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EVOLUTIONARY PROGRAMMING: 
AN APPLICATION TO CILUSTERING 

DANA AVRAM DAN DUMITRESCU

BEATRICE LAZZERINI

Abstract. In this paper, we present the two basic models of Evolutionary 
Programming. The first model tries to obtain intelligent predictions by usinga 
deteminist finite-state automation or a sequential machine. The second model refers 
to the optimization of real functions. This second model is exemplified by an 
applicalion of clustering. 

1. Introduction 

Evolutionary Programming (EP) represents a class of paradigms for simulating 
evolution which utilizes the concepts of Darwinian evoution to iteratively generate 

increasing appropriate solutions (organisms) in light of a static or dynamically ehanging 
environment. This is in sharp contrast to earlier research into artificial intelligence 
research, which largely centered on the search of simple heuristics. Instead of 

developing a (potentially) complex set of rules, which were derived from human 
experts, EP evolves a set of solutions, which exhibit optimal behavior with respect to an 
environment and a desired payoff function. 

Evolutionary Programming (Fogel, 1962, Fogel. Owens, Walsh, 1966) appeared as 
the result of the effort to generate the intelligent behavior of a machine described by a 
determinist f+nite-state automaton. In this case, the intelligent behavior is a prediction of 
the environment described as a succession of input symbols of the automaton. 

In order to find a machine capable to offer a better prediction, we will consider a 
machines randomly generated population of machines. The different parts of the 
machines (states, transitions, output symbols) are modified later. The machines are 
compared by means of an evaluation function. The most productive states are chosen. 

The choice is strictly deterministic. The recombination of two automata does not seem 
to be an interesting idea. That is why the only search operator is mutation. 

The ideas used in Evolutionary Programming surpassed the initial domain and 
were also applied to solve the optimization and search problems (D. B. Fogel, 1992). 
The EP optimization algorithm has many things in common with the evolution 

strategies. 
In what follows we present the basic elements of Evolutionary Programming. The 

two basic models of EP are described. The first model tries to obtain intelligent 
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predictions by using a determinist finite-state automaton or a sequential machine 

second model refers to the optimization of real functions. 

The operators of Evolutionary Programming are selection and mutation 'T 

selection is of type (utu) and it is deterministic. The mutation is realized by a norma 
random perturbation. The standard deviation o ot the normal distribution is a parameta 
of the method. An self-adaptation mechanism controls the evolution of this parameter. 

There are ditferent methods to control the parameters. One of them is known as 

Meta Evolutiomary Programming. 

The 

The 

2 Finite Automaton 

In this scction we present some notions concerning the finite-state automaton. 

An automaton is an abstract machine having a finite set of states. An input tape 
contains a set of symbols. The input symbols are read sequentially. An input symbol and 

a state determine the transition of the automaton to another state. 
In order to give a formal definition of automaton, we will introduce the following 

notations. 

() is the set of input symbols. E defines the input alphabet of the automaton. 
(i) S is a finite and not empty set called the set of the states of the automaton. 

(i) SoeS is the initial state of the automaton. 
(iv) The function 8: S xE>S is the transition function of the automaton. 

A determinist finite-state automaton is a system A = (2,S,So,8), where the 
signification of the symbols is the one given before. 

The transition function describes the dynamic of the automaton. The equality 

indicates that the automaton is in the state s, the input symbol x and passes into the state 
s'. 

An input symbol corresponds to a certain situation of the environment where the 
automaton is placed. By reading an input sequence (representing the action or tne 
environment) the automaton passes from the initial state S, into another state. We can complicate the model of the finite-state automaton by introducing a output tape where an output symbol is recorded. In this way we obtain a sequenta machine. 

A sequential machine (or an input-output automaton) is a system 
T= (2, S, So,0,88) where the symbols 2, S and So have the signification indicated above. O is the ser output symbols and the transition function 8 is a funetion: 
:S x2> SxO The equation 

,o)= 8(s, x) 1S interpreted as follows: the sequential machine in the state s reads an input symbol * passes into another state s', produces and writes on the output tape the output symbo Using this mechanism, the sequential machine transforms a sequence or P symbols into a sequcnce of output symbols. A sequential machine can simulate a in 

nput 
of 
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intelligent behavior. In this case the intelligence can be defined as the ability of the 
sy stem to adapt its behavior so that it can realize the desired outputs in various extreme 

situations. 

3. Evolutionary Programming. Sequential Machine Model 

Initially. the main goal of Evolutionary Programming was to operate with 
sequential machine and with its discrete representations. The intention was to obtain 

predictions of the environment. In this case, the intelligent behavior was seen as the 
ability of machine to obtain reasonable predictions of its environment. Those predictions 

are translated into responses regarding a domain. The environment is described as a 

sequence of input symbols. The prediction is represented by the output symbol. The 

performance of the machine is measured using an evaluation function (or error 

function). 
The machine works as follows. An output symbol represents a prediction of the 

next state of the environment. Thus the quality of the prediction can be evaluated by 
comparing the output symbol with the next input symbol. The distance between the 
output symbol and the next input symbol is the error of the prediction. The prediction 

quality is measured by using an evaluation function. 
The Evolutionary Programming paradigm uses a population of u >1 parents. Each 

parent represents a sequential machine. From parents the mutation operator generates 
H offspring. The mutation represents random changes of the elements composing cach 

parent machine. There are five possible ways to perform the mutation: 

(i) 
(ii) Change a state transition. 
(iii) Add a new state. 

(iv) Delete an existing state. 

v) Change the initial state. 

Obviously, to delete a state or to change the initial state is possible only if the 

machine has more than one state. 

Change an output symbol. 

The number of the mutation operations applied to each offspring is also 

determined with respect to a probability distribution or may be fixed a priori. Usually, 

this probability distribution is the uniform distribution. 

The offspring obtained by using mutation are evaluated with respect to the 

environment. The evaluation uses a fitness function. individuals are chosen among the 

parents and the offspring. They will be the parents of the new generation. The selection 

1S made in the decreasing order of the quality. The used selection is of the type (utu) 

and is deterministic. 

The process continues until a machine achieving a correct prediction of the next 

Symbol (not yet explored of the environment) appears in a population. 1he machine that 

accomplishes the correct prediction is selected to generate that prediction. The new 

Symbol is added to the already explored environment and the process continues. 

Basically, this mechanism tries to obtain machines that modify their behavior in 

Oruer to increase their capacity to predict correctly a set of symbols describing the 

Chvironment. This is a characteristic of a learning process. The symbols describing the 

cnvironment can be seen as a training set. 
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We can summarize the discussion above into an Evolutionary Programming 

algorithm for evolving sequential machines. 

Evolutionary Programming Algorithm for Sequential Machines 

S1. Set t:=0; 
Initialize by random a population P(t) of u parents. Each member of the population 

is a finite-state sequential machine. 

Suppose L is the set of input symbols that has already been checked. 

Set L:-3. 
s2. The environment (training set) is presented to the members of the parent population 

P(t). The training set consists of input symbols. 
Each input symbol is presented to each machine of population P(t). 
The output symbol of each machine (the prediction) is compared to the next input 

symbol. 
$3.The quality of the prediction is calculated for each input symbol and for each 

machine by using a fitness function. 
S4. The population P() is evaluated. 

To reach this goal, each machine fitness for an input sequence is calculated. The 
fitness of a machine can be defined, for example, as the average performance (with 
respect to the input symbols). 

S5. machines are created (H offspring) by applying mutation to f parents of the 

population P(t). Denote by P' the population of those new machines. 
S6.The machines of the population P" are evaluated according to the existing 

environment in the same way as their parents were. 

$7.H individuals are chosen from the population P(t) U P'. The choice is done by 
selecting H individuals in the increasing order of their fitness. 
The selected individuals will be the parents of the new generation. Sett:=t+1. 

S8. The steps S5-S7 are repeated until a machine achieves a correct prediction of an input symbol not yet checked. 
This machine is selected to generate this prediction. The symbol that was correctly predicted is added to the list L of checked symbols. The process returns to the step S2. 

4. Evolutionary Programming Used for Function Optimization Fogel (1992) extended the Evolutionary Programming to optimize the real functions. The representation of individuals, the mutation operator and self-adáptationof strategy parameters have many common aspects with the corresponding elements in Evolution Strategies. The Evolutionary Programming is not supposed to use recombination operator in this case either. 
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4.1. Chromosomes Representation 

In Evolutionary Programming, a chromosome corresponds to an objcct variables 
vector. Consider the objcctive function F : R" > R and no constraint optimization 

problem: 

JF()- 
xER" 

max 

In this case, the chromosome x is a vector from scarching space R" . 

The Meta Evolutionary Programming (l'ogel, 1992) represents individuals in a 
slightly difierent way. he Meta Evolutionary Programming includes a self-adaptati on 
parameter mechanism that is similar to the one uscd in Evolution strategies. The control 

parameter of the method is the standard deviation (or the squarc of standard deviation 
that is dispersion). 

In Meta Evolutionary Programming an individual a is a pair a=(x,0), where a is 
a vector. The components of this vector are the dispersion components: 

2 
2 

The fitness function is obtained starting from the objective function by scaling it to 
positive values. It is possible to introduce some random alterations inside the objectivee 

function. 
Consider S a set of additional parameters involved in the process. Let us admit that 

these parameters can be randomly modified. The scaling function is: 

a: RxS> R* 

The fitness function fcan be written as follows: 

Sa)=a{F*) k) 
where k describes the random changes of the process parameters. 

4.2. Mutation 

In Evolutionary Programming, as in the Evolution Strategies, the mutation of the 

Components of the vector x is obtained by using a random perturbation. The perturbation 

of the components is additive. Thus we will have: 

x =x +O, N, (0,1), i=1, 2,..., n 

N(O,1) indicates a realization of a normal random variable with standard where 
deviation onc and cxpectation zero. 

he dispersion is considered to be proportional with the square root of the value 

corresponding to the fitness function: 

oP,fx)+ 7i 
wICre the parameters B, and Y, are chosen according to the concrete problem. 
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Often the next values are used: 

B,= 1, Y =0, 

In this case the components change according to the rule 

, =X, +N, (0,1/r(x) 

In order to avoid the difficulties regarding the adjustment of the parameter . 

adaptation mechanism for the dispersion parameter has been created. This mechanicn ism is 

similar to the Evolution Strategy mechanism. 

been For the first time, an additive variant of the selt adaptation process has 

considered 
,'=o,(1+a N{0.1)). 

where a is a positive real parameter, with a subunitary value (a > 0.2). This adjustino 

rule has proved to be ineft+cient for fitness functions altered by some distortions 

(noises). In those cases it can happen that the additive mechanism for self adaptation 

reverses the search direction. 
The Meta Evolutionary Programming is a slightly modified variant of the self 

adaptation mechanism described above. Independent parameters which are self-adapting 
by using normal perturbations are considered. In this case, the mutations of the object 
variables and parameters are made according to the next rules: 

x'=X; +o, N, (0,1) D'=D, +o, Va N, (0,1) 
where Di denote 

Here a designates an external parameter that ensures that D; tends to remain 

positive. If the variance D, becomes negative or zero, it is modified into a small positive 
value, e >0 

The parameter self adaptation rule can be written as follows 

,o+,ya N,(0.1) 
We remark that the two self adaptation rules (for variables and parameters) are quite 
similar. 

It is interesting to compare additive rules of self adaptation and the multiplicative rule used in Evolution Strategies. Here there are some conclusions resulted from this 
comparison: 

(i) The multiplicative self adaptation rule in case of Evolution Strategies ensures the positiveness of the strategy parameters; 
(i) The perturbations generated by the additive rule of the Meta Evolutionary Programming are greater then the perturbations of the exponential multiplicaulvc law of the Evolution Strategies (iii) In the absence of the selection pressure, the perturbations of a stralee parameter are neutral. The additive rule does not generate neutral perturbations (iv) Numeric experiments indicate that the multiplicative self adaptation metn seems to be more robust than the additive method. The robustness existsa because the transition between small and great values of control parametc Evolution Strategies is easier to be accomplished. Due to the advantages of thc multiplicative rule we can also use this ru n 

Evolutionary Programming, The self adaptation multiplicative rule is often u 
Evolutionary Programming implementations. 

hod 

in 

r 
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4.3. Selection 

Let us consider an initial population of u individuals (t=0). This will be the parent 
population for the next generation. Let P(t) be the parent population. Using the mutation 

only once for each parent we obtain u offspring. Let P be the offspring population. 
From the u parents and otfspring we select u individuals. The selection method is a 

probabilistic variant of the selection (utu). 
Each individual a' of the population P(t) U p is compared to qPl individuals 

randomly chosen from P(t) UP'. The comparison is made by using the fitness function. 
For each individual a'e P(t) U P' the number of individual less fitted than a' is 
ealeulated. This number represents the score w, of a' (w, E {0,1,.. . , q}). After the 
score calculation, the 2u individuals are sorted in the increasing order of the scores, wi, 

i= 1, 2,.. 
individuals will form the new population P(t+1). 

The score w; can be written as follows 

2u. The u individuals that have the best scores are selected. The selected 

,- ffd')s f(a") 
otherwise 

where the indexes kj E {1,2,.. . , 2r } are the values of a random uniform variable. kj 
is recalculated for each comparison. 

The selection obtained is a variant of probabilistic selection of the type q- 
tournament selection. q represents the number of the individuals in competition and it is 
a parameter of the method. Usually it is considered q-100. While the values of q are 
increasing the selection mechanism becomes closer to the deterministic schemata (r+r). 

For greater values of the q parameter, the selection schemata becomes elitist. In 
this situation the probability that the best individual gain the maximum seore increases. 

4.4. Recombination 

Evolutionary Programming does not use a recombining operator. In the 

Evolutionary Programming a solution encodes a species not an individual. At the 

biological level the crossover does not function among different species. The biological 
model used does not give a conceptual difference between Evolution Strategies and 

Evolutionary Programming. 

4.5. Evolutionary Programming Algorithm 
The algorithm of Meta Evolutionary Programming used to find the optimum of a 

real function can be described by using the next standard form: 

Evolutionary Programming Algorithm for the Real Function Optimization 
SI Set t:= 0 

Initialize a population P(0) of potential solutions. 
S2. Evaluate the population P(t). 
S3. While ( T(P(t)) = false ) execute {the stop condition is not fulfilled} 
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P'(): mutation within P(t) ; 

Evaluate P(): 

P(t+1):= sclection within P(t) U P'(1). 

t=tt 1. 

4.6. Convergence of the Method 

Fogel (1992) analyzed the convergence of the standard Evolutionary Programmino 

algorithm when the titness function is the objective function. 

Consider a particular case when the discrete scarch space is C" R', where C is 

the set ot numbers that can be represented into a numeric computer. In this case the 

probability that the algorithm globally converge is equal with 1. 
Because the similarity betwcen the (1+1) Evolution Strategy and Evolutionary 

Programming we can suppose that the convergence theorem for the (1+1) Evolution 

Strategy can be extended also for the Evolutionary Programming. We must remember 

that the convergence is probabilistic also in the case of Evolution Strategy. 

Thus, the (1+1) convergence theorem can be extended also for the standard 

Evolutionary Programming. The convergence is true for the searching space R" and not 

only for the discrete space considered above. 
For the simplified sphere model with the fitness function: 

FCe)-X- 
i=l 

the theory of the convergence rate of the (1+1) Evolution Strategy can be extended for 
the Evolutionary Programming. In this last situation for the case of a population with the 

size =1, the Evolutionary Programming selection becomes deterministic. 
Consider the case when the dispersion has the expression: 

The convergence rate decreases to zero when and n increases. But if 

n 

the convergence rate becomes almost optimal. 

4.7. Conclusion 

This Evolutionary Programming is basicaly similar with the Evolution Strateg Although there are some differences between the two approaches. Two of them 
be essetial. 

( The Evolution Strategy codifies structure that are similar to the individuai This is why we can use recombination to obtain new individuals. Usualy 
the 

Evolutionary Programming that are similar to different species (and tu A 

fore 

the recombination operator cannot be applied for such structurc 
A 

mechanism to obtain new solutions by using recombination is not appro 
priate 

for the Evolutionary Programming. 
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(ii) Evolution Strategies use a strictly deterministic selection (the best individuals 
chosen among the parents and their offspring form the new generation). 

The Evolutionary Programming uses a probabilistic selection. Each solution is 

compared to a fixcd number of solutions randomly chosen from the current generation 

and not to all the other solutions from the current generation. 
The Evolutionary Programming benefits from some ideas and concepts emerged 

within the Evolution Strategies. 

The Evolutionary Programming suggests a possible amelioration for the Evolution 
Strategies. The probabilistic mechanism of selection based on sorting could be used in 

Evolution Strategies (4,) and (u+2). Obviously there are also other selection 
mechanisms that could prove themselves useful. But there is no reason for using other 

selection mechanisms for the Evolutionary Programming or for the Evolution Strategies. 
There exists a strong relationship between Evolutionary Computation and some 

other techniques, e.g. fuzzy logic and neural networks, usually regarded as elements of 
artificial intelligence. Their main common characteristic lies in their numerical 
knowledge representation which differentiates them from traditional symbolic Artificial 
Intelligence. Bezdek suggested the term Computational Intelligence for this special 

branch of Artificial Intelligence with the following characteristics: 
numerical knowledge representation; 

adaptability; 
fault tolerance; 

2. 

3. 
4. processing specd comparable to human cognition processes; 

error rate optimality (estimate of the probability of a certain error on future 5. 

data). 

The Evolutionary Programming strategy applications are numerous. Part of them 
are related to Artificial Intelligenee. Those are: neural networks training and design. 
pattern recognition, robotics, automated learning processes and searching in the state 

space, the system identification and system control. 

The current direction for research regards some basic mathematical aspects, the 
combination of Evolutionary Programming with other searching techniques and the 

algorithm design for implementing them on parallel machines. 

Other important research is conducted into the understanding of the comvergence 

properties of EP, as well as the mechanisms of different mutation operators and 
selection mechanisms. The number of application areas of this optimization techniqueis 
constantly growing. EP, along with the other EC techniques, is being used on previously 
untenable problems which occur quite often in commercial and military problems. 

5. Evolutionary Programming Based Clustering 

Let X={a, ... , *}, x e S be a data set.
The cluster structure of X is described by a fuzzy partition P={A1, ... , An} of S. L' 

ES denotes the prototype of the fuzzy class A 
The inadequacy J(P,L) of representing the fuzzy partition P by L={L', .. ,L"} may 

be defined as: 
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sP.1)- 4"()a"(, ). 
i=i j=l 

where m21 and q21. 

Solving the optimization problem 
JP.L)>min, 

is not an easily task for an arbitrary distance function d or for an arbitrary data space S. 
Evolutionary Programming may offer a general framework for solving clustering 

problem. 

5.1. Chromosome Representation 

Each chromosome c is a prototype sequence 

c (L, L') 
Real representation seems to be more appropriate for clustering problems than 

binary representation. 

5.2. Fitness Function 

The fitness function may be defined as: 

ic) = K,- JP.c). 
where P is the partition induced by the chromosome c = (L', .. , L"). K, is the maximum 

objective function value for the generation P(t): 
K, = max JP,c) 

cEP() 

For q-2 we may consider the fuzzy partition îne d as: 

a,)=- i= ., j=l,., p, a>0. 

) 
)+a 

m-1 
+a 

We may also obtain a hard partition P by using the 1- prototype rule: 
x is assigned to A, dr,l')= max dr, L') 

5.3. Mutation and Self Adaptation 
Let e; be the i-th gene of the chromosome c. Consider each gene will be mua with a standard deviation o. The self adaptation rule of the dispersion is: 

ated 

o'= a+o, va N,(0.1) 
when ae(0,1). 

The genes (object variables) are mutated according the additive rule: 
ce,+o, ' N, (0,1) 
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5.4. Survival 

We use general EP survival mechanism. 

5.5. Numerical examples 

In order to get a good visual display of our genetic algorithm, we choose the 

simple example of clustering two-dimensional data into four clusters. Our example 
considered 75 generations and the points from [0,1] interval. Notice that the prototypes 
are marked with an "x" and data points arc marked with an "o". 

oX 

8 

Figure 1. Generation0. 

Ox o 
XO 

Figure 2. Generation 15. 
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Ox 

X 

Figure 3. Generation 30. 

x° 
o 

X 

Figure 4. Generation 45. 

oo 

x 

o X 

Figure 5. Generation 60. 
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Figure 6. Generation 75. 

* 

Figure 7. Last generation. 
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