virtual classes and the
corresponding prototype are:
A2={x',x2,x3},
L*=(5/3,5/3),
A={x L2y,
¢ value of the fitness function gis:

| _\/§+\/§+£+\/149
We notice that from the five different situations that we analyse the less value for

tness function corresponds to case 4. That means that this is the most representative
'erarchy for our input space. The hierarchy is depicted in Figure 7.

~7.1313.

the fj

9
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Figure 7. The best hicrarchy structure for the data set represent in fig6, for ¢=(22 1 |

The value of the fitness function corresponding to the structure described in Figur:
7 for the chromosome ¢=(2 2 1 1 ) may be written as:

Ale)= Max - [d(x',L) + d(& L") + d(x',L%) + d(x',L%) + d(L',L)].
The corresponding real classes are:
B:={x_‘:rx2}s
B={x’x*}.

b) Consider another example where the four points of the data sct are placed in the
corner of a square, as depicted in Figure 8.

A

4
3 @ @
2
| @ o
' 1234 —»

2Figure 8.‘ The data poings distribution
LOC=31), =3 3, x'=(1,3),

x =(

Fast ! Consi Mosome ¢+(2 2 3 3).Th
/1; {x rfz}:
L* (2,1),
A, {I‘Jqﬁ
L7 3,
A
Ihe valye OFthe fines

. ne
¢ virtual classes and the correspond!™

\) ‘A {
. lunumng I8

8(ey) 2424 226.00
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9! Consider the chr LuT
case omosome ¢,~(2 2 3 | TIONARY ALGORITEMs

corresponding prototype are: The o
Azs{x',xz,x:‘}; © virtual clagges i
12=(7/3,5/3), ¢
AI:{Xl‘!Lz}-
The value of the fitness function g is:
c2)= ¥20 + 22 V20 42

gley)=——+ =24 N
3 g 3 SRS

Case 3. Consider the chromo = :
1 .2.3.4 some ¢y3=(1 1 1 1). The chromosome d
escribes one virtual

b Irtual

class: A= {x XTXTXS The )
: l \/’ | class prototype is L'=(2,2). The value of th
g8 g(cy)=4 2 = 5.65. the fitness function

corresponding prototype are:
A3={x',x2},
L’=(2,1),
A={x’, [},
L*=(5/2,2),
A={x* L%},
The value of the fitness function g is:

g(c)=2+5+ +£-3- ~6.03 .

btained in the case number 3. There is not any

As we expected the best value are 0
(they are equally distributed). The hierarchy is

Sreference between these four data points
epicted in Figure 9.

t reprcsented in fig. 8,

Figure 9. The best hierarchy structure for the data s¢
fore=(1111)

ire dcscribcd in Figure

for th}:’ value of the fitness function corresponding 10 the structt
chromosome ¢=(1 1 1 1) may be written as:

o+ Ao LD Al

fle) = Max - [dx' L)+ d(xL
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The corresponding real class is B|={x',x2,x3,x4}.

5. The Genetic Algorithm

A genetic algorithm with crossover and mutation may be used to obtain the
hicrarchical cluster structurc of a data set.

By mutation a gene is replaced with a symbol randomly chosen from the .,
1,2,...,.2""%

For recombination the uniform crossover operator ([1]) may be used. By uniform
crossover the gene of a descendent is selected from any parent with a given probability,
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