
STUDIA UNIV. BABE^-BOLYAI, INFORMATICA, Volume XLIII, Number 1, 199

THE DYNAMIC PROGRAMMING METHOD: A NEW APPROACH

HORIA GEORGESCU AND CLARA IONESCUU

Abstract. In this article, the authors propose a new approach to the Dynamic

Programming method.
The classical description of the method is rather vague (including notions as

'state" and "decision", that have to be defined for cach problem) and is based mainly
on presenting some (very few) examples.

Firstly, a so-called DP-problem is presented, as a general framework for the
problems for whiclh the method can be applied. Secondly, the programmer has to
identify a so-called DP-tree in the graph defined by the DP-problem. Thirdly, a

postorder traversal of this DP-tree has to be done in order to get the value attached to
the root, which is the value requested by each concrete problem.

A parallel analysis of the two approaches is performed. The authors claim that this

approach is more precise, more general and easier to understand and use.

1. Introduction 1.

Richard Beliman [1] proposed in 1957 the Dynamic Programming Method as a
technique to solve sequential decision problems. This method is classically described in
the following way:

1) the "states" of the problem are determined obviously, the significance of a state
being different from problem to problemn;

2) in order to solve the problem, successive decisions had to be taken in order to
pass from one state to another. A cost, representing the "effort" to reach the final state
(corresponding to the problem considered) from the initial state (the cost of which is
known from the beginning), is associated to each state;

3) the aim is to take those decisions (to run through that itinerary of successive
states) which start from the initial state and allow to reach the final state, namely by
associating to this last one the possible optimum value (minimum or maximum). The
meaning is that no such other route of states will reach the final state with a "better"

value attached to it;

We can notice that, from the beginning, it is pointed out that the Dynamie
Programming Method is considered to be applicable only to optimization problems.

Richard Bellman suggests that the optimum decision string should be searched for

on the basis of the optimality principle, which has the following enunciation: *An
optimal strategy has the following property: whatever the initial state and the initial

1991 Muthematics Subject Classification. 68120, 68Q25.

H. GEORGESCU AND C. IONESCU

decision, the strategy obtained from the initial one by removing this initial decision is

optimal if applied to the state resulting from the lirst decision" (see [|).

The above formulation of the method was copied almost identically in all

subsequent approaches of this method; the slight generalizations did not succecd in

throwing light upon the mysterious *states" and "decisions" that "are to be chosen

depending on the conerete problem".

2. The DP-problem

Let A and B be wo sets of elements. For each element xEA a significance, that

depends on the concrete problem to solve, is given. The significance is materialized

through a value v^eB; initially. only the values v, of the elements x Jrom a given subset

XEA are krnown

For each element xEA both a subset A,CA and a function f, are known,; the

function f depends on the values attached to the elements from Ax and on the input
data The value attached to the element x can be computed (using the function f,) only

if the values attached to every element from A, are known.
The subset x is X={xEA|A,=Ø), i.e. the set of elements x from A for which the

value v is given from the beginning (does not depend on the values associated with

other elemenis). For each such an element the function f, has no arguments, so that it is

a certain constant v, We will presume K#Ø.

An element zEA is given too.

The task is to compue, if possible, the value v
Example 1. Let be A={1,2,.., 12}, B=N, X={1,2, 6,7,8,9} and A=1,2},
A1,2,3); A={1, 4), A10={7,8), A1={8,9), A2={10, 11). The value 1 is attached
to every vertex from x. For all the other vertices xEA1X, the attached function is the
sum of its arguments. Therefore, the value attached to every vertex x will be the sum of
the values that are attached to the elements from Ag. Finally, let z=5.

It can be easily seen that the values that will be attached to the 12 vertices are:
(1,1,2,4,5,1,1, 1,1,2,2, 4). The solution of the problem is v,=v,=5.

Example 2. Let be A={1,2,.., 8}, B=N, X={1,2,6,7} and A={1,2, 4), A={2,5),
A={3), A={6,7). The value 1 is attached to every vertex from x. For every other
vertex zEA \X, the attached function is the sum of its arguments, i.e. the sum of the

values that are attached to the elements from A. Finally, let z=5.

It can be noticed hat only the value attached to the elenment 8 can be computea; consequently, the problem has no solution.

The above mentioned problem will be called the DP-problem, for reasons that wI later be obvious. Its description is very general, as it results from the following analysis. The set A is an arbitrary set; particularly it can be either finite or infinite. The set E is arbitrary, too. The most common situations are the following8: Bis N, I or P;

B-0,1}; in this case, it is a decision problcm (0 is associated with false, and associated with true);

24

The Dynamic Programning Method: a New Approach
B is a cartesian product B-B, xB,x...xBx; in this casc, a value from B is actually a k-

uple (bir . b) of values, not necessarily of the same type.

The functions f, that are attached to the vertices xeEA are arbitrary, t00. The
dependency of arguments can be expressed, for example, through an arithmetical
expression, a minimum or a maximum.

The second example shows that the problem does not always have solutions. This

also happens for example when zeX and when for any xEA\X we have A, 1Z2
(meaning that x ,depends" on clements that do not belong to x).

We will consider that an element xeA is accessible (starting from the subset) if
the value that is associated with this element can be computed; obviously, all the

elements from X are accessible. It can be easily noticed that the following statement is
valid: "The DP-problem has a solution if the element z is accessible".

It is also important that the values associated with the elements xEA should be

correct, which means that they should be the intended ones (they must be equal to
v (x)). Therefore, we will work under the following hypotheses:

the value initially associated with the elements x¬X are the values v (x), so they .

are correct;

it is known that the vaue associated with every xEA element can be computed only

if the values associated with the elements from Ax are known. Let be Ax={a, ax
We will always presume that the condition: E, (v (a,) rm v(a,)) =v (x) is fuljlled
this condition says that if the values associated with a,., ay are the intended ones
(they are correct), then the value associated with x is correct, too (and it is the
intended one).
The above hypotheses will be used under the name of correctness hypotheses

(assumptions).
A very important result is the following one:

2.

Proposition. In the presence of the correctness hypotheses, for every element whose
value can be computed, this value is correct.

This result is intuitive because:
we start from correct values;
correct values are used every time a value is computed;
the functions f, applied to correct values lead to correct valucs.
We will give a rigorous proof of this result after some remarks.
A special case of the DP-problem is the one in which the functions f, are Boolean

functions. In this case, it is not always necessary to know all the arguments of a function
in order to get its value. For example, in the case of a disjunction, when we know that

the value of a term is equal to 1, the value of the function will be equal to 1, irrespective
of the valucs of the other terms. As a consequence, the values of the arguments that do

not occur in the first term are of no importance and therefore they are not to be

necessarily computed.

3.

The DP-problem can be represented in a natural way on an oriented graph. The
graph is called dependency graph and is constructed as follows:

25

H. GEORGESCU AND C. 10NESCU

1. every vertex corresponds to an elcment rom A, and the correspondence is an

one
for every xEA, the edges that arrive in x are exactly the ones that have the elemente

from A as initial extremity.

In a dependeney graph, the sons of a verlex x are considered as being the initial

extremities of the edges that converge in x.

For the examples considered above, the dependency graphs are:

one tO

Example :

6 11 10,

8 9 2

Example 2:

1

We can now rephrase our problem in graph terms:
Let G (A, B, U, (f%)xear X) be a dependency graph, where U is the set of edges.

The aim is to attach values to the vertices from the set B. Initially, only the values of the
elements of the set K of the initial vertices (in which no edge does converge) are given.
The value attached to a vertex x is computed by applving the fiunction f, to the values
attached to the sons f x (obviously, if these values are known). It is required to
compute the vaBlue atached to a given vertex z.

Let G be a dependency graph. For every vertex x, let o be the set of the noticeable
vertices, i.e. those verticcs for which there is a path that starts from them and reaches x.
Moreover, we will say that vertex x depends on vertex y if the value ofx depends on the
value of y, i.e. if yeO
Remurks
. In the dependency graph, (the value which is attached to) z does not depend in auy

way on the values of the vertices from A\O,.
2 The problem has a solution only if the directed subgraph associated to O, is acycc

Proof of the proposition.
et us consider a dependency graph. We can attach to it a universal aigcula U-(A,2, a) as follows:

A is the set of the vertices of the graph; for each dependence of the form:

26

The Dynamic Programming Method: a New Approach

we define a function f in the following way:

(h) otherwise

Let x be the set of the initial vertices. Let x be the subalgebra generated by X;
then X' represents the set of vertices whose values can be computed. Let p be a property
on A. The principle of the algcbraic induction implies that: fp is true for the set %, then it
is true for every vertex in x'.

In the next sections we will introduce four ways to solve the DP- problem, namely:

the method of the ascending sequence of sets;
topological sorting;
the traversal of the dependency graph;
the Dynamic Programming method

For the tirst three ones we follow [3], [4], [5].

3. Methods to solve the DP-problem

3.1. The method of the ascending sequence of sets

This method can be applied to the DP-problem if the set A is finite. The suecessive
determination of accessible points is tracked by forming up an ascending sequence of
sets, as follows:

X

n+ X1 X ux e A| Ax c Xnj Vn 2 0

The process of the successive computation of the sets from the ascending sequence
(X}can be stopped when the first n with X,=%n+1 is reached (no element is added to

). For this n, x, is the set of accesible elements.
On the other hand, it is natural to stop if we have reached the conclusion that z is

accessible, because every time we will get a new accessible element, we will compute
its attached value, to00.

Thus, we obtain the following algorithm, where the function calculus which
computes(using the f, functions) the value v, attached to the vertex x, is used:

U is the current set of the accessible vertices}

V is the complementary set of u
U-X

V-A\X

repeat
W-V

for all xEV

rif A,cU
then U-UU{x}

27

H. GEORGESCU AND C. IONESCU

V-V\{x
V-calculus (x)

rif x=z

then write (v); stop

until W=V

write (2," is not accessible")

We show how this method works for the examples considered in the previous

section:

Example 1:

We have successively:

Xo{1,2, 6,7,8,9),
X1=Ko{3, 4, 10, 11)={1,2,3,4,6,7,8,9, 10, 11},
={5, 12)={1,2,3, 4,5, 6,., 12} with vs=5.

Example 2:
We have successively: Xo={1,2, 6,7}, x=Xo{8 }=(1,2, 6,7,8), X,=X, and

consequently the following message will be printed '5 is not accessible' .
The method of the ascending sequence of sets is however not suitable for the DP.

problem, since it is too much time-consuming, from the following reasons:
I. each time the repeat cycle is resumed, all the elements from V=A\U are checked,

in order to see if they can be added to U;
the order in which the checking of the elements from v is done, is not specified; hopefully, a good order should take into account the chances these elements have to0
be included in the set U.

2.

3.2. Topological sorting

In terms of theory of graphs, the problem of topological sorting can be describea as follows:

Let G be a directed graph. Distinctive labels label, labe l2, .. ., label,E {1,2, n} have to be attached to the vertices 1,2,.. n, so that for every edge (1,] read from the input, the inequality label,<label, holds. It can be easily noticed that:
The problem does not always have a solution; more precisely, there is a solu only if the graph is acyclic. 2. Ifa solution exists, then it is not necessarily unique. For example, if the grapn d
not have any edge, then any distinctive labeling represents a solution.

3. Let us consider an arbitrary algorithm that can solve the above problem. Then, 1
substitute in it the operations by which the vertices x get values (labels) througn u
calculus of the v, value, according to the f, function, then we obtain d o
algorithm for computing the values of the vertices of a dependency graph.

e

ct

28

The Dynamic Programming Method: a New Approach
We can always assume that A={1,2,.., n). Lcl m be the number of cdges of the

graph.
The algorithm consists in identifying successively an element i that has no

predecessors, in computing its attached value and in removing it from the graph

(together wilh its adjacent cdges). For this purpose we can use the following data

structures

1. for each ie{1,2,.., n), S, is the list of the successors of i in the current graph (the
initial graph will successively ..decrease" by removing vertices); these lists are

initially empty;
2. the vector nrpred of length n stores in cach nrpred the number of predecessors

of i in the current graph (initially nrpred,-0);
3. a qucue C that contains the vertices with no predecessors in the current graph.

In the initialization phase, the m edges are read. For each such edge (i,j), j is
added to the list S, while npred, is increased by one. Then, the queue c is initialized in
an obvious way. The time required for these operations is O (m+n).

Afterwards, a vertex i with no predecessors in the current graph is successively

extracted from the queue, its value v, is computed and then i is removed from the
graph, together with the edges that diverge from it. In this way, new vertices without

predecessors may appear; these vertices will be introduced in the queue

while C+O

iec; vif-calculus (i)
rif i-z then write (v,); stop

for all jeS

nrpred,-nrpred,-1
lf nrpredi=0 then j>c

write('Vertex z is not accessible')|

In the above algorithm the function calculus computes, using the function f,, the
value corresponding to its argument (vertex) i.

Obviously, the algorithm successively computes the values attached to accessible
vertices. The algorithm stops either if the value of v, is obtained, or if a circuit has been
detected in the subgraph defined by the vertices noticeable from the vertex z.

Each time the while cycle is executed, the number of computations is linear in

S:, so that the total number of computations is linear in 1S,US2.Us,l=m. Therefore the
Overall time complexity of the algorithm is O (mtn), i.e. the algorithm is linear.

For Example 2 from the previous section, the vertices 1,2,6,7,8 will be introduced
and then extracted from the queue; consequently the following message will be

displayed: *Vertex z is not accessible'.

Unfortunately, applying the topological sorting algorithm to dependency graphs is
Inadequate: the values of some vertices that are ,uninteresting" to the proposed purpose

29

are also computed; these values belong to some vertices unnoticeahle

Consequently, the execution time may
increase dramatically.

H.
GEORGESCU

AND C. IONESCU

eable from 2.

3.3 The traversal of the dependency graph

The first idea is to apply the Divide and Conquer strategy: for each vertex

vertices from A are traversed; this traversal includes the calculus of their valuoe

enables us to compute the value v:

the
and

procedure DivImp (x)

for all yeA\X

DivImp (y)

VCalculus (x)

where the function calculus has the same meaning as in the previous sections
In order to obtain the value attached to z, the call DivImp (z) can be used.

end

This approach has the advantage that only the,,strictly necessary" vertices used for

obtaining v are taken into account, i.e. the noticeable vertices (those ones from which a

path to the root exists in the dependency graph).
On the other hand, the above algorithm has two major deficiencies:

it is only applicable to acyclic graphs; in the case of a circuit consisting of ,strictly necessary" vertices, the algorithm does not stop;
it is possible to compute the value of the same vertex more than once; this may seriously increase the execution time.

Our purpose is to remove the two deficiencies presented above. For this purpose, we will follow two stages:
1. the vertices noticeable from z and the subgraph associated to them must be identified;

for the subgraph obtained in this way, the topological sorting algorithm presented in the last section can be applied. in order to identify the noticeable vertices, a DF traversal of the dependency grap
can be used. For this purpose it suffices to call the procedure DF with the argument
The following recursive procedure uses the list L, initially empty, containing noticca
vertices:

2.

ble
procedure DF (z)

rfor all yEh,
if y then DF (y)

end

It is known that the execution time needed for a DF-traversal is O (m*n).

same is valid for the entire algorithm the 30

The Dynamic Programming Method: a New Approach
In this way, the deliciencies of the previous algorithm have been removed. Yet, it

is clear, it would be preferable that:

. the set of the noticeable vertices should be known from the beginning
2. the dependency graph should have a form that would allow an easier traversal of its

vertices, ment to establish the associaled values.

4. Describing the method of Dynamic Programming

4.1. The deseription of the method

Definition. A DP-1ree with root z is an acyclic oriented graph with all vertices
noticeable from 2. Obviously, if a dependency graph is a DP-tree, then the DP-problem
has actually a solution, which means that the value v, can be computed.

Examples:
any tree in which the orientation of each of its edges is ,,towards the root" is a DP-

tree
in the Example 1 considered in the first section, the subgraph containing the

noticeable vertices from vertex 5 is a DP-tree.

A DP-tree can be "arranged on levels" in the following way: cach vertex is
arranged on the level whose number is equal to the maximum length of the paths linking
the vertex to the root. For the first example, we obtain:

0

2

ror a DP-tree, a postorder numbering of the vertices can be performed, similarly
as for the vertices of a tree. A fter the postorder numbering, the vertices are toplogically

sorted: if from the vertex j to the vertex i, then there is a path

nrpostord,<nrpostord,

31

H. GEORGESCU AND C. IONESCU

We can now describe the method of Dynamic Programming:

The method of Dynamic Programming can be applied to the problems tha
aim to

compute a value. 1he following steps are to be performed:
.A dependency graph is associated to the DP-problem. In this graph a DP-ires

the same root is selected so that the order (corresponding to the pstar
mumbering) of the vertices is known and so thal the initial problem is equivdlet to

compute the value associated to the root of the DP-tree.

The correctness hypotheses hold

The vertices of the graphs are traversed in postorder, so that at the end the value af
the root is obtained.

A general form of the traversal algorithm is the following:
for all the vertices

rif ieX then reached,-false

else reachedit-true

postord (z)

procedure postord (i)
for all jEA; and not reached

postord (j)

Vcalculus (i); reached,f-true
end

The time complexity is O (m+n), so that the algorithm is linear.
A proper knowledge of the DP-tree allows traversing its vertices in the descendins

order of their level number, without using recursivity; as a consequence the reacie vector will be eliminated.

There are many cases when the DP-trce has some regularity, such as:
each vertex that is not a leaf has the same number k of vertices on wn ich they
depend directly (meaning that |A=k for all the vertices x that are not leave> there is a natural number k, so that for any edge (i, j) the difference be level numbers attached to i and j is at most k.

2. the

In such cases we can avoid keeping the values of all vertices. We will pre he one very simple example, which additionally points out, that apparently sutp selection of the set E is meaningful.

just

The Fibonucci sequence

ne lerms oJ Fibonacci sequence are compuled using the following ruled* F-1; F=Fp-1t Fp-2, Vn:2.
For a given ne2, the value F, has to be produced.

F=0,

32

The Dynamic Programming Method: a New Approach

A first obvious approach consists in the lollowing choices:

A-0,1, , n}; X={0, 1); B-N

A-A-Ø; A(k-1, k-2) ,Vk>2
V=Pk, Vk22; fo-0; f=1; f\ (a, b) =a+b, Vk22.

the DP-tree being exactly the dependency graph described above:

In a second approach, we will choose B=NxN:

A-{1,2,, n}} X={1}; B=NXN

A=O A{k-1}, Vk22
V(Fx-1, Fx), Vk>22

f (0,1); fx(a,b)= (b, atb), Vk22

The advantage of this procedure is obvious: the dependency graph is a tree and so
is the DP-tree; moreover, the tree is linear: the value associated to a vertex depends only

on the value associated to the previous vertex.
It is also important not to implement automatically the above algorithm because

its general form it has the disadvantage that it implies storing the values attached to all

DP-tree's vertices, which is not always necessary. For example, for computing the n-th

term of Fibonacci sequence the algorithm becomes, according to the second approach,

that well-known one:

read (n)

a-0; be-1

for i-2,n

(a,b)-(b, atb)

write (b)

4.2. Computing the sum of n numbers

Even if it is trivial, the problem of computing the sum ofn numbers al., an will

point out many interesting aspects of applying the Dynamic Programming method.

How do we choose the vertices? What signif+cance do we give to the values that

are attached to the vertices? Which are the dependencies between vertices? Finally, how

do we choose the DP-tree that must be traversed in postorder in order to obtain the

required value?

In his -book ,Three on two bicycles", Jerome K. Jerome said ,,A German is

completely unable to understand basic things. But if you complicale them enough he

will understand them at once!"

33

H. GEORGESCU AND C. IONESCU

10t

compute "from one stroke" the requircd sum and so it is necessary to compute ome

partial sums on the way. The questions are which partial sums are to be computed?

The most general choice consists in considering all the 2" possible partial sume

formed with a, .., a. The vertices have to correspond to these sums, so each vertex will

We will have to complicate things to0, because it is obvious that we can

and the attached value will be
be marked with i<..i

ai t a, t...t ai

But are there not to0 many vertices? Yes, there are and this is due to the fact that

the number of the vertices is exponential in the number n of input data, which can

possibly lead to considering a DP-tree with an exponential number of vertices, and thus

to an exponential algorithm. That is why we will choose as vertices in the graph only the

ones of the form [i, i+1,.. jl with 1sisjsn; for sake of simplicity, they will be

marked i. .j. So A={i.j | 1sisj sn} and X={i..i | i=l,., n}:

Obviously, the problem is to compute the value associated with the vertex 1..n.

Many dependencies between the values attached to the vertices can be imagined;

some of them are described below.

1. Let us consider the following dependency system:
A A={i.j-1) for 1Si<jsn and v.a
(i.j-1) =v.j-i+a, for 1Si<jsn.
Then a tree that gives the solution (by postorder traversal) is the following:

(1: (12) (1:3) *****************. (1:n-1) (n)
corresponding to the associativity to the left of the addition:

a+azt.+a,= (... (a+a2) taa) +...).

2. Another dependency system we can consider is the following:

A=(i+1.3) for 1si<jsn and va f., (i+1.j) =
1Sijsn. A tree whose postorder traversal produces the solution is:

aitVi+1. TOr

(n:n) (n-I:n) (n-2:n) 2:n) 1n)
and corresponds to the associativity to the right of the addition:
a+at.+a,= (..(an-2t (ap-1ta,))..).

3. Let us consider now another dependency system:
Ps- A-(i..k, k+1..j) for 1si<j[n and kL (i+j)/2,
Via1, fi. (i..k, k+1.j) =vi.kt Vg*1.j, for 1Si<jsn and k=L (i+j)/2J which determines a DP-tree with the root 1..n.

For example, for n=7 the DP-tree is the following:

34

The Dynamic Programming Method: a New Approach
(1:7)

(1:4) (5:7)

(1:2) (3:4) (5:6)

(1:1) (2:2) (3:3) (4:4) (5:5) (6:6) (:7)
The algorithm is the following one:
k-1

while k<n

k24-k+k; i+1

while i+ksn

at-a+ai+ki it-it+k2

kt-k2

the result being obtained in a.
The above algorithm seems to be rather complicated, but it is important because it

allows to write easily a parallel version, the time complexity of which is o (1og n).

This last discussion on this subject allows us to analyze more attentively the
Dynamic Programming method as it has been presented in the previous section.

Gilles Brassard and Paul Bratley [2] emphasize the following characteristics of the
Dynamic Programming method:
. The multiple computation of the same value is avoided;

2 The process is a "bottom-up" one, going from simple subtasks towards more
complex subtasks until the entire task is solved;

3. The principle of optimality is checked.
The first characteristic is obviously used in the previous example.

The second characteristic shows the difference between the Dynamic
Programming method and the Divide and Conquer method. The last one starts "top-
down": it successively decomposes the problems into (independent) subproblems of
smaller size until directly solvable subproblems are reached; afterwards the method
proceeds "bottom-up" by combining the solutions of the subproblems. For the last

example, the Divide and Conguer method consisting in the function call sum (1, n)

where surm is the following recursive function:

function sum(i,3)

rif i=j then sun-aj

else kH(i+j)/2J,
sumt-sum (i,k) +sum (k+1,j)

end

35

H. GEORGESCU AND C. 1ONESCU

There is only a slight ditference from the previous solution, but the reader

more
will

certainly notice it. Moreover, the ,ambilion ol going only bottom-up requires a

ing,
detailed analysis and possibly a less obvious, but sometime less time-consumi

algorithm.
The third alternative (the principle of optimality) Is discussed in the followinn

section.

For all three solutions the number of additions is n-1.

4.3. The link to the classic approach

But what is the link with the way Richard Bellman presenled the Dynamic
Programming? Which is the optimization problem? Which are the states? Where is the

principle of optimality?
Let be the vector a= (ajr ., a). In the previous section we have presented many

ways of computing the sum of the clements of a vector. Now we want to compute the

value minim=mln a.
i#1..

We will make the following changes in the algorithms from the previous section:

the significance of v., is now:Vimin{a/s .. a
we will replaced the,+" sign with the operation of computing the minimum.

It is obvious that the algorithms obtained in this way will be correct, because the
operation of computing the minimum has also the associativity property that was the
basis of the computation of the sum.

Now, the problem became an optimization one. Actually, this was obvious because
the equality often signifies an optimum; for example the question "How mamy students
are there in the classroom?" is equivalent to "Which is the maximum number of studenis present in the classroom?"

Further, we will try to explain how the concepts of state of a problem and or
decision do appear in our presentation.

Through state of the problem we shall understand the current set of vertices, whose value has been computed.
A decision consists in passing from an arbitrary s to a state su{x}, where x£s, " other words, a decision means to compute the value v (x) associated to a vertex **

S. Obviously, the decision is possible only if A,CS. we suppose that the DP-tree attached to the problem is identified and correctness assumptions are verified, the application of the Dynamic Progran Method consists in taking a sequence of decisions (in applying a strateey which one can pass from the initial state to the final state.

the

ning

ough

a strategy through which we pass from the initial state to the final state.

onsider

the

It 1s still to be explained where the optimality principle "is hiding". Let us co that it mecets the optimality principle. Let us, indeed, consider the first decisioeion vious

strategy, let x be the vertex whose value has been computed according to ms
e

It is obvious that xgX and A,cX. According to the correctness assunmptions,initjal VX IS Correct. lt is clear now that the sequence of decisions that follows after i
one is an optimal strategy for the problem in which the initial state is X'=XUIXT 36

The Dynamic Programming Method: a New Approach
In the first section of this article it was made clear that the correctness assumpiions

must be fulfilled. One of these is the following: or any vertex x, if the values attached
to its sons are correct, then the value attached tox shall be correct, too.

The optimality principle represents in fact the reciprocity of this statement: if the
value v, attached to a vertexx (computed using the function f,) is correct, then it was

obtained from correct values attached to its sons.
In our opinion, both implications should be fulfilled, a fact which is actually

implicitly performed in our approach.
Indeed, the optimality principle does not assure explicitly that the value attached to

z is correct. In our approach, if the correctness assumptions hold, the correctness of the

value v (z) is assured.

On the other hand, the approach proposed in this article suggests that the functions

attached to the vertices should be computations of sums, minimum or maximum values,

logical operations (disjunction or conjunction) etc. It is important to make clcar that any
kind of statement about the correctness of a program, of the values of some variables,

etc., starts actually with "for any values of the input data". Considering this specification
and the shape of the functions attached to the vertices, it follows that the optimality
principle is verified.

However, it has still to be reminded that the optimality principle is used as well as
a criterion to choose the Dynamic Programming Method for solving problems. In our

approach, this criterion is replaced by checking if the problem to be solved is a DP-

problem.

Finally, let us make some remarks about the set B. Usually, this set is chosen not
only as the set of the values associated to the vertices. Its meaning has to include also
the following aspects:
1. to allow us to reformulate the problem to be solved as a DP-problem;
2. to allow us to identify more simple structures of dependencies;
3. to include for each vertex that information that will allow us to obtain later the

genesis of the value v (z). For example, when computing the minimum value of the
elements of an array, B has to bc chosen so that the position in the array of the

current minimum value should be kept too.

REFERENCES

Bellman R.E., Dreyfus S.E. - APplied Dynamic Programming, Princeton University Press, Princeton,
N.J, 1962.

|2] Brassard G., Bratley P. - Algorithmics: Theory and Practice, Prentice-Hall, London, 1988

3 Cormen Thomas H., Leiserson Charles E., Rivest Ronald L. - Introduction to Algorithms, MIT Press,

Massachusetts Institute of Technology, 1990.
Horowitz E., Sahni S. - Fundamentals of Computer Algorithms, Computer Science Press, New York,
1978.

DJ Livovschi L., Georgescu H. - Sinteza yi analiza algoritmilor, Editura ^iin�itic�, Bucure_ti, 1986.

37

H. GEORGESCU AND C. IONESCU

UNIVERSITY OF BUCHAREST, FACULTY OF MATHEMATICS, BUCHAREST, ROMANIA

E-mail address: hg@oroles. cs. unibuc. ro

"BABES-B0LYA" UNIVERSITY, FACULIY OF MATHEMATICS AND COMPUTER SCIENCE. RO
3400 CLUJ-NAPOCA, ROMANIA
E-mail address: clara@cs.ubbcluj. ro

38

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

