
STUDIA UNIV. "BABE^-BOLYAr', INFORMATICA, Volume XILII, Number 1, 1998 
USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH 

IULIAN OBER' 

Abstract. The validation phase for a concurrent system is complex and timeconsuming. The ISO 9646 norm defines a standard framework and language (TTCN) for describing abstract test suites for communication protocols and other reactive systems. TTCN is often viewed as too cryptic, hard to read and poorly adapted for systems other than OSI protocols. This paper presents an alternative 
approach for executing conformance tests, based on the MSC graphical language 

complemented by a proprietary imperative language for describing test cases (TDL). Our technique is implemented in a lightweight and open toolbox usable for 
testing a large class of reactive systems.

1. Introduction 

The current state of the art in conformance testing is developed around the ISO 9646 
standard Conformance Testing Methodology and Framework [6]. The meaning of 
conformance testing is black-box testing where the system and the environment interact 
through messages. Besides the framework, this standard defines also a language, TTCN 
(Tree and Tabular Combined Notation) for completely describing abstract test suites [5]. 

One critic, often raised with respect to the eurrent testing methodology and 

framework, is that it is too complex. Indeed, the TTCN language defines tens of table 

formats for expressing the test suite structure, the variables and constants, the data 

types, the Protocol Data Units, the Abstract Service Primitives, the constraints and 
finally the behavior. The tools for executing tests starting from TTCN descriptions are 
not always easy to deploy. 

To mect the necd for a simpler yet not less powerful method for describing and 
executing conformance tests, we propose an altermative approach: the use of MSC for 
describing test cases, complemented with a second-level formalism the Test 
Description Language (TDL), all within a lightweight and open framework designed for 

executing tests on a wide class of possible systems. The MSC [(3] is a language for
expressing execution traces that has been used for a long time for capturing 

requirements in telecommunication systems design but also as a basis for system 
Simulation and validation, interface specification, etc. Protocol norms often come with 

Tequirements, examples or even test cases described with MSC. MSC is standard, 
marure and graphical, usable for expressing test cases at a first level, and its simplicity 

appeals. 
Ihis paper advocates our testing framework, by showing the strong and weak points 

O MSC when expressing tests, by proving that they can be overcome by using a 

Second-level formalism for expressing test cases (the Test Description Language) and 



IULIAN OBER 

by describing the architectlure of a tool implementing our testing paradigm and 

emphasizing on the open parts which make the tool usable in many different contcxts 
Related work: A fter its standardization in 1992, MSC gained popularity 

research work was put into using it for specilying test purposes and test cases [8,9,101 

This work was based on the parallel efforts for standardizing the formal semantics for 
the language [4,11]. Other solutions for testing are based on other proprietar 

formalisms (it is the case of the ATTOL toolbox [I) or on TTCN. 

This paper is structured as follows: section 2 presents the fashion in which we 

MSC for expressing test cases. Section 3 introduces the TDL language, the complement 
of MSC for describing test cases in TESTPLAYER. Section 4 describes the generic 
architecture of our testing toolbox. Finally, section 5 shows the concrete architecture of 

our tool in a specific context and gives an usage example. 

and 

use 

2. Using MSCs for expressing test cases in TestPlayer 

MSC is a widely recognized and used language for representing execution traces for 

systems where the exchange of messages is the main observable behavior. It is being 
standardized by the International Telecommunication Union as Recommendation Z. 120 
[3). The standardization work began in 1990 and successive versions made the language 
more and more stable, rich in constructs, formal and mature. 

Being a visual formalism, MSCs are more compact and readable, which makes them 
more attractive to the users. As a consequence, there were early attempts to use MSC for 

expressing test cases or test purposes [8,9,10]. At a first look, MSCs are suitable for this 
purpose, considering that the behavioral part of a TTCN test case describes also a set of 
possible traces of messages exchanged between the system and its environment, each 

Such trace having associated a verdict at the end. Anyway, several weaknesses of MSCs 
when expressing test cases were outlined by these early attempts: there is no notion of 
Lest verdict in MSC, no possibility to specify types and TTCN-like constraints, no 
possibility to use variables and no notion of test architecture [7]. We will see in what 
follows how we overcame these problems in our approach with TESTPLAYER. 

2.1 Interpreting test MSCs 

The first step in our approach is to give an intuitive meaning to MSCs in the context 
testing. This means giving a set of constraints that must be satisfied by the test Ms (denoted iMSC in what follows) as well as an interpretation to each construct that l 
appear on such an MSC. There are three flavors of MSCs that may be used wiu TESTPLAYER, differentiated by the instances that they represent (see Figure 1). The first one, which may be called pure tMSC taking the point of view ot thne e 

ter, 

may contain instances representing the PCOs (Points of Control and Observation 
ISO 

9646 terminology 16|) and instances representing the testers (one or more). w he 
use 

this flavor of tMSC when detailing the meaning that we give to MSC construcis context of testing. The second variety of tMSCs take the point of view of the yc0. 
ystem, 

Containing an instance that reprcsents thc system and one instance for eac 
PCO. 

76 



USING tMSC FOR CONFORMAINCE TESTING. THE TESTPLAYER APPROACH 
Finally, normal MSCS are accepted as test MSCs by our tool, in order to be able to take 

as input MSCs resulted from the simulation of an SDL model, for example. In such an 
MSC. the system is modeled by the instance(s) represented in the MSC, and the tester is 

represented by the outer border (environment) of the MSC. 
A test MSC should be in exactly one of the forms described above. Messages

towards the system (from a tester to a PCO in the pvTester, from a PCO to the system in 
a pvSystem, or from the ENV to the system in a normal MSC) are interprcted as TTCN 

sending cvents. Messages coming from the system arc interpreted as TTCN receiving 
events. Therefore the exchange of messages represented in all the three MSCs in Figure 
1 corresponds to the TTCN sequence: 

pl!ml 
p2?m2 

Note that one of the limits of normal MSCs is that they do not allow for the description 
of PCOs. 

msc pvTester mse pvSystem 

t:Tester pl:PCO p2:PCO S:System p!:PCO p2:PCO 
ml()_ mi(1) 

m2(7) m2(7) 

mse normal 

S:System 
mI()_ 

m2(7) 

Figure 1. The three varieties of test MSCs 

A message that should but cannot be sent produces a failure of the test. Similarly, a 

message that should be received but is not, or is received but with non-matching 

parameters produces a failure of the test. 
As mentioned in [7], one inconvenient when using MSCs for describing test cases is 

nat they lack constructs for expressing constraints on data (parameters of the 

nessages). To alleviate this limjtation, we used the fact that the MSC language gives no 

nterpretation to the values of parameters of messages. We delined a set of generic 
Spccitiers that may be used in MSCs: AnyValue, ValuelList, and Range. Still, the amount 
Constraints we are able to express using these specifiers in MSC is Iimited, due to the 
K of variables. This is cne reason for which TESTPLAYER uses a second language for 

aescribing tests, TDL (see Section 3). 

77 



IULIAN OBER 

Besides messages, three additional categories of constructs have a men 

Basic test MSC, but only when they appear on a lester instance: stop, test tim. on a 

coregions. 
A stop construct on a tester bar means that the test stops immediately with a PASS 

verdict. 
A timer set describes the action of the tester setting a timer. If the set is followe L 

reset and the tester does not reset the timer before il is triggered (but after executin 

the other constructs that appear before the reset) 

the timer is reset (deactivated) and the test continues. 

If the set is followed by a time out and if the timeout occurs before the tester execute- 
all the constructs that appear between set and time out on the MSC, then test failure i 
assumed. Oherwise, after executing the constructs appearing before the timeou, the 

tester waits until the timer is triggered. 
MSC timers can express a variety of timing constraints needed in a test case. The 

timing constraints employed ir. test cases usually take the following form: the time span 
between the event a and the event b must be between x and y time units. The way of 

expressing this with timers in shown in Figure 2. 

by a 
g: 

test failure is assumed. Otherwise 

tes 

mse pvSystem 

S:Systempl:PCOp2:PCO 

b 

Figure 2. Delay intervals expressed with timers 

A coregion on a tester bar means that the messages that come from the system 
PCOs) within the boundaries of the coregion may come in any order. As a diflerence 
from Z.120, only response messages coming from the system and timer timeouts may be 
represented within a corcgion. This is because the tester must be controllable, so We 
cannot allow message outputs and other actions for which we do not specify the pree 
order. 

2.2 Hierarchical tMSc 

MSC 96 introduces a set of structural constructs for organizing Basic MSCs into High 

composition and exception handling composition. For describing test cases Onc 

parallel 

ed 

Level MSCs using sequential, alternative and repctitive sition, 

sequential, alternativc and repetitive composition. Two MSCs which are o 0s The 

Se 

must define the behavior of the same tester(s) on the same system (PCO semantics of these composition operators is natural. 

78 



USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH 

The sequential composition of two tMSCs describes the tester that first executes the 
construets specificd by the first MSC and then, if it did not fail in the meantime, 
executes the constructs specified by the sccond MSC. 

The repetition of a tMSC describes the tester that repetitively executes the 

constructs speciticd by the MSC until the boundary of the repetition is reached or 
until the test fails at some point. 

The alternative composition of two tMSCs describes the tester that exccutes cither 
the constructs specified by the first MSC or the constructs specified by the second 
MSC. The choice is made depending on the lirst construct from the two tMSCs, 
which must be a message from the system to the tester or a timer timeout (note that 
the timer timeout is possible only when the alternative is the follows by sequential 
composition another tMSC in which the timer is set). Depending on what event gets 
first to the tester, the tester chooses one alternative or fails (if neither one is 

eligible). 

2.3 tMSC vs. TTCN 

Let us recapitulate what we have said about the semantics of tMSCs, analyze their 

power of expression and see what are the strong and weak points with respect to TTCN. 
It is worth noting that not all the three flavors of test MSCs have the same powerof 

expression. There are useful constructs mentioned above that are given an interpretation 

when they are on a tester bar and have no meaning on another bar: timers, coregions, 

actions. But only tMSCs that take the point of view of the tester (like pvTester in Figure 
1) represent explicitly the testers as MSC instances. On tMSCs that take the point of 
view of the system or on normal tMSCs, we cannot put timers and that may be too 

strong a restriction for real-world test cases. 

msc normal msc pvSystem 

s:System s:System|pl:PCO p2:PCO 
ml ml 

m2 m2 

Figure 3. Visual order not specifying completely the tester 

Morcover, considering the formal semantics of MSCs (4,11] the tMSCs that take the 
Pont of view of the system and normal tMSCs seem inappropriate to express the 

oerational behavior of a tester. The normative semantics of MSC enforces a partial 

dt Detween evcnts (the sending and the receiving of a message are considered 

difs Cnt events) called visual order. The visual order of the events in pvSysten and in 
normal in Figure 3 is: 

sending(m 1) < receiving(m1) 

receiving(m 1) < receiving(m2) 

19 



IULIAN OBER 

sending(m2)* receiving(m2) 
The visual order does not say anything about the order between sending(m1)a 

sending(m2), which are preciscly the two events that intercst the tester: the tester 

know in which order to send the two events. The conclusion is that among the iree flavors of tMSC, the one that takes the point of view of the tester is the most approprito 
for deseribing test cases. The other two kinds of tMSCs are necessary for compatibilit 

with other tools (ex. an SDL simulator). 
The constructs for which we have an interpretation in the context of testino 

mentioned above. give MSC a power of expression comparable to that of the behavioral 
part of TTCN. MSC timers may express everything that is described in terms of timers 
in TTCN. MSC composition operators make it possible to express branching behavior in 
the same way as in complex TTCN trees. 

When comparing tMSCs with TTCN, we must keep in mind that the goal of 
TESTPLAYER is to provide a lightweight solution for testing reactive systems. The one 
important advantage of using MSCs to express test cases is that MSC is a visual, intuitive and mature enough formalism. From this point of view TTCN is known as being cryptic and unreadable. This argument becomes important when coming to industrial test suites described on hundreds of TTCN tables. 

and 
must 

Another argument in the favor of MSC is reusability. If a tool is able to interpret normal MSCs as test MSCs, (TESTPLAYER is one such tool) then MSCs constructed when designing a system may be used directly when testing it. The same happens with MSCs automatically generated from a simulation, for example. The disadvantages of tMSCs with respect to TTCN were already mentioned and we reiterate them. There is no notion of test verdict in tMSCs. If the events occur as prescribed by the MSC, the test passes. If anything goes wrong, the test fails. There is no possibility to explicitly state a verdict in MSC except for the STOP statement. The STOP statement, not being parameterized, gives always the same verdict which In TESTPLAYER is PASS. INCONCLUSIVE verdicts cannot be expressed either implicitly or explicitly. 

The data constraints that may be expressed in MSCs are far less powerful than those from TTCN. MSC is untyped, messages and parameters are not interpreted and are just strings of characters. Therefore, no type checking is possible in MSC. This point may De affected by the adoption of the future version MSC2000. It is desired that data aspects be formalized in MSC2000: signals and data types be defined before they are useu using ASN.I or some other formalism. 
MSC is a declarative language, while TTCN is rather imperative. Things that can o 

done in TTCN with variables, like remembering the value of a parameter o incoming message and using this value later, cannot be done at all in MSC. This pol may also be affected by the adoption of MSC2000, which defines some noto 
variable.

c 

We conclude that, although very appealing, MSC alone cannot be used to CP 
ress 

real test cases. However, the strong points of MSC can be exploited if it is u 
ed in connection with a second layer of formalism for expressing tests, layer that will provia 

the missing bits. This kind of architecture seems ideal for a lightweight an t 
approach towards testing and we retained it for TESTPLAYER.

open 

80 



USING tMSC FOR CONFORMANCE TESTING. THE TESTPLA YER APPROACH 

3. The TDL 

The second layer on which tests may be represented in TESTPLAYER is the Test 

Description Language (TDL). There is no test execution engine in TESTPLAYER that 
takes tMSCs and executes them directly. Instead a tMSC is translated in a TDIL script. 
At this level the progratmmer may intervene and provide the parts of her test case that 
she could not cpress in MSC (explicit verdicts, use of variables, ctc.). The execution 
engine in TESTPLAYER executes TDL scripts. 

The Test Description Language is in fact a set of primitives, with a precise semantics 
and an implementation that may be embedded in any language that allows for 
extensions (C, TCL, Python, etc.). The primitives correspond to TTCN executable 
instructions and to certain MSC constructs. They differ from MSC in that they are 
imperative rather then declarative. They provide the missing bits, notably variables and 

verdicts, and are also an implementation model for tMSCs. 

3.1 The execution model 

The execution model is designed such that the execution engine may execute a single 

threaded test at a time. The execution engine sees the test as a sequence of calls to the 

test primitives. These calls must be sequenced and may not be launched in parallel. 

Time is a discrete numeric vaiue in TDL, specific to a tester, which gives the number 
of milliseconds clapsed since the tester has begun to execute. The Now primitive gives 
access to the current time. 

TDL has primitives for sending signals to the system, expecting signals to come from 

the system and manipulating timers. A tester may exchange signals with the system 
under test on a per-PCO basis: it sends signals through PCOs or it expects signals to 
arrive on PCOs. PCOs are named and must be open before they are used and closed 
after they are no longer necessary. This is because for each newly open PCO, the engine 

establishes a communication connection with the system under test and allocates a 
queue for keeping the incoming signals. 

The outgoing signals are sent immediatcly to the system through the communication 

connection corresponding to the specified PCO. A background task receives the 
ncoming signals, stamps them with the precise moment when they arrived and then put 
them in the queue of the corresponding PCO. Thus the primitives for expecting signals 
access the signals from the queue and have also the possibility to know the exact 
noment at which the signal arrived. This is useful for expressing different timing 
onstraints. A signaling convention is put in place so that the task executing the 
Pimilives and the background task retrieving messages may synchronize; thus a 
Pmitive for expecting signals may wait until a certain signal enters the queue. 
our model, timers may be set to a certain period of time and reset. The tester may 

tor a timer or simply check if it has expired. A timer that expires is not put into a 
e ike in SDL): if there is a primitive waiting for it then the primitive is signaled 

SO it may continue its execution. 

81 



IULIAN OBER 

The only additional testing primitive that does not refer to PCOs, signals or timerc 
the one called Verdict. This primitive causes the end of a test and the de-allocation of all 
resources used for the ongoing test (queucs, semaphores, OS timers, etc.). 

3.2 The TDL primitives 

Open/Close are used to open and close connections between the tester and a PCO of the 

system. 
Open [host] [pco] 
Close [pco 
Before sending or receiving a message through a PCO, a tester must open 
the connection to that PCO. This allocates the resources necessary to handle 
the new PCO. 
When the PCO is no longer used, the tester should close it. This de-allocates 
the resources used to handle the PCO. 

Syntax 

Description: 

Verdicts: Open fails if a connection with the system under test cannot be established or 
if the specifies PCO name is not supported. Close fails when the specified 
PCO name is not the name of an open PCO 
Open rtos1 ChannelA 
Close ChannelA 

Example: 

Expect is used to specify that the tester expects the system to send a certain signal. 
Syntax: Expect ssignal> [with] <param list>] [via <pco»][from <src-pid>] [time "I{store var)] 

lafter time)] Ibefore time}]1 
Expect is used to specify that the tester expects the system to send a 

response signal on a certain PCO. As in TTCN, the user must specify the 
expected signal and its parameters. Different constructors are available for 

specifying generic paramcters: lists of possible values, intervals of possible 
values, Any Value. 
If the tester communicates with different PCOs, the name of the PCO on 

which the signal is expected must be specified. An optional source Pld must 

be specified, its interpretation depending on the system (for SDL systems 
the Pld may represent the Pld of an SDL process). 
To allow a more fine grained representation of timing constraints, in TDL 
one may express timing constraints not only through timers. In the case o 
Expect, one may request that the time of arival of the matched message (the 
moment when it was put in the queuc) be after a certain moment, before 

another moment, or simply stored in a variable for future reference. 
The semantics of the Expect primitive is such that if the specified messag 
name and parameters match the message that is in the head of the queue o 
the specified PC0, the timing constraints are met and the source Pld s 

matched, then the primitive completes successfully and pops out the 

message from the queue. If one of these conditions are not met, Expect give 
a FAIL verdict. If at the moment Expect is executed there is no signal in u 
PCO queuc, the primitive waits until a signal arrives or until the mone 

specified in the before clause passes. 

Description: 

The syntax presented here is the syntax used for caling the TDL primitives from the 1 

language [12). 
82 



USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH 

Expect fails if the expected signal does not match thc signal that is in the 
head of the queue of the spccified PCO (because of the signal name, 
paramcters, source Pld or timing constraints). Expect fails also if the queue is 

empty and no signal arrives in due time. 

Expect CACK with finterval 0.7} via ChannelA time {before [Now + 1000]) 

Verdicts: 

Example: 
Output is used to send signals from the tester to the system. 

Syntax: Output <signal> [with) <param list>] via <pco»] [to <dest-pid>] (time "[{(store var}] 
Kafter time}] ({before time} 
Output sends the specified signal to the system on the specified PCO. The 

parameters of the signal must have concrete values i.e. no wildcards are 
allowed. The PCO to which the signal goes must be specified if the tester 
communicates with more than one PCO. An optional destination Pld may be 
specified, its interpretation depending on the system (for SDL systems it 
may be the Pld of an SDL process). Time constraints may also be specified 
and refer to the moment when the message is sent. 
Output fails if the message cannot be sent to the system (message undefined, 
bad parameters, network failure, timing constraints not met, etc.). 
Output CC with Ox01001 via ChannelA time {before $t1+10) 

Deseription: 

Verdict: 

Example: 
TimerSet, TimerReset, TimerWait, TimerQuerySignaled are the TDL primitives for 

manipulating TTCN-like timers. 

Syntax: TimerSet <name> <duration> 
TimerReset <name> 
TimerWait <name> 
TimerQuery Signaled <name> 
TimerSet sets a named timer to trigger after a specified period of time. 

TimerReset resets a timer to the inactive state. TimerWait causes the calling 
task to wait util the timer is triggered. TimerQuerySignaled makes it possible 

to query the timer in order to see if it has triggered or not. 

Additionally timers may be used wherever an "expected" message may be 

used. For example, in the Expect primitive, we can write «Expect timer t » 

which is cquivalent with «TimerWait t ». Such a use of timers becomes useful 
in primitives like Coregion or Alternative, described below. 
Timer primitives never provoke the failure of a test. 

TimerSet t 1000 

Description: 

Verdict: 
Example: 

# returns FALSE TimerQuery Signaled t 

TimerWait t #waits for 1 sec. minus the delay since the TimerSet 

# returns TRUE 
#resets the timer 
# returns FALSE 

TimerQuerySignaled t 

TimerReset t 
TimerQuerySignaled t 

Alternative is the TDIL primitive allowing to describe branching behavior based on what 

message between a given set is received. 

Syntax: Alternative ({ <signal> [with] sparam list>] [via spco>] [from <src-pid>] [time {[store 

var_name>] [after <time 

Alternative resembles Expect, except that multiple messages (and timers) may 

be specified. 
lf one of the specified messages is in the head of the corresponding PCO 

queue or one of the specified timers is triggered, then the primitive behaves 

as Expect, terminating successfully and returning the index of the matched 

alternative. If none of them occurs, the engine waits until no one can occur 

any longer (i.e. all the PCOs involved have some message in the queue, but 

IS not an expected one) and after that it raises a FAIL verdict. 

] [before stime> I}] })+

Description:

83 



IULIAN OBER 

Alternative fails when none of the specificd signals and timers has occured 

and no one can occur any longer. 
Altermative 'CACK with 1 via ChannelA" "DC with 1 via ChannelB" "timer t 

Verdicts: 

Example: 
Coregion is the TDL primitive for describing a set of messages and timer timeouts that 

come in an unspecified order. 

Syntax Coregion ( <signal> [withj <param lis>] [via <pco>] [from <src-pid>] [time (lstore 
<var_name>] [after <time>] [before <time |}| })+ 
Coregion resembles Alternative, except that it waits for all the events to 
happen, and not just for one of them. It has the same meaning as a coregion 

Description: 

in tMSC. 
Coregion fails when an unexpected signal arrives on a PCO (or is already in 
the head of the PCO qucue) and this unexpected signal impedes another 
expected signal to get in front.of the queue. 
Coregion "CACK with 1 via ChannelA" "CC with 1 via ChannelB" "timer t 

Verdicts: 

Example: 
Verdict is the TDL primitive for explicitly specifying a verdict for the ongoing test case 

Syntax: 
Description 

Verdict PASS| FAIL | INCONCLUSIVE 
Verdict terminates the ongoing test, recording the test verdict in the test log 
and de-allocating all the used resources 
Whatever verdict is specified in the parameter 
Verdict INCONCLUSIVE 

Verdicts: 
Example: 

3.3 Translating tMSCs into TDL scripts 

In what follows, we will use the name TDL both for denoting the "abstract" primitives 
presented above and the TCL [12] language extended with the TDL primitives. TDL 
script always stands for extended TCL script. 

The translation of tMSC into TDL scripts is almost straightforward: for each tester 
described in a tMSC, a script is generated. Usually a tMSC describes only one tester, 
but in the case of tester point of view tMSCs (see Figure 1) there may be more. Tester 

outputs are translated into Output statements, tester inputs into Expect statements, timers 
into timer statements, coregions into Coregion statements and so on. An example of 
translation for a Basic MSC is given in Figure 4. 

g g2 Open g1;Open g2 
Output CC with 1 via g1 
Expect CC with star via g2 
TimerSet t 2 
Expect CACK with star via g1 
if {TimerQuerySignaled t}{ 

Verdict FAIL 
yelse 

TimerRestt 

Tester PCO PCO 
CC(1) 

CC(*) 

T(2) CACK(*) 

Figure 4. tMSC translated in TDL 

For High-level MSCs, the sequential composition of MSCs causes the concaten of the scripls described by the operand MSCs. The alternative composition of MSCs 
84 



USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH 

translated using the Altemative statement and repetitive composition is translated using 
the repetitive construct from 1CL (or from any other language that may host the TDIL 

primitives). An example is given in Figure 5. 
The TDL primitives combined with an imperative programming language providing 

alternative and repetitive constructs, variables and all that it usually available in such a 
lan Ouage. provide a power of expression that covers all that can be expressed in the 
behavior description of a TiCN test case. TDL primitives are implemented as an 

extension to the TCL language [12] but they might as well be integrated in another 

language like C, C++, Python or Java. 

Using a visual formalism like MSC and a small set of primitives integrated in a 
scripting language (TDL) ensures a small learning curve. TDL scripts being directly 
interpreted by the TESTPLAYER Cxecution engine, usual programming techniques like 
step-by-step execution and the use of breakpoints may be applied to the execution of a 

test. 

4. TESTPLAYER Open Architecture 

The goal in designing TesTPLAYER was to provide an open architecture for testing. 

based on the lightweight formalisms of tMSC and TDL, and which would provide 
customizability and power of expression sufficient to be applicable to a large number of 
Teal systems and test cases. 

Y Open g 
Output a via g 
set r1 [Alternative "b via g' "c via g] 
if { Sr1-= 0}{ 

st 
Tester PCO 

Output d via g 

elif {Sr1== 1}{ 
Output e via g 

St st 
Tester PCO Tester PCO 

b 
d 

Figure 5. High-level MSC translated in TDL 

Our architecture (see Figure 6) we distinguish between two phases of applying a 
ene preparation phase and the execution phase. For preparing a test, the user may 

in 

provide the tMSC description of the test case which will be translated 

85 



IULIAN OBER 

automatically in TDL, or she may provide the TDL script directly. The MS.to T 

compiler (TDL Gen on Figure 6) does the translation from the tMSC to TDI. foil 

the rules depicted in the previous section. 

Also in the preparation phase, the user must provide the description of the signale . 

data types exchanged 
between the tester and the system. This 

execution time (when it is captured by component (1), described below). The user 

supply the signal and type 
information either by providing directly the body of th 

component (1) or - more likely - by providing the intormation in a formalism like sDt 

or ASN.1 from which the component (1) is generated automatically by a sort of 

compiler (Stub Gen on Figure 6). 

At execution time, the core of the TESTPLAYER 
environment is the TDL execution 

engine the implementation of the TDL primitives. Our paradigm of executing tests 

being based on it, this is a fixed part of the architecture i.e. it cannot be customized. The 

implementation of the test primitives in the TDL engine is a static library of functions 

written in C. However, it may be used from a variety of host languages such as C, TCL, 

Pascal or any other language that allows for the use of static libraries. For each host 

language (except C which is the native language in which the TDL engine is written) 

there must be a wrapper that makes the primitives accessible from the language. 

TDL followin 

and 
is information is needed a 

may 

MSC Test 
Case 

Signal & 

Data Types 
TDL 

Gen 

Results User TDL Stub 
Visualization 

code Serint Gen test preparation 

test execution 

TCL wrapper 

TDL System 
Under Engine 
Test 

(2) 

Test Results 

Figure 6. TESTPLAYER Architectuure 

The most common case of usage envisioned in TESTPLAYER is from TCL. For na 

purpose, a TCL wrapper library was written, which makes available the test prim 
as TCL commands. We used this set of commands for exemplification in the pr 

section and we called TDL the enrichcd TCL language 
The TDL engine uses a set of utility components, which may be customizeu n0 

he 

user. At implementation level, such a component would be a static libraryimplenic

a certain interface. The user is free to provide any replacement for a componen 
the only restriction that it implements the same interface. 

ting 

with 

86 



USING tMSC FOR CONFORMANCE TESTING. THE TESTPILAYER APPROACH 
The first customizable component is Signal Encoding/Decoding, denoted by (1) on 

Figure 6. This component contains callback 
encoding/decoding/matching. The tester communicates with the system under test using 
a specific protocol, as we will see later, and the functions contained in component (1) are called to pack/unpack the signals and data to be transmitted/received. Component 
() also contains the functions that match an incoming message towards a generic message specification given in an Expect, Altemative or Coregion command. 

As mentioned above, the Signal Encoding/Decoding component may either be 
orovided as such by the designer of a system, or it may be generated from the SDL or 
ASN.I description of the system signals and data types. 

The Protocol component denoted by (2) on Figure 6 implements the protocol used by 
the tester to communicate with the system under test. TESTPLAYER may be used to 
apply tests in different configurations, in which the tester and the SUT may be on the 
same machine or on two different machines connected by a network, a serial line, etc. 

To achieve such a generic architecture, the communication functionality must be kept in 
a separate component in order to allow for changes in the underlying communication 

primitives. The Protocol component (2) must implement a simple interface that 
basically knows to open and close connections, raw send binary data to a connection 
and do blocking reads on a connection. Beyond this, the user is free to use whatever 
Suitable means to implement the communication between the tester task and the SUT 
(TCP/IP, some proprietary protocol, OS IPC, etc.) 

The Test Reports component (3) formats and stores the partial or final results of a test 
in a log. We kept this functionality in a separate component because a user may require 
that the results of her tests be stored in a specifie fomat: a database, a log file with a 

proprietary tformat, etc. Any replacement for this component must implement a simple 
interface containing the following functionality: opening/closing a log, writing a test 
event to a log, writing a test verdict to a log. 

After the execution of a test case or suite, the results may be visualized and one may 
find the initial MSC construct corresponding to a test event that appears in the log, using 
the Results Visualization tool. This tool accesses the information contained by the test 
log, using a component for reading the log similar to (3). 

Thus we have obtained a testing architecture based on the interpretation of test MSCs 
and on the Test Description Language, but in which the parts describing system signals 
and data types, the communication protocol between the tester and the system, and the 
formatting of test results are left open and customizable. 

functions for signal and data 

5. TESTPLAYER for ObjectGEODE 

ESTPLAYER for ObjectGEODE is the complete TESTPLAYER solution for systems 
hdeled in SDL {2] with ObjectGEODE [13] and for which code is automatically 
&neraled with the ObjectGEODE SDL-C Code Generator. It is an instantiation of all 
generic components and tools described in the previous section. The concrete
cture after the instantiation is outlined in Figure 7 (the instantiated tools and 
Components are drawr on gray background) 

87 



TULIAN OBER 

that 

automatically generates the codc for the component (1) Irom the SDL description oft. 
DE 

First of al1, a real Stub Gen (see Figure 6 and Figure 7) is provided, a comniler . 

system. This compiler is written using the SDL API which is part of the ObiectCEO 

the 
toolbox. The generated component ()) contains the encoding/decoding functions f 

(2) is the component in charge with the communication between the tester and the 

system. The instantiation means choosing an underlying protocol, which in our caca. 
was 

TCP/IP. The two parties involved in communication, the tester and the system. ust 

understand each other, so an adapter had to be added on the system side. To descrihe 

this adapter task, we have to depict shortly what the SDL-C Code Generator generates 

A system generated by the ObjectGEODE SDI-C Code Generator is a set of 

communicating tasks. A task may physically be a process or a thread, depending on the 

target operating system. A task may correspond to an SDL process instance, to a process 

instance set, to a block or to the entire system, depending on the configuration 

signals and data types defined in the SDL system. 

ca 

parameters given to the generator. 

tester system SDL system| tMSC Test 

Case N 
TDL 
Gen 

Sub 
Geny 

Code 
Gen 

User TDL -code Scrint 

Results 
isualiration TDL 

Engine Implementation 
Under 
Test 

H 
Testing 
rapper Test Resiulis 

Figure 7. TESTPLAYER Concrete Architecture for ObjectGEODE 

We are interested in the communication between the system and the environment 
For a generated system, the environment iS a task as any other task. Messages emittedto 
the environment are put in the queue of that task, which in turn may emit message 
Lowards the tasks of the system. The environment task may (and generally wWil described by the designer of the system. In case it is not described, a detau 
replacement of the task is generated, but this replacement does nothing else ua deleting ali the messages that arrive in its queue. 

For testing purposes, we replace the environment task with a task that communica with the tester (using our protocol implemented by component (2) ). The o communication task is represented on Figure 7 under the name testing wrapper task exposes an interface to the system organized as a set of PCOs 

S 

nal 

This 

PCOs do not exist in the SDIL system, so we have to map them to something una Consider that a PCO may corespond either to a channel between the sys 
nething that exists. W 

the and 
88 



USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH 
Concretely, this means that the external task behaves as a TCP scrver and accepts at 

most one TCP connection tor cacih exposed PCO. A tester that wants to communicate 
with the system on a specific PCO must call the Open primitive, which will open a TCP connection to the server and will announce the name of the PCO on which it acts. After 
the TCP connection corresponding to a PCO is established, every signal coming to the 
server on that TCP connection will be decoded and routed to the corresponding destination task without any modification and every signal coming from the system on 
the PCO will be encoded and forwarded through the corresponding TCP connection. 

The testing wrapper contains two sub-components: (4) which implements the 
communication protocol (very similar to (2) on the tester side) and (5) which 
implements signal and data types encoding/decoding (similar to (1) on the tester side). 
An automatic generation tool that generates the task from the SDL specification of the 
system is provided. 

The results formatting and storage component (3) is also instantiated for 

ObjectGEODE. It stores the test events and verdicts in an ASCII format in the test 
results repository. A visualization tool can read the repository and make the link back 
to the MSC source of a test case. 

The conclusion drawn from applying TESTPLAYER to ObjectGEODE systems is that 
the instantiation of the open parts of the TESTPLAYER architecture is not difficult to 
achieve, and that the resulted toolbox may be successfully used on large SDL systems. 

5.1 An example 

We prototyped the architecture described in the previous section in order to validate it 

on real examples. Our prototype provides all the necessary tools and components for 

testing a class of systems, namely systems designed and generated with ObjectGEODE 
on WindowsNT. This section shows how we can test a system with the prototype 
TESTPLAYER. 

We consider an SDL system describing a Cards Game Server. The high-level 
architecture of the system is shown in Figure 8 (for brevity, not all the signals are 

shown). 

system CardsServer 

signal CR(charstring), CC, 
BeginGame(charstring 
Deal(integer), 
Trump(integer): 

CC. BeginGame, 
Deal, Trumpl CR 

player 

main 
player2 

CC, BeginGane, 
|Deal, Trumnp) 

CR 

Figure 8. SDL system for a card game server 

Cnvironment, or to a set of such channels, or to all the channels when the system has only one 
Fo, and place is left for other mappings. One such mapping says what means that a signal is 
coming from the system through a certain PCO and, also, what is the destination task 
COresponding to a signal sent to the system on a PCO. 

89 



IULIAN OBER 

invol 
We would like to test the connection phase of the game. The connection 

i both 

of them. Each channel linking the system and the environment will be the 

that We 

After providing all the configuration parameters needed by the ObjectGEODF 

system 
C 

both players that may connect to a game, so the tester will have to take the nlanoe 

considered as a PCO. For testing the connection phase we will re-use an MSCo 

already have from the requirements specification of the system (Figure 9) 

SDL 
C Code Generator in the CardsServer. cfg file, we generate the executable 

and the testing wrapper task in one pass, by invoking: 

st gen sys 
CardsServer 

mse connection 

CardsServer playerl player2 

System PCO PCO 

CR(Bob) 

CR 'Sam') 

CC 

BeginGame('Sam') 
BeginGame(Bbb) 

Figure 9. Connection phase of the Cards Game 

o viewer ICordsServer.lpg 
Eile Edit View Window Help Eue Edit eu Nevigate IoolsHelp 

Exent Type Stetus Time lnsl Souice Fie MSCFie 
eOpenL.og succeeded 80 

Open 

MSC ne 
Identifior 

CardsServer1.d 
CardsServer Player1 Playerk succeeded 90 CardsServer1.8 

eOpen 
Ouput 

eEpect 
eTutpulucceeded 130 CadsServert couechiort.me 
9Expect succeeded 158 

Expect 
e)Expect succeeded 184 
VVerdict PASS 

succeeded 90 CardsServer1.d 
succeeded 100 LadsServer1.t connection msc2 

CardsServer1.t connection. mse 

arassever playar1 playerz 

PCO Succeeded 128 
yrtem PCO 

CRÇBob') 
LardsServer1.t connection ms 4U 

LardsServer1.t connectlion mst 43 

CardsServer1.d connection. msc 
CadsServer1. connection.msc 

CC 
SUcceeded 180 

RCSam) U 

CC 184 
******* ***** 

Eging Imesàm 

BeginGameCBob') 

-
essoge CR("San") 

Ready 

Figure 10. The Results Visualization Tool 
By default this will generate the executable system (Cards Server.exe 

containing also the testing wrapper, generated in such a way that each channc 
linking 

the system and the environment becomes a PCO. This configuration suits our p 
Suits our purpose 

90 



USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH 

Other configurations are possible for other purposes, like: one PCO for the entire system 
(grouping all the channels) or n PCOs each one for a specified group of channels. 

We now generate the extended TCL interpreter customized for use with our 

CardsServer system (i.e. containing the signal and type information specific to our 
svstem). The starting point is the SDL specification again: 

st gen_interP Cards Server 
The executable interpreter (called tdlsh) that is generated corresponds to the TDL 

engine plus the components (1), (2) and (3) in Figure 7. The type information contained 
in the SDL system is used for generating component (1). The other components are not 
rebuilt, they are taken from a library and linked together. 

We have two possibilities for using the executable system and the TDL interpreter: 
either we generate the TDL script from the MSC(s) and execute it in batoch mode, or we 
try an interactive session in which we feed whatever TDL commands we want to the 
command prompt of the TDL interpreter 

The first alternative involves first of all generating the TDL script from the MSC 

description of the test case. We can do this with: 

st_gen_tests Connection. msc 
and we obtain the TDL script called Cards Server1.tdl containing the followingg 

code: 

OpenLog CardsServer 
Open player 
Open player2 
Output CR with Bob via player1 
Expect CC via player1 
Output CR with Sam via player2 

Expect CC via player2 
Expect BeginGame with Sam via player1 

Expect Begin Game with Bob via player2 
Close player1 
Close player2 
Verdict:PASS 

To run this test, we must first start the system (Cards Server.exe) in a console, 
and then invoke: 

St_exec tests CardsServerl.tdl 
in another console. This command will run the test in batch mode and will write the test 

events and verdict in Cards Server. log. 

This log may be visualized with st_view_log and the MSC construct 
corresponding to each event appearing in the log may be highlighted automatically in 
the ObjectGEODE MSC editor (see Figure 10). For FAIL verdicts, the failure reason is 
also stored in the log. 

For using the TDL interpreter in interactive mode, one must start the system in a 

console and the tdlsh in another console. Then, at the tdlsh prompt he may type 

mmands like the ones generated from the MSC. The outputs and verdicts of the 
commands will appear on the console. 

6. Conclusions 

f dve presented an original framework for expressing and executing contormance 

Cases. Our architecture is based on two formalisms: MSC, which is a standard 

We 

91 



IULIAN OBER 

language for expressing execution traces in terms of message exchanges, and Tnr 

which is our own language and set of primitives for expressing actions of a tester. 

have shown that the combined use of the two formalisms provides a high power o 

expression while preserving the original simplicity and ease of the graphical MSCs 

Our ideas are implemented in a toolbox which can be used for executing tests on 

systems designed and generated using ObjectGEODE [13]. The architecture of the 

toolbox is such that it can be rapidly customized to work on different platforms 

(operating systems, network protocols, etc.) and different target systems. An 

industrialization of this tool suite by Verilog is planned. 

of 

References 

ATTOL Testware, ATTOL UniTest V3.3 Technical White Paper, 1999 

ITU-T Recommendation Z.100. Specification and Description Language (SDL), 1996 

ITU-T Recommendation Z.120. Message Sequence Charts, 1996 
. 

3. 
ITU-T Recommendation Z.120. Annex B. Formal Semantics of Message Sequence Charts, 

1996 
4. 

ISO/IEC Intenational Standard 9646-3. OSI-Open Systems Interconnection, Information . 

Technology - Open Systems Interconnection Conformance Testing Methodolog and 

Framework Part 3: The Tree and Tabular Combined Notation (TTCN), 1992 
ISO/IEC International Standard 9646-1/2/3. OSI-Open Systems Interconnection, Intormaio 
Technology Open Systems nterconnection Conformance Testing Methodology and 

6. 

Framework, 1992. 
J.Grabowski, T. Walter. Visualization of TTCN test cases by MSCs. In Proceedings of he 
Workshop of the SDL Forum Society on SDL and MSC, Informatik Bericht Nr. 104 

7. 

Humboldt Universität Berlin, 1998. 
J. Grabowski. Test Case Generation and Test Case Specification with Message Sequene 8. 

Charts. Ph.D. Thesis, Universität Bern, 1994. 
J.Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Specification 9. 
by MSCs. In: SDL'93- Using Objects. North-Holland, 1993. 

10. J. Grabowski, D. Hogrefe, I. Nussbaumer, A. Spichiger. Test Casc Specification Bascd 0 
MSCs and ASN.I. In: SDL'95 - Proceedings of the 7h SDL Forum, Sept. 1995, Oso 

Norway. North-Holland, 1995 
11. S. Mauw, M.A. Renicrs, An Algebraic Semantics of Basic Message Sequence Charts. In: T 

Computer Journal, 36(5), 1993 
12. J.K. usterhout, Tel and the Tk Toolkit, Addison-Wesley, 1994 
13. VERILOG. ObjectGEODE Reference Manuals, 1996 

INP Toulouse, ENSEEIHT, 2 rue Camichel, 31000 Toulouse 
ulian.Ober@ enseeiht.fr 

92 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

