STUDIA UNIV. BABES-BOLYAL INFORMATICA. Volume XLIT, Number 1, 1994

THE DYNAMIC PROGRAMMING METHOD: A NEW APPROACH
HORIA GEORGESCU AND CLARA TONESCU

Abstract. In this article, the authors propose a new approach to the Dynamic
Programming method.

Ihe classical deseription of the method is rather vague (including notions as
“state” unq “decision™, that have to be defined for cach problem) and is based mainly
on presenting some (very few) examples.

Fistly, a so-called DP-problem is presented, as a general framework for the
problems for which the method can be applicd. Secondly, the programmer has to
identify a so-called DP-tree in the graph defined by the DP-problem. Thirdly, a
postorder traversal of this DP-tree has to be done in order to get the value attached to
the root, which is the value requested by each concrete problem.

A parallel analysis of the two approaches is performed. The authors claim that this
approach is more precise, more general and easier to understand and use.

1. Introduction

Richard Bellman [1] proposed in 1957 the Dynamic Programming Method as a
technique to solve sequential decision problems. This method is classically described in
the following way:

1) the “states” of the problem are determined obviously, the significance of a state
being different from problem to problem;

2) in order to solve the problem, successive decisions had to be taken in order to
pass from one state to another. A cost, representing the “effort” to rcach the final state
(corresponding to the problem considered) from the initial state (the cost of which is
known from the beginning), is associated to each state;

3) the aim is to take those decisions (to run through that itinerary of successive
states) which start from the initial state and allow to reach the final state, namely by
associating to this last one the possible optimum value (minimum or maximum). The
meaning is that no such other route of states will reach the final state with a “better”

value attached to it;

We can notice that, from the beginning, it is pointed out that the Dynamic
Programming Method is considered to be applicable only to optimization problems.

Richard Bellman suggests that the optimum decision string should be searched for
on the basis of the optimality principle, which has the following enunciation: “An
optimal stratcgy has the following property: whatever the initial state and the initial

1991 Muthematics Subject Classification. 68120, 68Q25.

1. GEORGESCU AND C. [ONESCU
ained from the initial one by .rc.m(?.ving this initial decision i
ate resulting from the first decision™ (see [1 l).. ' |

the method was copied almost identically in all
the slight generalizations did not succeed in
and “dccisions” that “are to be chosen

decision. the strategy obt
optimal if applicd 1o the st : ‘
The above formulation of
subsequent approaches of this t.nclhan:
throwing light upon the mysterious “states
depending on the conerete problem™.

). The DP-problem

-~

clements. Ior each element xeh d significance, that
depends on the concreie problem to solve, is given. The significance is m.ate”a/lZEd
< initially. only the values v, of the elements » from a given subset

Let A and B be two sets of

through a value v €B
NCA are known

For each element xeA both a subset A,CA and a function t, are known;. the
function £. depends on the values attached to the elements from B, and qn the input
Jata The value attached to the element x can be computed (using the function £,) only
i+ the values atiached to every element from B, are known.
| The subset X is X={xeA|n,=Q}, ie. the set of elements = from A for which the
value v, is given from the beginning (does not depend on the values associated with
other elements). For each such an element the function £, has no arguments, so that it is
a certain constant v,. We will presume X#Q.

An element zeR is given too.

The task is to compute, if possible, the value v,.

Example 1. Let be 2={1,2,..,12}, B=N, X={1,2,6,7,8,9} and As;={1,2},
2,=11,2,3}; Be={1,4}, Ap={7,8}, A;1={8,9)}, A,,={10, 11}. The value 1 is attached
10 every vertex from X. For all the other vertices xeA\X, the attached function is the
sum of its arguments. Therefore, the value attached to every vertex x will be the sum of
the values that are attached to the elements from Aa,. Finally, let z=5.
It can be easily seen that the values that will be attached to the 12 vertices are:
1,1,2,4,5,1,1,1,1,2,2,4). The solution of the problem is v,=v.=5.

Example 2. lect be A=(1,2,..,8}, B=N, x={1,2,6,7} and As=(1,2,4), B=1{2,5),
ho=i3}, R,=16,7). The value 1 is attached to every vertex from X. For every other
verlex zek\¥, the attached function is the sum of its arguments, i.c. the sum of the

values that are attached to the elements from A,. Finally, let z=5.

It can be noticed that only the value attached to the

. element 8 can be computed;
conscquently, the problem has no solution.

The above mentioned problem will be cal
later be obvious, Its description is ver

The set £ is an arbitrary set; par

The set £ is arbitrary, too,
® BISN, T ork;

5]

led the DP-problem, for reasons that will
y general, as it results from the following analysis.
L ticularly it can be either finite or infinite.

I'he most common situations arc the following:

e e 3 . .
Jobhiin this case, it is a dec

. ision proble S a680cinte T P is
associated with truc,) problem (0 is associated with false, and 1 is

9

The Dynamic Programming Method: a New Approach

e B is a cartesian product B=B;xB,x.xBy; in this case, a value from B is actually a k-
uple (b, .., by) of values, not necessarily of the same type.

The functions £, that are attached to the vertices xea arc arbitrary, too. The
dependency of arguments can be expressed, for cxample, through an arithmetical
cxpression, a minimum or a maximum,

The second example shows that the problem does not always have solutions. This
also happens for example when zg¢x and when for any xeA\X we have A, \“#J
(meaning that x depends™ on elements that do not belong to).

We will consider that an clement xea is accessible (starting from the subset x) if
the value that is associated with this element can be computed; obviously, all the
elements from X are accessible. It can be easily noticed that the following statement is
valid: “The DP-problem has a solution if the element =z is accessible”.

It is also important that the values associated with the elements xea should be
correct, which means that they should be the intended ones (they must be equal to
v (x)). Therefore, we will work under the following hypotheses:

[the value initially associated with the elements xeX are the values v (%), so they
are correct;
2. it is known that the value associated with every xeh element can be computed only

if the values associated with the elements from i, are known. Let be A,={a., .., a,}.

We will always presume that the condition: £, (v (a,) ,..,v(ay)) =v(x) is fulfilled:

this condition says that if the values associated with a,, ..., a, are the intended ones

(they are correct), then the value associated with x is correct, too (and it is the

intended one).

The above hypotheses will be used under the name of correctness hypotheses
(assumptions).

A very important result is the following onc:

Proposition. /n the presence of the correctness hypotheses, for every element whose
value can be computed, this value is correct.

This result is intuitive because:

1. we start from correct values;

2. correct values arc used every time a value is computed;

3. the functions f, applied to correct values lead to correct values.

We will give a rigorous proof of this result after some remarks.

A special case of the DP-problem is the one in which the functions £, are Boolean
functions. In this case, it is not always necessary to know a// the arguments of a function
in order to get its value. For example, in the case of a disjunction, when we know that
the value of a term is equal to 1, the value of the function will be equal to 1, irrespective
of the values of the other terms. As a consequence, the values of the arguments that do
not occur in the first term are of no importance and thercfore they are not to be
necessarily computed.

The DP-problem can be represented in a natural way on an oriented graph. The
graph is called dependency graph and is constructed as follows:

8}
w

H. GEORGESCU AND C. IONESCU

1. every vertex corresponds to an clement from A, and the correspondence is one tg
one; : ‘ |) .
for every xeA, the edges that arrive in x are exactly the ones that have the elements
from A, as initial extremity. . ; | y
In a dependency graph, the sons of a vertex % are considered as being the initig]
ities of the edges that converge in .
oxtremities of the edges that converg o
For the examples considered above, the dependency graphs are:

[§9)

Example 1:

N

Example 2:

5
P

1 2 6 7

We can now rephrase our problem in graph terms:

Let G=(R,B,U, (£,).ea,X) be a dependency graph, where U is the set of edges.
The aim is to attach values to the vertices from the set B. Initially, only the values of the
elements of the set X of the initial vertices (in which no edge does converge) are given.
The value attached to a vertex x is computed by applving the function £, to the values
attached to the sons of x (obviously, if these values are known). It is required to
compute the value attached to a given vertex z.

Let G be a dependency graph. For every vertex x, let O, be the set of the noticeable
vertices, i.c. those vertices for which there is a path that starts from them and reaches x.
Morcover, we will say that vertex x depends on vertex y if the value of x depends on the
value of vy, i.e. if yeo,.

Remarks:
I.In the dependency graph, (the value which is attached to) z does not depend in any
way on the values of the vertices from 2A\0, .

N

The problem has a solution only if the directed subgraph associated to 0, is acyclic.
Proof of the proposition.

et us consi a depe v ,
- ‘ \s cox?sndcr a dependency graph. We can attach to it a universal algebra
J=(k, 2, a) as follows:

/ is the set of the vertices of the graph;
for cach dependence of the form:

26

The Dynamic Programming Method: a New Approach

we define a function £

,,,,,

(fooosiiir Gt e i) =i
I.f;l,m,,‘l,-,(', ..) T otherwise

Let X be the set of the initial vertices. Let X’ be the subalgebra generated by %
then X' represents the set of vertices whose values can be computed. Let p be a property
on A. The principle of the algebraic induction implies that: If p is true for the set %, then it
is true for every vertex in X'

In the next sections we will introduce four ways to solve the DP- problem, namely:
e the method of the ascending sequence of sets;

e topological sorting;

o the traversal of the dependency graph;

e the Dynamic Programming method

For the first three ones we follow [3], [4], [5].

3. Methods to solve the DP-problem

3.1. The method of the ascending sequence of sets

This method can be applied to the DP-problem if the set A is finite. The successive
determination of accessible points is tracked by forming up an ascending sequence of
sets, as follows:

Xy = X
X,,1 = X, U{x e ala, cx,},vn20

n+1l

The process of the successive computation of the sets from the ascending sequence
{X,} can be stopped when the first n with X,=X,,, is reached (no element is added to
Z,,). For this n, X, is the set of accesible elements.

On the other hand, it is natural to stop if we have reached the conclusion that z is
accessible, because every time we will get a new accessible element, we will compute
its attached value, too.

Thus, we obtain the following algorithm, where the function calculus which
computes (using the £, functions) the value v, attached to the vertex x, is used:

UeX { U is the current set of the accessible vertices }
VeR\X { V is the complementary set of U }

| rifn,cu

r
|

} r for all xev
I l I then U«UuU({x}

27

H. GEORGESCU AND C. [ONESCU

| VeV\ {x}
| ve¢—calculus (%)
| r if x=z
L l-then write (v.): stop
s |
Luntil W=V

. ”
write(z,” is not accessible”)

We show how this method works for the examples considered in the previous
section:

Example 1:

We have successively:
Xo={1,2,6,7,8,9},
X=X,v{3,4,10,11}={1,2,3,4,6,7,8,9,10,11},
X=X1u{5,12}={1,2,3,4,5,6,..,12} with v,=5.

Example 2:
We have successively: Xo={1,2,6,7}, X,=X,w{8}=(1,2,6,7,8}, X,=X; and
consequently the following message will be printed 5 is not accessible’.
The method of the ascending sequence of sets is however not suitable for the DP-
problem, since it is too much time-consuming, from the following reasons:
I cach time the repeat cycle is resumed, all the elements from V=A\U are checked,
in order to sec if they can be added to U;
the order in which the checking of the clements from v is done.

hopefully, a good order should take into account the chances these
be included in the set u.

Is not specified;
elements have to

3.2. Topological sorting

In terms of theory
as follows:

’ Let G be a directed graph. Distinctive labels 1abe]. +label,, ..., label €
{1,2,..,n} hgve 10 be attached to the vertices 1,2, .,n so that for e;ery edge (1,7
read from the input, the inequality label.<label. holds
It can be easily noticeq that:] |
The problem does not al

pr ways have a solution- isely ' i
only if the graph s acyclic. ‘ fl: more precisely, there is a solution

of graphs, the problem of topological sorting can be described

1.

2. If a solution exi it
not have any Zzgésatltl};ina: lfj-no.t necessarily unique. For example, if the graph does
’ ¢ 1stinctiv : .
3. Let us consider an ar Y clive labeling represents a solution.

bit i j
subsite i o 2:?ry algonthl.n that can solve the above problem. Then, if we
cleul of ™ Valuelons by Which the vertices get values (labels) through the
algorithm for conlbutinat,h:C\cd(;rdmgft(})l the £, function, then we obtain a correct
g ‘alues of the vertjces of a de
pendency graph.

I'he Dynamic Programming Method: a New Approach
We can always assume that A=

2y on). Let mobe the number of cdges of the
graph.

The algorithm consists in identifying successively an clement i that has no
predecessors, in-computing its attached value and in removing it from the graph
(together with its adjacent edges). For this purpose we can use the following data
structures:

I foreach ie{1,2,.,n}, s, is the list of the successors of 1 in the current graph (the
initial graph will successively | decrease” by removing vertices); these lists are
initially empty:;

!‘J

the vector nrpred of length n stores in cach nrpred, the number of predecessors
of 1 in the current graph (initially nrpred;=0) ;
a queue C that contains the vertices with no predecessors in the current graph.

In the initialization phase, the m edges are read. For each such edge (i,5), 5 is
added to the list Sy, while npred; is increased by one. Then, the queuc ¢ is initialized in
an obvious way. The time required for these operations is O (m+n) .

Afterwards, a vertex i with no predecessors in the current graph is successively
extracted from the queue, its value v, is computed and then i is removed from the
graph, together with the edges that diverge from it. In this way, new vertices without
predecessors may appear; these vertices will be introduced in the queue:

2

rwhile C#J
| 1<C; vi¢—calculus (i)
‘ [i.f i=z then write(v,); stop

rforall jes;
I nrpred;<—nrpred;-1
[i.f nrpred;=0 then j=C

write(‘Vertex z is not accessible’)

In the above algorithm the function calculus computes, using the function £, the
value corresponding to its argument (vertex) i.

Obviously, the algorithm successively computes the values attached to accessible
vertices. The algorithm stops either if the value of v, is obtained, or it a circuit has been
detected in the subgraph defined by the vertices noticeable from the vertex z.

Each time the while cycle is executed, the number of computations is linear in
1S:], so that the total number of computations is linear in |S;US,..US |=m. Therefore the
overall time complexity of the algorithm is O (m+n), i.c. the algorithm is linear.

For Example 2 from the previous section, the vertices 1,2,6,7,8 will be introduced
and then extracted from the queue; consequently the following message will be
displayed: ‘vertex =z is not accessible’.

Unfortunately, applying the topological sorting algorithm to dependency graphs is
madequate: the values of some vertices that are ,uninteresting” to the proposed purpose

29

U AND C. [ONESCU

o some vertices unnoticeable from
dramatically.

H. GEORGESC

these values belong t

uted: e range
are also cMP {ion time may increase

Consequently, the excet

3.3. The traversal of the dependency graph

pply the Divide and Conquer strategy: for each vertex 5 .

. idea is to a . . R > thad
The first 1¢ rsed: this traversal includes the calculus of their valucs gng

vertices from A, are trave
enables us to compute the value vy

Yy I)
procedure DivImp (X

rfor all yeA\X
|

l. DivImp (V)
vye~calculus (X)
end
where the function calculus has the same meaning as in the previous sections,
In order to obtain the value attached to z, the call DivImp (z) can be used.

This approach has the advantage that only the ,strictly necessary™ vertices used for

obtaining v are taken into account, i.e. the noticeable vertices (those ones from which a
path 1o the root exists in the dependency graph).

.O-n the other hand, the above algorithm has two major deficiencies:

it is only fppllgable to acyclic graphs; in the case of a circuit consisting of ,.strictly
necessary’ vertices, the algorithm does not stop; '
It 1s possible to compute the value of

the same vertex more than ; thi '
s poss .) once; this may
seriously increase the execution time. | —

ne

4r purpose is to remove the two deficienci :
we wil follow two siages, eficiencies presented above. For this purpose,

I the vertices notice
_ oticeable from 2 . .
identificd. z and the subgraph associated to them must be

2. for the subprs
graph obtained in this wa
1 p . y the t 1 : . .
J.Ile last section can be applied 4 opological sorting algorithm presented in
n order tg identify th .
o Y e noticeable vertj
can be used. For this e ICes, a DF traversal of th graph
The following recun ?urpose It suffices to call the procedure pr ?:ependenc,\ dgr aE)
vertices: © Procedure uses the |jg L, initially with the argument z.
’ €mpty, containing noticeable
Procednre DF (5 °
]

rfOr a// /(_/_'/

|
Lr‘f /¥l then p/.
L. ! /)

end
It is kn
A BOWN that 4}
Same is valid ¢ the exec
alid for yp. entire culion time needed f
30 “orithm, OF @ DF-tray

ersal is O (m+n). So, the

The Dynamic Programming Method: a New Approach
In this way, the deficiencics of the previous algorithm have been removed. Yet, it
is clear, it would be preferable that:
1. the set of the noticeable vertices should be known from the beginning;
2. the dependency graph should have a form that would allow an easier traversal of its
vertices, ment to establish the associated values.

4. Describing the method of Dynamic Programming

4.1. The description of the method

Definition. A DP-tree with root z is an acyclic oriented graph with all vertices
noticeable from z. Obviously, if a dependency graph is a DP-tree, then the DP-problem
has actually a solution, which means that the value v, can be computed.

Examples:
e any tree in which the orientation of each of its edges is ,,towards the root” is a DP-
tree;

e in the Example [considered in the first section, the subgraph containing the
noticeable vertices from vertex 5 is a DP-tree.

2

A DP-tree can be “arranged on levels” in the following way: each vertex is
arranged on the level whose number is cqual to the maximum length of the paths linking
the vertex to the root. For the first example, we obtain:

0 5
| 4
2

S

For a DP-tree, a postorder numbering of the vertices can be performed, similarly
as for the vertices of a tree. After the postorder numbering, the vertices are topologically
sorted: if there is a path from the vertex 3 to the vertex i, then

nrpostord <nrpostord,.

31

H. GEORGESCU AND C.IONESCU

> F e D o 1 .
We can now describe the method of Dynamic Programming;

The method of Dynamic Programming can be .0,7{77-'661 1o the problemsg that gy, l
compute a value. The following steps are 1o be /)7)"/”.,”/’,(1‘? o
). A dependency graph is associated to the D -pv/ 0 clm.‘ n this ';,raph a Dp
the same root is selected so that the order (caf/ 'e.sjp(mdmg to the
numbering) of the vertices is known and s0 that the initial proble
compute the value associated to the root of the DP-tree.
The correctness hypotheses hold.

The vertices of the graphs are traversed in postorder, so that at the end the vafy, of
the root is obtained.

-lree With
POStorde,
M LS equivaley |,

"4y FJ

A general form of the traversal algorithm is the following:

rfor all the vertices i

|
.

ostord(z)

rif 1eX then reached;«false
else reached;«true

'O

procedure postord (i)

rforall jeA; and not reached,
[postord (j)

vi<—calculus(i); reached;«true
end

The time complexity is O (m+n), so that the algorithm is linear.

.. . . sending

A proper knowledge of the DP-tree allows traversing its vertices in the desuendm;

order of their level number, without using recursivity; as a consequence the reached
vector will be eliminated.

There are many cases when the DP-trce h

as some regularity, such as: \

L. cach vertex that is not a leaf has the same number k of vertices on which (¢}
depend directly (meaning that |a, | =k for all the vertices x that are not leaves):

2. there is a natural number

- Jfween the
%, 80 that for any edge (i,7) the difference between
1and jis at most k. ont just
id keeping the values of a// vertices. We will presert.

. o . . ol \" lhc
ich additionally points out, that apparently surprisiiz
ngful,

level numbers attached 1o

In such cases we can ave(

one very simple example, wh

selection of the set p is meani
The Fibonacci Sequence

) -0

) ' . L i . . o E‘.»Lq

The terms of Fibonacci sequence qre computed using the following rules: *¢

Fi=1] Fp=F, , FE o, Ve,
Foragiven r>7, the

32

value v, has 1o pe producecd

I'he Dynamic Programming Method: a New Approach

A first obvious approach consists in the following choices:
A={0,1,.,n}iX={0, 1}; B’=N
A=A =0 Ay={k-1,k-2} ,Vk>2
vw=Fy, Vk22; £,=0; £,=1; f, (a,b)=a+b, Vk22.
the DP-tree being exactly the dependency praph described above:

0 | 2. 3 - n2 n-ln

In a second approach, we will choose B=NxN:
A={1,2,.,n}; X={1}; B=NxN

A =0; Ax={k-1}, Vk22

V= (Fy-1, Fx), VK22

£.=(0,1); fx(a,b)=(b, atb), Vk>2

1 2 3 n-1 n

The advantage of this procedure is obvious: the dependency graph is a tree and so
is the DP-tree; moreover, the tree is linear: the value associated to a vertex depends only
on the value associated to the previous vertex.

It is also important not to implement automatically the above algorithm because in
its general form it has the disadvantage that it implies storing the values attached to a//
DP-tree’s vertices, which is not always necessary. For example, for computing the n-th
term of Fibonacci sequence the algorithm becomes, according to the second approach,

that well-known one:

read (n)

a<«0; be1l

rfor i=2,n

L. (a,b)<« (b, a+b)

write (b)

4.2. Computing the sum of n numbers

Even if it is trivial, the problem of computing the sum of n numbers ai, .., a, will
point out many interesting aspects of applying the Dynamic Programming method.

How do we choose the vertices? What significance do we give to the values that
arc attached to the vertices? Which are the dependencies between vertices? Finally, how
do we choose the /P-tree that must be traversed in postorder in order to obtain the
required value?

In his -book ,/Three on two bicycles”,
completely unable to understand basic things. Bu
will understand them at once!”

Jerome K. Jerome said A German is
t if you complicate them enough he

33

1. GEORGESCU AND C.IONESCU

Wwe will have to complicate things too, because 1115 obvious that we can noy
“from one stroke™ the required sum and so it is necessary to compute some
c i d

comput h partial sums are to be computed?

: S s way. The questions ar¢ whic
artial sums on the way. 1 ke i Con . .
" The most general choice consists considering all the 2" possible Eamal sums
L S 4 .
. . , — 35 so each v
formed with a;, .., a,. The vertices have to correspond to these sums, ch vertex wj||

be marked [ip,.,iy) With 3<a<ie and the attached value will be
c 1reer X

v
FREWEN
But are there not too many vertices? Yes, there are and this. is due to the f'act that
the number of the vertices is exponential in the numper n of input datf:l, which can
possibly lead to considering a DP-tree with an exponential number .of vertices, and thus
10 an exponential algorithm. That is why we will choose as vertices in tl.xe graph onyy the
ones of the form [i,1+1,..,3] with 1<i<j<n; for sake of simplicity, they will be
marked i..3. SoA={i..j | 1<i<j<n} and X={1..1 | i=1,..,n}:
Obviously, the problem is to compute the value associated with the vertex 1..n.

Many dependencies between the values attached to the vertices can be imagined;
some of them are described below.

= a]‘ + aj: *...“ a)\,'

1. Let us consider the following dependency system:
A, =0y s={i..3-1} for 1<i<j<nand v; ;=a;;

Ti3 (l] —l) =Vi'_j_1+aj for 1Sl<jsn
Then a tree that gives the solution (by postorder traversal) is the following:

(I:1) (1:2) (1:3) o (Iin-1) ~ (1:n)

corresponding to the associativity to the left of the addition:
a-+a,+.+a,= (.. ((a;t+az) +as) +..).

2. Another dependency system we can consider is the following:
E; =2; R, 5={i+1.3} for 1<i<j<n and vy ;=a, £ 5(1+1.3)= =a;+Vinj for
1<i<j<n. A tree whose postorder traversal produces the solution is:

(n;n); (n-lg:nL(n-z:n) (2:n) (1:n)

-
y

and corresponds to the associativity to the right of the addition:
aytaztitras= (. (ag,t(a,1tay)) ...).

3. Let us consider now another dependency system:
By =05 By s={1i.k, k+1.9} for 1<i<j<nand k= (i+3) /2],

Vi =ay, £ J('J‘..k,k+1..j)ﬁvi ,HVia g, for 1Si<j<n and k= (1+3) /2]
which determines a DP-tree with the root 1..n

For example, for n=7 the DP-tree is the following:

34

The Dynamic Programming Method: a New Approach

(1:7)
/ \\
/(l :4)\ /(5:7)
- (34 (5:6)

(1:2)
(D) (2:2) (3:3) @:4) (55 (6:6) (7:7)
The algorithm is the following one:
ke1
rwhile k<n
| k2ek+k; i€l
| rwhile i+k<n
| ‘-:le—ai+ai+k; iei+k2

]-.}«——kZ

the result being obtained in a;.
The above algorithm seems to be rather complicated, but it is important because it
allows to write easily a parallel version, the time complexity of whichis 0(log n).

This last discussion on this subject allows us to analyze more attentively the
Dynamic Programming method as it has been presented in the previous section.

Gilles Brassard and Paul Bratley [2] emphasize the following characteristics of the
Dynamic Programming method:
1. The multiple computation of the same value is avoided;
2. The process is a “bottom—up” one, going from simple subtasks towards more
complex subtasks until the entire task is solved;
The principle of optimality is checked.
The first characteristic is obviously used in the previous example.
The second characteristic shows the difference between the Dynamic
Programming method and the Divide and Conquer method. The last one starts “top-
down™: it successively decomposes the problems into (independent) subproblems of
smaller size until directly solvable subproblems are reached; afterwards the method
proceeds “bottom—up” by combining the solutions of the subproblems. For the last
example, the Divide and Conquer method consisting in the function call sum(1,n),
where sum is the following recursive function:

w

function sum(i,)
rif i=7 then sumea;
| else kel (i+3)/2),
L sum<—sum (i, k) +sum(k+1, J)

end

1. GEORGESCU AND C.IONESCU

There is only a slight ditference (rom the previous solution, but the .rcader will
~ertainly notice it Morcover, the .,ambition” of going only bottom-up requires a mop,
Li m"lkd' wmalysis and possibly a less obvious, but sometime less ume-consuming
kC (\ C { .t AN < O P ‘/
algorithm. . ‘ o — - |

" The third alternative (the principle of optimality) is discussed in the followmg
section.

For all three solutions the number of additions 1s n-1.

4.3. The link to the classic approach

But what is the link with the way Richard Bellman presented the Dynamic
Programming? Which is the optimization problem? Which are the states? Where is the
principle of optimality?

Let be the vector a=(ay, .., a,). In the previous section we have presented many

ways of computing the sum of the elements of a vector. Now we want to compute the
value minim=min a, .

i=1,...,n
We will make the following changes in the algorithms from the previous section:
the significance of v; ; is now : Vi s=min{aj,..,aj};
we will replaced the ,,+” sign with the operation of computing the minimum.
It is obvious that the algorithms obtained in this way will be correct, because the
operation of computing the minimum has also the associativity property that was the
basis of the computation of the sum.

Now, the problem became an optimization one., Actually, this was obvious because
the equality often signifies an optimum; for exam

ple the question “How many students
are there in the classroom?” is equivalent to

“Which is the maximum number of students
present in the classroom?”
‘ further, we will try to explain how the concepts of state of a problem and of
decision do appear in our presentation.

Through state of the problem we shall understand the current set of vertices, whose
value has been computed,
O[hcrA (cf’e(;‘zstondcops.lsts In passing from an arbitrary s to a state sU{x}, where xgS; I
words, a : : . : .2
e ec-rstlon.meansj to compute the valye v (x) associated to a vertex Xé&S.
viously, the decision is possible only ifa.cs
If we suppose that the -
umccmegz ZL:{)S;SLL that the DP-tree attached to the problem is identitied and the
S ass 10ns are verj icati i i
Mecthod consists iz taki dlc, verified, thtf application of the Dynamic Programming
which one can macc AXINg @ sequence of decisions (in applying a strategy), throug!
o LTT [pa;s from the initja] state to the final state
S st s explaine .) ider
a stratepy thrm:):hL\:rP.l}dde thrc‘ the optimality principle "is hiding”. Let us consid
that it n/nccls thi 0 e e p‘m from the initjg] state to the final state. It is obviow
Sralegy; Jet x be the yerye p'f"C'Plcl Let us, indeed, consider the tirst decision i“"h‘
Itis obvious that x¢ x unLdXI:VhO;(c rlue has been computed according to this decisio™
_ . X, Accord: . . value
VAXJ is correct, Iy i clear now hs According 1o the correctness assumptions, the V‘-1l-u]
one is an optimal Strategy f(x“l/}l o ullc “eauence of decisions that follows after the initi®
2y 1or the problem i ic i
36 problem in which the initial state is x ' =xU{x}.

plimality

The Dynamic Programming Method: a New Approach

In the first section of this article it was made clear that the correctness assumptions
must be fulfilled. One of these is the following: for any vertex x, if the values attached
1o its sons are correct, then the value attached to x shall be correct. too.

The optimality principle represents in fact the reciprocity of this statement: if the
value vy attached to a vertex x (computed using the function t,) is correct, then it was
obtained from correct values attached to its sons.

In our opinion, both implications should be fulfilled, a fact which is actually
implicitly performed in our approach.

Indeed, the optimality principle does not assure explicitly that the value attached to
z is correct. In our approach, if the correctness assumptions hold, the correctness of the
value v (z) is assured.

On the other hand, the approach proposed in this article suggests that the functions
attached to the vertices should be computations of sums, minimum or maximum values,
logical operations (disjunction or conjunction) etc. It is important to make clear that any
kind of statement about the correctness of a program, of the values of some variables,
etc., starts actually with "for any values of the input data". Considering this specification
and the shape of the functions attached to the vertices, it follows that the optimality
principle is verified.

However, it has still to be reminded that the optimality principle is used as well as
a criterion to choose the Dynamic Programming Method for solving problems. In our

approach, this criterion is replaced by checking if the problem to be solved is a DP-
problem.

Finally, let us make some remarks about the set B. Usually, this set is chosen not

only as the set of the values associated to the vertices. Its meaning has to include also
the following aspects:

1. toallow us to reformulate the problem to be solved as a DP-problem;

2. 1o allow us to identify more simple structures of dependencies;

3. to include for each vertex that information that will allow us to obtain later the
genesis of the value v (z). For example, when computing the minimum value of the

elements of an array, B has to be chosen so that the position in the array of the
current minimum value should be kept too.

REFERENCES
(1] Bellman R.E., Dreyfus S.E. — Applied Dynamic Programming, Princeton University Press, Princeton,
N.J, 1962.

[2] Brassard G., Bratley P. — Algorithmics: Theory and Practice, Prentice-Hall, London, 1988.

3] Cormen Thomas H., Leiserson Charles E., Rivest Ronald L. — /ntroduction to Algorithms, MIT Press,
Massachusetts [nstitute of Technology, 1990.

4] Horowitz E., Sahni S. — Fundamentals of Computer Algorithms, Computer Science Press, New York,
1978.

(5] Livovschi L., Georgescu H. — Sinteza gi analiza algoritmilor, Editura Stiintificd, Bucuresti, 1986.

37

H. GEORGESCU AND C. IONESCU

UNIVERSITY OF BUCHAREST, FACULTY OF MATHEMATICS, BUCHAREST, ROMANIA
E-mail address: hg@oroles.cs.unibuc.ro

“BABES-BOLYAI” UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
3400 CLUI-NAPOCA. ROMANIA » RO-

E-mail address: clara@cs.ubbcluj.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

