
STUDIA UNIV. "BABE^-BOLYAT", INFORMATICA, Volume XLIU, Number I, 1998

EVOLUTIONARY PROGRAMMING:
AN APPLICATION TO CILUSTERING

DANA AVRAM DAN DUMITRESCU

BEATRICE LAZZERINI

Abstract. In this paper, we present the two basic models of Evolutionary
Programming. The first model tries to obtain intelligent predictions by usinga
deteminist finite-state automation or a sequential machine. The second model refers
to the optimization of real functions. This second model is exemplified by an
applicalion of clustering.

1. Introduction

Evolutionary Programming (EP) represents a class of paradigms for simulating
evolution which utilizes the concepts of Darwinian evoution to iteratively generate

increasing appropriate solutions (organisms) in light of a static or dynamically ehanging
environment. This is in sharp contrast to earlier research into artificial intelligence
research, which largely centered on the search of simple heuristics. Instead of

developing a (potentially) complex set of rules, which were derived from human
experts, EP evolves a set of solutions, which exhibit optimal behavior with respect to an
environment and a desired payoff function.

Evolutionary Programming (Fogel, 1962, Fogel. Owens, Walsh, 1966) appeared as
the result of the effort to generate the intelligent behavior of a machine described by a
determinist f+nite-state automaton. In this case, the intelligent behavior is a prediction of
the environment described as a succession of input symbols of the automaton.

In order to find a machine capable to offer a better prediction, we will consider a
machines randomly generated population of machines. The different parts of the
machines (states, transitions, output symbols) are modified later. The machines are
compared by means of an evaluation function. The most productive states are chosen.

The choice is strictly deterministic. The recombination of two automata does not seem
to be an interesting idea. That is why the only search operator is mutation.

The ideas used in Evolutionary Programming surpassed the initial domain and
were also applied to solve the optimization and search problems (D. B. Fogel, 1992).
The EP optimization algorithm has many things in common with the evolution

strategies.
In what follows we present the basic elements of Evolutionary Programming. The

two basic models of EP are described. The first model tries to obtain intelligent

1991 Mathematics Subject Classification. 68H30, 68T99
9 CR Categories and Subject Descriptors. 1.5.3 [Pattern Recognition). Clustering algorithms, similarity
measures

D AVRAM, D DUMITRESCU AND B. LAZZERINI

predictions by using a determinist finite-state automaton or a sequential machine

second model refers to the optimization of real functions.

The operators of Evolutionary Programming are selection and mutation 'T

selection is of type (utu) and it is deterministic. The mutation is realized by a norma
random perturbation. The standard deviation o ot the normal distribution is a parameta
of the method. An self-adaptation mechanism controls the evolution of this parameter.

There are ditferent methods to control the parameters. One of them is known as

Meta Evolutiomary Programming.

The

The

2 Finite Automaton

In this scction we present some notions concerning the finite-state automaton.

An automaton is an abstract machine having a finite set of states. An input tape
contains a set of symbols. The input symbols are read sequentially. An input symbol and

a state determine the transition of the automaton to another state.
In order to give a formal definition of automaton, we will introduce the following

notations.

() is the set of input symbols. E defines the input alphabet of the automaton.
(i) S is a finite and not empty set called the set of the states of the automaton.

(i) SoeS is the initial state of the automaton.
(iv) The function 8: S xE>S is the transition function of the automaton.

A determinist finite-state automaton is a system A = (2,S,So,8), where the
signification of the symbols is the one given before.

The transition function describes the dynamic of the automaton. The equality

indicates that the automaton is in the state s, the input symbol x and passes into the state
s'.

An input symbol corresponds to a certain situation of the environment where the
automaton is placed. By reading an input sequence (representing the action or tne
environment) the automaton passes from the initial state S, into another state. We can complicate the model of the finite-state automaton by introducing a output tape where an output symbol is recorded. In this way we obtain a sequenta machine.

A sequential machine (or an input-output automaton) is a system
T= (2, S, So,0,88) where the symbols 2, S and So have the signification indicated above. O is the ser output symbols and the transition function 8 is a funetion:
:S x2> SxO The equation

,o)= 8(s, x) 1S interpreted as follows: the sequential machine in the state s reads an input symbol * passes into another state s', produces and writes on the output tape the output symbo Using this mechanism, the sequential machine transforms a sequence or P symbols into a sequcnce of output symbols. A sequential machine can simulate a in

nput
of

48

EVOLUTIONARY PROGRAMMING AN APPLICATION TO CLUSTERING

intelligent behavior. In this case the intelligence can be defined as the ability of the
sy stem to adapt its behavior so that it can realize the desired outputs in various extreme

situations.

3. Evolutionary Programming. Sequential Machine Model

Initially. the main goal of Evolutionary Programming was to operate with
sequential machine and with its discrete representations. The intention was to obtain

predictions of the environment. In this case, the intelligent behavior was seen as the
ability of machine to obtain reasonable predictions of its environment. Those predictions

are translated into responses regarding a domain. The environment is described as a

sequence of input symbols. The prediction is represented by the output symbol. The

performance of the machine is measured using an evaluation function (or error

function).
The machine works as follows. An output symbol represents a prediction of the

next state of the environment. Thus the quality of the prediction can be evaluated by
comparing the output symbol with the next input symbol. The distance between the
output symbol and the next input symbol is the error of the prediction. The prediction

quality is measured by using an evaluation function.
The Evolutionary Programming paradigm uses a population of u >1 parents. Each

parent represents a sequential machine. From parents the mutation operator generates
H offspring. The mutation represents random changes of the elements composing cach

parent machine. There are five possible ways to perform the mutation:

(i)
(ii) Change a state transition.
(iii) Add a new state.

(iv) Delete an existing state.

v) Change the initial state.

Obviously, to delete a state or to change the initial state is possible only if the

machine has more than one state.

Change an output symbol.

The number of the mutation operations applied to each offspring is also

determined with respect to a probability distribution or may be fixed a priori. Usually,

this probability distribution is the uniform distribution.

The offspring obtained by using mutation are evaluated with respect to the

environment. The evaluation uses a fitness function. individuals are chosen among the

parents and the offspring. They will be the parents of the new generation. The selection

1S made in the decreasing order of the quality. The used selection is of the type (utu)

and is deterministic.

The process continues until a machine achieving a correct prediction of the next

Symbol (not yet explored of the environment) appears in a population. 1he machine that

accomplishes the correct prediction is selected to generate that prediction. The new

Symbol is added to the already explored environment and the process continues.

Basically, this mechanism tries to obtain machines that modify their behavior in

Oruer to increase their capacity to predict correctly a set of symbols describing the

Chvironment. This is a characteristic of a learning process. The symbols describing the

cnvironment can be seen as a training set.

49

D. AVRAM, D. DUMITRESCU AND B. LAZZERINI

We can summarize the discussion above into an Evolutionary Programming

algorithm for evolving sequential machines.

Evolutionary Programming Algorithm for Sequential Machines

S1. Set t:=0;
Initialize by random a population P(t) of u parents. Each member of the population

is a finite-state sequential machine.

Suppose L is the set of input symbols that has already been checked.

Set L:-3.
s2. The environment (training set) is presented to the members of the parent population

P(t). The training set consists of input symbols.
Each input symbol is presented to each machine of population P(t).
The output symbol of each machine (the prediction) is compared to the next input

symbol.
$3.The quality of the prediction is calculated for each input symbol and for each

machine by using a fitness function.
S4. The population P() is evaluated.

To reach this goal, each machine fitness for an input sequence is calculated. The
fitness of a machine can be defined, for example, as the average performance (with
respect to the input symbols).

S5. machines are created (H offspring) by applying mutation to f parents of the

population P(t). Denote by P' the population of those new machines.
S6.The machines of the population P" are evaluated according to the existing

environment in the same way as their parents were.

$7.H individuals are chosen from the population P(t) U P'. The choice is done by
selecting H individuals in the increasing order of their fitness.
The selected individuals will be the parents of the new generation. Sett:=t+1.

S8. The steps S5-S7 are repeated until a machine achieves a correct prediction of an input symbol not yet checked.
This machine is selected to generate this prediction. The symbol that was correctly predicted is added to the list L of checked symbols. The process returns to the step S2.

4. Evolutionary Programming Used for Function Optimization Fogel (1992) extended the Evolutionary Programming to optimize the real functions. The representation of individuals, the mutation operator and self-adáptationof strategy parameters have many common aspects with the corresponding elements in Evolution Strategies. The Evolutionary Programming is not supposed to use recombination operator in this case either.

50

EVOLUTIONARY PROGRAMMING: AN APPLICATION TO CLUSTERING

4.1. Chromosomes Representation

In Evolutionary Programming, a chromosome corresponds to an objcct variables
vector. Consider the objcctive function F : R" > R and no constraint optimization

problem:

JF()-
xER"

max

In this case, the chromosome x is a vector from scarching space R" .

The Meta Evolutionary Programming (l'ogel, 1992) represents individuals in a
slightly difierent way. he Meta Evolutionary Programming includes a self-adaptati on
parameter mechanism that is similar to the one uscd in Evolution strategies. The control

parameter of the method is the standard deviation (or the squarc of standard deviation
that is dispersion).

In Meta Evolutionary Programming an individual a is a pair a=(x,0), where a is
a vector. The components of this vector are the dispersion components:

2
2

The fitness function is obtained starting from the objective function by scaling it to
positive values. It is possible to introduce some random alterations inside the objectivee

function.
Consider S a set of additional parameters involved in the process. Let us admit that

these parameters can be randomly modified. The scaling function is:

a: RxS> R*

The fitness function fcan be written as follows:

Sa)=a{F*) k)
where k describes the random changes of the process parameters.

4.2. Mutation

In Evolutionary Programming, as in the Evolution Strategies, the mutation of the

Components of the vector x is obtained by using a random perturbation. The perturbation

of the components is additive. Thus we will have:

x =x +O, N, (0,1), i=1, 2,..., n

N(O,1) indicates a realization of a normal random variable with standard where
deviation onc and cxpectation zero.

he dispersion is considered to be proportional with the square root of the value

corresponding to the fitness function:

oP,fx)+ 7i
wICre the parameters B, and Y, are chosen according to the concrete problem.

51 BIBLIOTEC

OE MATEMAT

ECA FACULTAT
CLUJ-NAPOCA

D. AVRAM, D. DUMITRESCU AND B. LAZZERINI

Often the next values are used:

B,= 1, Y =0,

In this case the components change according to the rule

, =X, +N, (0,1/r(x)

In order to avoid the difficulties regarding the adjustment of the parameter .

adaptation mechanism for the dispersion parameter has been created. This mechanicn ism is

similar to the Evolution Strategy mechanism.

been For the first time, an additive variant of the selt adaptation process has

considered
,'=o,(1+a N{0.1)).

where a is a positive real parameter, with a subunitary value (a > 0.2). This adjustino

rule has proved to be ineft+cient for fitness functions altered by some distortions

(noises). In those cases it can happen that the additive mechanism for self adaptation

reverses the search direction.
The Meta Evolutionary Programming is a slightly modified variant of the self

adaptation mechanism described above. Independent parameters which are self-adapting
by using normal perturbations are considered. In this case, the mutations of the object
variables and parameters are made according to the next rules:

x'=X; +o, N, (0,1) D'=D, +o, Va N, (0,1)
where Di denote

Here a designates an external parameter that ensures that D; tends to remain

positive. If the variance D, becomes negative or zero, it is modified into a small positive
value, e >0

The parameter self adaptation rule can be written as follows

,o+,ya N,(0.1)
We remark that the two self adaptation rules (for variables and parameters) are quite
similar.

It is interesting to compare additive rules of self adaptation and the multiplicative rule used in Evolution Strategies. Here there are some conclusions resulted from this
comparison:

(i) The multiplicative self adaptation rule in case of Evolution Strategies ensures the positiveness of the strategy parameters;
(i) The perturbations generated by the additive rule of the Meta Evolutionary Programming are greater then the perturbations of the exponential multiplicaulvc law of the Evolution Strategies (iii) In the absence of the selection pressure, the perturbations of a stralee parameter are neutral. The additive rule does not generate neutral perturbations (iv) Numeric experiments indicate that the multiplicative self adaptation metn seems to be more robust than the additive method. The robustness existsa because the transition between small and great values of control parametc Evolution Strategies is easier to be accomplished. Due to the advantages of thc multiplicative rule we can also use this ru n

Evolutionary Programming, The self adaptation multiplicative rule is often u
Evolutionary Programming implementations.

hod

in

r

52

EVOLUTIONARY PROGRAMMING: AN APPLICATION TO CLUSTERING

4.3. Selection

Let us consider an initial population of u individuals (t=0). This will be the parent
population for the next generation. Let P(t) be the parent population. Using the mutation

only once for each parent we obtain u offspring. Let P be the offspring population.
From the u parents and otfspring we select u individuals. The selection method is a

probabilistic variant of the selection (utu).
Each individual a' of the population P(t) U p is compared to qPl individuals

randomly chosen from P(t) UP'. The comparison is made by using the fitness function.
For each individual a'e P(t) U P' the number of individual less fitted than a' is
ealeulated. This number represents the score w, of a' (w, E {0,1,.. . , q}). After the
score calculation, the 2u individuals are sorted in the increasing order of the scores, wi,

i= 1, 2,..
individuals will form the new population P(t+1).

The score w; can be written as follows

2u. The u individuals that have the best scores are selected. The selected

,- ffd')s f(a")
otherwise

where the indexes kj E {1,2,.. . , 2r } are the values of a random uniform variable. kj
is recalculated for each comparison.

The selection obtained is a variant of probabilistic selection of the type q-
tournament selection. q represents the number of the individuals in competition and it is
a parameter of the method. Usually it is considered q-100. While the values of q are
increasing the selection mechanism becomes closer to the deterministic schemata (r+r).

For greater values of the q parameter, the selection schemata becomes elitist. In
this situation the probability that the best individual gain the maximum seore increases.

4.4. Recombination

Evolutionary Programming does not use a recombining operator. In the

Evolutionary Programming a solution encodes a species not an individual. At the

biological level the crossover does not function among different species. The biological
model used does not give a conceptual difference between Evolution Strategies and

Evolutionary Programming.

4.5. Evolutionary Programming Algorithm
The algorithm of Meta Evolutionary Programming used to find the optimum of a

real function can be described by using the next standard form:

Evolutionary Programming Algorithm for the Real Function Optimization
SI Set t:= 0

Initialize a population P(0) of potential solutions.
S2. Evaluate the population P(t).
S3. While (T(P(t)) = false) execute {the stop condition is not fulfilled}

53

D. AVRAM, D. DUMITRESCU AND B. LAZZERINI

P'(): mutation within P(t) ;

Evaluate P():

P(t+1):= sclection within P(t) U P'(1).

t=tt 1.

4.6. Convergence of the Method

Fogel (1992) analyzed the convergence of the standard Evolutionary Programmino

algorithm when the titness function is the objective function.

Consider a particular case when the discrete scarch space is C" R', where C is

the set ot numbers that can be represented into a numeric computer. In this case the

probability that the algorithm globally converge is equal with 1.
Because the similarity betwcen the (1+1) Evolution Strategy and Evolutionary

Programming we can suppose that the convergence theorem for the (1+1) Evolution

Strategy can be extended also for the Evolutionary Programming. We must remember

that the convergence is probabilistic also in the case of Evolution Strategy.

Thus, the (1+1) convergence theorem can be extended also for the standard

Evolutionary Programming. The convergence is true for the searching space R" and not

only for the discrete space considered above.
For the simplified sphere model with the fitness function:

FCe)-X-
i=l

the theory of the convergence rate of the (1+1) Evolution Strategy can be extended for
the Evolutionary Programming. In this last situation for the case of a population with the

size =1, the Evolutionary Programming selection becomes deterministic.
Consider the case when the dispersion has the expression:

The convergence rate decreases to zero when and n increases. But if

n

the convergence rate becomes almost optimal.

4.7. Conclusion

This Evolutionary Programming is basicaly similar with the Evolution Strateg Although there are some differences between the two approaches. Two of them
be essetial.

(The Evolution Strategy codifies structure that are similar to the individuai This is why we can use recombination to obtain new individuals. Usualy
the

Evolutionary Programming that are similar to different species (and tu A

fore

the recombination operator cannot be applied for such structurc
A

mechanism to obtain new solutions by using recombination is not appro
priate

for the Evolutionary Programming.
54

EVOLUTIONARY PROGRAMMING AN APPLICATION TO CLUSTERING

(ii) Evolution Strategies use a strictly deterministic selection (the best individuals
chosen among the parents and their offspring form the new generation).

The Evolutionary Programming uses a probabilistic selection. Each solution is

compared to a fixcd number of solutions randomly chosen from the current generation

and not to all the other solutions from the current generation.
The Evolutionary Programming benefits from some ideas and concepts emerged

within the Evolution Strategies.

The Evolutionary Programming suggests a possible amelioration for the Evolution
Strategies. The probabilistic mechanism of selection based on sorting could be used in

Evolution Strategies (4,) and (u+2). Obviously there are also other selection
mechanisms that could prove themselves useful. But there is no reason for using other

selection mechanisms for the Evolutionary Programming or for the Evolution Strategies.
There exists a strong relationship between Evolutionary Computation and some

other techniques, e.g. fuzzy logic and neural networks, usually regarded as elements of
artificial intelligence. Their main common characteristic lies in their numerical
knowledge representation which differentiates them from traditional symbolic Artificial
Intelligence. Bezdek suggested the term Computational Intelligence for this special

branch of Artificial Intelligence with the following characteristics:
numerical knowledge representation;

adaptability;
fault tolerance;

2.

3.
4. processing specd comparable to human cognition processes;

error rate optimality (estimate of the probability of a certain error on future 5.

data).

The Evolutionary Programming strategy applications are numerous. Part of them
are related to Artificial Intelligenee. Those are: neural networks training and design.
pattern recognition, robotics, automated learning processes and searching in the state

space, the system identification and system control.

The current direction for research regards some basic mathematical aspects, the
combination of Evolutionary Programming with other searching techniques and the

algorithm design for implementing them on parallel machines.

Other important research is conducted into the understanding of the comvergence

properties of EP, as well as the mechanisms of different mutation operators and
selection mechanisms. The number of application areas of this optimization techniqueis
constantly growing. EP, along with the other EC techniques, is being used on previously
untenable problems which occur quite often in commercial and military problems.

5. Evolutionary Programming Based Clustering

Let X={a, ... , *}, x e S be a data set.
The cluster structure of X is described by a fuzzy partition P={A1, ... , An} of S. L'

ES denotes the prototype of the fuzzy class A
The inadequacy J(P,L) of representing the fuzzy partition P by L={L', .. ,L"} may

be defined as:

55

D. AVRAM, D. DUMITRESCU AND B. LAZZERINI

sP.1)- 4"()a"(,).
i=i j=l

where m21 and q21.

Solving the optimization problem
JP.L)>min,

is not an easily task for an arbitrary distance function d or for an arbitrary data space S.
Evolutionary Programming may offer a general framework for solving clustering

problem.

5.1. Chromosome Representation

Each chromosome c is a prototype sequence

c (L, L')
Real representation seems to be more appropriate for clustering problems than

binary representation.

5.2. Fitness Function

The fitness function may be defined as:

ic) = K,- JP.c).
where P is the partition induced by the chromosome c = (L', .. , L"). K, is the maximum

objective function value for the generation P(t):
K, = max JP,c)

cEP()

For q-2 we may consider the fuzzy partition îne d as:

a,)=- i= ., j=l,., p, a>0.

)
)+a

m-1
+a

We may also obtain a hard partition P by using the 1- prototype rule:
x is assigned to A, dr,l')= max dr, L')

5.3. Mutation and Self Adaptation
Let e; be the i-th gene of the chromosome c. Consider each gene will be mua with a standard deviation o. The self adaptation rule of the dispersion is:

ated

o'= a+o, va N,(0.1)
when ae(0,1).

The genes (object variables) are mutated according the additive rule:
ce,+o, ' N, (0,1)

56

EVOLUTIONARY PROGRAMMING: AN APPLICATION TO CLUSTERING

5.4. Survival

We use general EP survival mechanism.

5.5. Numerical examples

In order to get a good visual display of our genetic algorithm, we choose the

simple example of clustering two-dimensional data into four clusters. Our example
considered 75 generations and the points from [0,1] interval. Notice that the prototypes
are marked with an "x" and data points arc marked with an "o".

oX

8

Figure 1. Generation0.

Ox o
XO

Figure 2. Generation 15.

57

D. AVRAM, D. DUMITRESCU AND B. LAZZERINI

Ox

X

Figure 3. Generation 30.

x°
o

X

Figure 4. Generation 45.

oo

x

o X

Figure 5. Generation 60.

58

EVOLUTIONARY PROGRAMMING: AN APPLICATION TO CLUSTERING

Figure 6. Generation 75.

*

Figure 7. Last generation.

REFERENCES

Bäck, T. , Schwefel, H. P. (1993), An overview of evolutionary algorithms for parameter optimization,

Evolutionary Computation, 1, 1-24

Bäck, T. , Rudolph, G. , Schwefel, H. P. (1993), Evolutionary Programming and evolution strategies
Similaritics and differences, in Proceedings of the Second Annual Conference on Evolutionary
Programming, D.B. Fogel, W. Atmar (editori), Evolutionary Programming Society, La.Jolla, 11-22.

Fogel, D. B. (1992), Evolving Artificial Intelligence, Ph. D. Thesis, University of California, San Diego.

ogel, D. B. , Atmar, J. W. (editori) (1992), Proceedings of the First Annual Conference on Evolutionary

Programming, Evolutionary Programming Society, La Jolla.

ogel, D. B. (1994), An introduction to simulated evolutionary optimization, IEEE Transaction Neural

Nerworks, 5.

ogel, D. B. (1995), Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE

Press, Piscataway, N.
Fogel, L. J. (1962), Toward inductive inference automata, Proceedings of the International Federation for

1nlormation Processing Congress, Munich, 395-399

59

D AVRAM, D. DUMITRESCU ANDB. LAZZERINI

Fogel, L. J. (1964), On the Organization of Intellect, Ph. D. Thesis, UCLA

Fogel, L. J., Owens, A. J., Walsh, M. J. (1966), Artificial Intelligence through Simulated Evolution

New York

wiley

Babes-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Na noca

Kogalniccanu 1, Románia.

E-mail address: (davram, ddumitr)@cs.ubbcluj. ro

str

Dipartimento di Ingegneria della Informazione, Universita di Pisa, Italia

E-mail address: beatrice@iet . unipi. it

60

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

