
STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIII, Number 1, 1998

A NEW APPROACH TO COMMUNICATING X-MACHINES
SYSTEMS

CRISTINA VERTAN

Abstract. This paper presents a new model for the specification of com-
municating X-machines systems (CXMS). Each X-machine has its own local
memory. An unique output tape is used. The X-machines act simultaneously.
The states of each component of the system are partitioned into ordinary and
communication states. Passing messages between the X-machines involves
only communication states. It is shown that, taking advantage of the be-
haviour of X-machines, communication using channels may be implemented,
thus providing a synchronized message passing.

Keywords: Communicating X-machines, concurrent processes, communi-
cation using channels

1. Introduction

Introduced by Eilenberg in 1974 ([4]), the X-machines received little further
study until Holcombe ([6]) used them as basis for a possible specification language.
Since then, a lot of further research has been done, proving the power of this model.

An X-machine resembles a finite state machine, but it adds new important
features. A basic set X is identified together with a set of basic processing functions
Φ. For each state, a finite subset of functions from Φ may emerge from it; if
possible, any of these functions may be applied to change the state. An input
tape, an output tape and an internal memory are specified. Moving from one
state to another depends upon the current state, the content of the input tape,
the content of the internal memory and the function chosen to be applied. When
such a transition takes place, a new item may be added to the output tape.

Unfortunately, very little attention has been paid to the way in which many
X-machines may be integrated in a system and how they can communicate.

In [1], stream X-machines are used to control a family of distributed grammars.
Words of a given language are placed on the input tape. At any time, a single
grammar is active; afterwards, it can be used again or the control may be passed
to another grammar. The language generated by the system is the language of

1991 Mathematics Subject Classification. 68Q60, 68Q68, 68Q22.

93



94 CRISTINA VERTAN

terminal strings obtained as output. Relations between languages used as input
and the corresponding generated languages are studied and results concerning
the generative power of the grammars are obtained. This model simulates the
concurrent behaviour of a system of grammars.

Barnard ([2]) specified a model for communicating X-machines as an exten-
sion of the X-machine model. A communicating X-machine is a typed finite state
machine that can communicate with other communicating X-machines via chan-
nels that connect ports on each of the machines. A modular system is developed.
The communicating X-machine model encapsulates dynamic and functional be-
haviour, as well as the data model, in one process specification. Message passing
using channels is not necessarily synchronous.

In this paper, the above ideas are continued. In the second section a more
precise model of communicating X-machines is introduced. Each X-machine has
its own local memory, while all components share the same output tape. Any X-
machine may pass messages to any other one. The states of each component of the
system are partitioned into ordinary and communication states. Passing messages
between the X-machines involves only communication states; for functions emerg-
ing from a communication state, the local memory may only be observed, but never
changed. In this way, internal behaviour and communication are separated. Links
between components can be disabled. In the third section, (synchronous) channels
are introduced as a way the X-machines can communicate. Basic operations for
sending and receiving messages are implemented.

The suitability of the new approach is proved by a number of case studies
specifying various problems occurring in the concurrent processing area.

2. Communicating X-Machines Systems

A Communicating X-Machines System (CXMS for short) with n components
is a 4-uple CXMSn = ((Pi)i=1,...,n, C, C0, O), where:

-: Pi is the X-machine with number i;
-: C is a matrix of order n × n, used for communication between the X-

machines;
-: C0 is the initial content of C;
-: O is the output tape of the system, initially void.

For each pair (i, j) with i, j ∈ {1, ..., n}, i 6= j, Cij is used as a temporary buffer
for passing “messages” from the X-machine Pi to the X-machine Pj . Initially,
Cij = C0

ij has one of the values λ or @, as passing messages from Pi to Pj is
intended or not. For all i, Cii = @ because an X-machine never passes a message
to itself. The actual messages passed from an X-machine to another can not be
λ, @ or $, which are used for special purposes, further described. The mechanism
of passing a value (message) will be explained in detail later. For the moment,



A NEW APPROACH TO COMMUNICATING X-MACHINES SYSTEMS 95

we mention only that each X-machine Pi can access (read from or write into)
only the ith column and ith row of the communication matrix. We will denote
this accessibility domain by +i. A location Cij may receive the value @, meaning
that the connection from Pi to Pj is disabled. A disabled connection can not be
enabled later. At any time, a location Cij can contain a single piece of information.

Each X-machine Pi is a 9-uple:
Pi = (Qi,Mi, ini, outi,Φi, Fi, q

0
i , Ti,M

0
i ), where:

• Qi is the finite set of states of Pi;
• Mi is the local memory of Pi. The local memories replace the input

tape;
• ini and outi are two additional distinct memory locations used for re-

ceiving and transmitting messages; their initial value is λ; at any time
they can contain a single piece of information, of the same type as those
ones in C;

• q0
i is the initial state;

• Ti is the set of final states; there is no function emerging from a final
state;

• M0
i is the initial content of the local memory;

• Φi is the set of functions applied when moving from one state to another
one;

• Fi is the transition function Fi : Qi × Φi → 2Qi .
Remark 1. For sake of simplicity, in the above definition we suppose that all
messages passed from any X-machine to any other one have the same type. This
does not restrict the generality of the model, since any message could begin with a
flag indicating the type of the message. This flag could be used by the receiver in
order to decode correctly the message.

In each X-machine Pi there are two kinds of states: Qi = Q
′
i ∪ Q”

i , Q
′
i ∩ Q”

i = ∅,
where Q

′
i contains ordinary states and Q”

i contains communication states. In the
diagrams below, any state x will be represented as x (if it is an ordinary state),
as x (if it is a communication state) or as x (if it can be either an ordinary or a
communication state). The final states are ordinary states.

Let x be a communication state of the X-machine Pi, let f1, . . . , fk ∈ Φi be the
functions emerging from it and let y1, . . . , yk ∈ Qi be their destinations, as in Fig.
1. Then any function fs is defined as follows:

fs : +i ×Mi × ini × outi → +i × ini × outi

and may have one of the following meanings and forms:
1): a value is moved from outi to Cij , for some j 6= i:

if conditions & Cij = λ&outi 6= λ



96 CRISTINA VERTAN

Figure 1. States and functions emerging from them.

then Cij ← outi, outi ← λ
where conditions depends on Mi ;

2): a value is moved from Cji to ini, for some j 6= i:
if conditions & Cji /∈ {λ, @}
then ini ← Cji, Cji ← λ
where conditions depends on Mi ;

3): under some condition, some elements of +i are modified:
if conditions then modify +i,
where conditions involves elements in the domain of fs and the modifi-
cations consist only in changing some elements of +i into @, λ or $.

Remark 2. For functions emerging from a communication state, the local memory
may be only observed, but not changed.
If more than one of the functions f1, . . . , fk may be applied, one of them is chosen
arbitrarily to act. If none of these functions may be applied, the X-machine does
nothing (so it does not change the state).

Let now x be an ordinary state, which is not a final one, of the X-machine Pi, let
f1, . . . , fk ∈ Φi be the functions emerging from it and let y1, . . . , yk ∈ Qi be their
destinations, as in Fig. 1 b. Then any function fs is defined as follows:

fs : Mi × ini × outi → Mi × ini × outi ×O

and is meant to (partially) change the content of Mi, ini, outi and possibly add
some information to the output tape O. We will suppose that at any time at
most one X-machine can write on the output tape, i.e. the writing operations are
serialized. If more than one of the functions f1, . . . , fk may be applied, one of
them is chosen arbitrarily to act. If none of these functions may be applied, the
X-machine blocks and so does the entire system; the content of the output tape is
not significant in this case.

The system starts with all X-machines in their initial states, C = C0, Mi =
M0

i , ini = λ and outi = λ for all i ∈ {1, . . . , n}. The X-machines act simulta-
neously. The system stops successfully when all X-machines reach final states; in



A NEW APPROACH TO COMMUNICATING X-MACHINES SYSTEMS 97

this case the result is the content of the output tape.

From the above definitions, it follows that a CXMS is nondeterministic. The
nondeterminism is provided in two ways:

-: by means of the communication states and the matrix C;
-: by means of the ordinary states’ behaviour of each X-machine.

An X-machine Pi in a CXMS is called deterministic with respect to ordinary states
(for short OS-deterministic) if:

1): Fi : Qi × Φi → Qi ∀i = 1, . . . , n;
2): for any ordinary state, any content of the local memory and any content

of the two additional memory locations (in and out), exactly one function
can be applied.

Example 3. For a given number n, a sequence of n letters a and n letters b has to
be produced, so that in each prefix of the sequence the number of b does not exceed
the number of a.

We will use two X-machines P1 and P2. P1 successively adds a to the output
tape O, but from time to time chooses to send to P2 the number of a it has added
to O since the last transmission. P2 keeps in v the record of the number of b it has
to output; at each step, P2 outputs a b (if v > 0) or receives from P1 a value that
it adds to v.

The initial form C0 of the communication matrix C is:

@ λ
λ @

In P1, the internal memory M1 contains the variables n and k, where k corresponds
to the number of a P1 has output since the last transmission; initially k = 0. We
have q0

1 = 1 and T1 = {3}. The state transition diagram appears in Fig. 2 a. The
sign “−” in the description of functions stands for no action.

f1: if n = 0 & k = 0 then − f2: C12 ← @

f3: if n > 0 then − f4 : add a to O; n ← n− 1; k ← k + 1

f5: out1 ← k; k ← 0 f6: if C12 = λ & out1 6= λ
then C12 ← out1; out1 ← λ

f7: if C21 = $ then C21 ← λ

The internal memory of P2 contains the variable v mentioned above; initially v =
0, q0

2 = 1 and T2 = {2}. The state transition diagram is showed in Fig. 2 b.



98 CRISTINA VERTAN

g1: if v = 0& C12 = @ then − g2: if C12 /∈ {λ, @}
then in2 ← C12; C12 ← λ

g3: v ← v + in2 g4: C21 ← $

g5: if v > 0 then − g6: add b to O; v ← v − 1

Figure 2. Example 3. The state transition diagrams for: a) P1;
b) P2

Since no mutual exclusion or other synchronizations are assumed when working
with the common memory C, the handling of this matrix has to be done carefully.
For example let us suppose that in function f7 we do not assign λ to C21. Even
for n = 1, the following two scenarios (interleavings) fail to produce the sequence
ab to the output:
1) P1 sends the value 0 to P2. P2 receives it, assigns $ to C21, so that the condition
in the function f7 will always be true; v is 0 and P2 remains in state 1 for a while.
P1 writes a and assigns k = 1 to C12. n and k are now 0 and P1 enters the final
state, so that C21 = @. P2 awakes and has a single possibility: to move to the
final state. In this way a single a is output.
2) The second scenario resembles the first one, but P2 awakes before P1 sets C21

to @. P2 chooses to receive a value (function g2 begins to be executed), but mean-
while C21 becomes @, so that in2 is set now to @. But incrementing v with @ is
meaningless and may lead to unpredictable results.

The discussion above shows the necessity of introducing a more structured way
to handle sending and receiving messages.



A NEW APPROACH TO COMMUNICATING X-MACHINES SYSTEMS 99

3. Communicating X-machines systems using channels

The mechanism introduced above assures only a low level of synchronization.
In this paragraph we will introduce channels as a higher level of synchronization.
The mechanism resembles that found in Occam (INMOS, 1984) and the formalism
CSP (see [5]). The CXM systems prove to be a natural way for implementing
intercommunication between the components, namely through channels.

The classical communication through channels is described further. It involves
send and receive operations; the operations on each channel are synchronized.
Each channel has a single sender and a single receiver. Whichever process reaches
first a state where a channel operation is applied, will be blocked until the process
at the other end of the channel reaches the complementary operation. When both
processes are ready, a rendezvous is said to take place, with data passing from the
output of the sender to the input of the receiver. Only after this message passing
is complete can the two processes act further.

We will simulate this kind of communication with X-machines. The special symbol
$, mentioned at the beginning of section 2, will be used. Let us suppose that we
intend to send the content of outi to inj (of course using Cij) in the same way as
a transmission through channels is done (see [3]). The functions emerging from a
communication state are restricted to the following two forms:

a): when condition => j ! outi
for some j 6= i, where condition depends only on Mi;

b): when condition′ => j ? ini

for some j 6= i, where condition′ depends only on Mi;
In fact these are macrofunctions. Their diagrams are showed in Fig. 3 a and Fig.
3 b, where:

f1: if condition & Cij = λ & outi 6= λ f2: if Cji = $
then Cij ← outi; outi ← λ then Cji ← λ

g1: if condition′ & Cij 6= λ g2: Cji ← $ g3: if Cji = λ
then inj ← Cij ; Cij ← λ then −

It is important to stress the fact that the conditions appearing in a) and b) are
included in f1 and g1. In this way even if the condition is fulfilled it does not mean
that the function may be chosen without further checking. We will assume that
it is the programer’s duty to ensure, when the CXM system is working, that for
each channel operation the complementary one is provided. The situation when
two X-machines try simultaneously to send or simultaneously to receive messages
between them has to be avoided.



100 CRISTINA VERTAN

Figure 3. State diagrams for implementing channels for inter-
communication between the components of a CXMS.

Proposition 4. Under the above assumptions the simulation of channels for X-
machines works correctly.

Proof. Let us suppose that the two X-machines involved in communication are
Pi and Pj . Initially Cij = Cji = λ. We recall that only Pi and Pj can modify Cij

and Cji. Let us assume that Pi chooses to send a value to Pj and condition = true.
Then, the only possible sequence is: f1, g1, g2, f2. Two cases are possible:
I) If Pj executes g3 then the send and receive operations are completed.
II) There is a delay in Pj before the execution of g3 (Pj sleeps for a while). In this
moment Cji = λ.
According to the possible actions of Pi the following cases have to be studied:

1) Pi will not communicate again with Pj ; when Pj awakes it will execute g3.
2) Pi tries again to send a value to Pj and condition = true and Cij = λ. Pi

is blocked on f2, so when Pj awakes it will execute g3. Following the assumption
that to every send operation a receive is associated, Pj will try again to receive a
value from Pi. This value will be received while executing the function g1; then
Pj will execute g2, so there Cji ← $. Pi can now resume execution.

3) Pi tries to receive a value from Pj . Consequently it will try to execute the
following sequence of functions:

g1: if condition′′ & Cji 6= λ g2: Cij ← $ g3: if Cij = λ
then ini ← Cji; Cji ← λ then −

As Cji = λ, Pi will be blocked on g1; when Pj awakes, it will execute g3.
Example 5 (The Producer-Consumer problem with bounded queue). A producer
produces items and places them into a buffer of finite length. The consumer takes
items from the buffer and consumes them. The constraints are the following:

• produce must always precede consume;
• the consumer takes the items from the buffer in the same order they were

placed, i.e. the buffer is a queue;
• reading from an empty buffer must be avoided;
• writing in a full buffer must be avoided too.

We will suppose that these items are characters. The producer stops after sending
the first character z, and the consumer stops after receiving z. The output tape



A NEW APPROACH TO COMMUNICATING X-MACHINES SYSTEMS 101

will contain the characters received by the consumer.

The problem will be modelled by means of a CXMS with 3 components: P1, P2

and P3. The initial form C0 of the communication matrix C is:

@ λ @
λ @ λ
@ λ @

P1 corresponds to the producer. M0
1 contains the items that the producer places in

the queue. We have q0
1 = 1 and T1 = {5}. The state transition diagram for P1

appears in Fig. 4 a.

Figure 4. The Producer-Consumer problem. State transition
diagrams for: a)P1; b)P2 c)P3

f1: out1 ← first(M1); f2: if out1 = z then −
M1 ← tail(M1);

f3: if out1 6= z then − f4: 2 ! out1

P3 models the activities of the consumer. M0
3 = ∅, q0

3 = 1 and T3 = {4}. The
state transition diagram is showed in Fig. 4 c.



102 CRISTINA VERTAN

g1: 1 ? in3 g2: add in3 to O

g3: if in3 = z then − g4: if in3 6= z then −

The X-machine P2 implements the activities concerning the buffer. Let max be
the size of the queue Q, and ok an integer variable initialized with 2. Variable
ok will decrease to 1 after the character z is received from P1 and will decrease
to 0 when the same character is sent to P3. The internal memory of P2 includes
Q, max, ok and nr, where nr is the current number of items in Q. We have q0

2 = 1
and T2 = {5}. “⇐” is the operator used for extracting an item from the queue Q,
while “⇒” is the operator used for adding an item to the same queue. The state
transition diagram appears in Fig. 4 b.

g1: if ok = 0 then − g2: if ok 6= 0 then −

g3: when ok = 2 & nr < max g5: when out2 6= λ
=> 1 ? in2 => 3 ! out2

g4: in2 ⇒ Q; nr ← nr + 1 g6: if out2 = z then ok ← ok − 1
if in2 = z then ok ← ok − 1 if nr > 0
if out2 = λ then out2 ⇐ M2; nr ← nr − 1
then out2 ⇐ M2; nr ← nr − 1

Example 6 (Finding the first n prime numbers). We will introduce a CXM
system with n + 2 components, in fact a pipeline of X-machines labeled with
P0, P1, . . . , Pn+1.
The main activity of the X-machine P0 is to pump the numbers 2,3, . . . to P1. The
complete activity of P0 will be described below.
For i = 1, . . . , n, the X-machine Pi does the following: the first number it receives
from Pi−1 is stored as a witness value and added to the output tape. For the fol-
lowing numbers it receives, it checks if these are primes “from its point of view”,
i.e. if the witness value does not divide them; if so, the number is passed to Pi+1

(for further checking), otherwise it is discarded. Obviously, the witness values of
P1, . . . , Pn are the first n prime numbers.
The X-machine Pn+1 acts as follows:

- receives a number from Pn;
- sends the value -1 to P0;
- successively receives numbers from Pn until the received value is -1.

We describe now the complete activity of P0. At each step, it chooses to send a
number to P1 or to receive, if possible, a value from Pn+1. When receiving the



A NEW APPROACH TO COMMUNICATING X-MACHINES SYSTEMS 103

value -1 from Pn+1, it sends it to P1 and stops.
The X-machines P1, P2, . . . , Pn will stop after receiving the value -1.
The initial form C0 of the communication matrix C is:

@ λ @ . . . @ λ
λ @ λ . . . @ @
@ λ @ . . . @ @
· · · · · ·
@ @ @ . . . @ λ
λ @ @ . . . λ @

For the X-machine P0, M0 contains a variable i initialized with 2, and a boolean
variable ok initalized with false. We have q0

0 = 1 and T0 = {6}. The state diagram
appears in Fig. 5 a, where:

f1: if not ok then out0 ← i f2: 1 ! out0

f3: in0 ? n + 1 f4: i ← i + 1

f5 : ok ← true; out0 ← in0 f6 : if ok then−

f7: 1 ! out0

Remark 7. The conditions “if C01 = λ” in f2 and “if Cn+1,0 6= λ” in f3 are
implicit, so that in fact the choice between these two functions is not completely
non-deterministic.
For each i = 1, . . . , n, the internal memory Mi of the X-machine Pi contains two
cells x (the “witness value”) and y. Ti = {8} and q0

i = 1. The state diagram is
shown in Fig. 5 b, where:

g1: i− 1 ? ini g2: x ← ini; add x to O

g3: y ← ini g4: if y mod x = 0 then −

g5: if y mod x 6= 0 then outi ← y g6: i + 1 ! outi

g7: if y 6= −1 then − g8: if y = −1 then −

The internal memory of the X-machine Pn+1 is void. We have q0
n+1 = 1 and

Tn+1 = {6}. The state transition diagram appears in Fig. 5 c, where:

h1: n ? inn+1 h2: outn+1 ← −1



104 CRISTINA VERTAN

h3: 0 ! outn+1 h4: n ? inn+1

h5: if inn+1 6= −1 then − h6: if inn+1 = −1 then −

Figure 5. Finding the first n prime numbers. The state transi-
tion diagrams for: a) P0 ; b) Pi, i = 1, . . . , n ; c) Pn+1

4. Conclusions

In this paper we have presented a new formal specification for systems of com-
municating X-machines, as an extension of the X-machine model. The input tape
is replaced by the initial contents of the local memories of the components. Each
X-machine has its own internal memory and two additional memory locations used
for sending and receiving messages. It enables us to distinguish between ordinary
and communication states. In this way internal behaviour and external behaviour
can be studied separately.

It is shown that the communication between the X-machines in the system can
be achieved through channels, providing a synchronous message passing, so that
most of the problems that appear in concurrent programming may be modeled by
CXMS.



A NEW APPROACH TO COMMUNICATING X-MACHINES SYSTEMS 105

We are currently working on designing an automatic method which, for any
deterministic CXMS, generates a concurrent program written in a Pascal-FC
style language (see [3]).

Further work will include verification and testing. These have to be done sep-
arately for the internal and external behaviour of the components of the system.
Techniques presented in [7] have to be adapted and developed. Reachability as-
pects have to be studied for both behaviours too.

References

[1] Bălănescu, T., Georgescu, H., Gheorghe, M. : Stream X-Machines with Underlying Dis-
tributed Grammars, Informatica (to appear)

[2] Barnard, J., Whitworth, J., Woodward, M. : Communicating X-Machines, Journal of Infor-
mation and Software Technology, Vol. 38, no. 6, 1996

[3] Burns, A., Davies, G. : Concurrent Programming, Addison Wesley, 1993
[4] Eilenberg, S. : Automata, Languages and Machine, Vol. A, Academic Press, 1974
[5] Hoare, A. : Communicating Sequential Processes, Prentice Hall, 1985
[6] Holcombe, M. : X-Machines as a Basis for Dynamic System Specification, Software Engi-

neering Journal 3 (1988), 69 - 76
[7] Holcombe, M., Ipate, F. : Correct Systems : Building a Business Process Solution, Springer

Verlag, Berlin, 1998

Faculty of Mathematics, Bucharest University, Romania
E-mail address: cri@oroles.cs.unibuc.ro


