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A NEW REGRESSION TECHNIQUE BASED ON FUZZY SETS

HORIA F. POP

Abstract. The purpose of this paper is to present a new regression algo-
rithm based on fuzzy sets and to describe some of its interesting properties.
As shown in [11], the application of this algorithm and other conventional or-
dinary and weighted least squares and robust regression methods to relevant
data sets proves that the performance of the procedure described in this pa-
per exceeds that of the ordinary least squares method and equals, and often
exceeds that of weighted or robust methods, including the two fuzzy methods
proposed in [9] and [7]. Based on our previous experience, we introduce two
new regression line quality criteria. In [11] we emphasized the effectiveness
and the generality of these criteria for diagnosing the linearity of calibration
lines.

Calibration of the instrumental response is a fundamental requirement for all
instrumental analysis techniques. In statistical terms, a calibration refers to the
establishment of a predictive relation between the controlled or independent vari-
able (e.g. the concentration of a standard) and the instrumental response. The
common approach to this problem is to use the linear least squares method. The
ordinary least squares regression (LS) is based on the assumption of an inde-
pendent and normal errors distribution with uniform variance (homeoscedastic).
Much more common in practice, however, are the heteroscedastic results, where
the y-direction error is concentration-dependent and/or the presence of outliers.

In practice the actual shape of the error distribution function and its variance
are usually unknown, so we must investigate the consequences if the conditions
stated above are not met. Generally, the least squares method does not lead to
the maximum likelihood estimate. Despite the fact that the least squares method
is not optimal, there is a justification for using it in the cases where the conditions
are only approximately met.

In particular, the Gauss-Markov theorem states that if the errors are random
and uncorrelated, the least squares method gives the best linear unbiased estimate
of the parameters, meaning that out of all the functions for which each parameter
is a linear function, the least squares method is that for which the variances of the
parameters are the smallest [8].
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Nevertheless, if the tails of the experimental error distribution contain a sub-
stantially larger proportion of the total area than the tails of a Gaussian distribu-
tion, the “best linear” estimate may not be very good, and there will usually be a
procedure in which the parameters are not linear functions of the data, that gives
lower variances for the parameter estimates than the least squares method does,
that is the robust and resistant method.
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The purpose of the present paper is to introduce a new regression technique

based on fuzzy sets. We will show how the well-known Fuzzy n-Lines algorithm
may be modified in order to be used to produce a single fuzzy set. We will also
study the interesting properties of the fuzzy set produced by running the algorithm.

1. The Fuzzy n-Lines algorithm

Let us consider a data set X = {x1, . . . , xp} ⊂ Rs. Let us suppose that the
cluster substructure of X corresponds to linear clusters. The task is to generate a
fuzzy partition P = {A1, . . . , An} of X corresponding to its cluster substructure.
We are also interested in obtaining a geometrical characterization of the detected
clusters [2, 3].

In what follows we will suppose that each fuzzy set Ai is represented by a linear
prototype Li which passes through the point V i and has the direction of the unit
vector ui. We will denote this line with

Li(vi, ui):

Li(vi, ui) = {y ∈ Rd|y = vi + tui, t ∈ R}.
Let us consider the scalar product in Rs given by

〈x, y〉 = xT My,

where M ∈ Ms(R) is a symmetrical and positively defined matrix. If M is the
unit matrix, then the scalar product is the usual one, 〈x, y〉 = xT y.

Let us consider the norm in Rs induced by the scalar product,

‖x‖ = 〈x, x〉1/2, for every x ∈ Rs,

and the distance d in Rs induced by this norm,

d(x, y) = ‖x− y‖, for every x, y ∈ Rs.

The distance between the point x and the line Li is
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d(x, Li) = min
y∈Li

d(x, y) =
(‖x− vi‖2 − 〈x− vi, ui〉2)1/2

.

The local metric di induced by d and the class Ai is

di(x, Li) = AI(x)d(x, Li).

The dissimilarity between a point xj and the class Ai is chosen as being the
square of the local distance from the point to the prototype line:

D(xj , Li) = d2
i (x

j , Li) =
(
Ai(xj)

)2 (‖x− vi‖2 − 〈x− vi, ui〉2) .

The inadequacy I(Ai, Li) between the class Ai and its prototype Li is defined
as

I(Ai, Li) =
p∑

j=1

D(xj , Li).

Let L = {L1, . . . , Ln} be the representation of the fuzzy partition P . The
inadequacy between P and L is written as

J(P, L) =
n∑

i=1

I(Ai, Li)

that is

(1) J(P, L) =
n∑

i=1

p∑

j=1

(
Ai(xj)

)2 (‖x− vi‖2 − 〈x− vi, ui〉2) .

We are interested to find the fuzzy partition P and its representation P that
minimize the criterion function J defined through relation (1).

Since a global minima of this problem can not be reached, we will give an
approximative method for determining a local minima [2, 3].

Theorem 1.1. The fuzzy partition P = {A1, . . . , An} of X which minimizes the
function J(·, L) given by relation (1) is characterized by

(2) Ai(xj) =
1∑n

k=1
d2(xj ,Li)
d2(xj ,Lk)

, is∀i, d(xj , Li) 6= 0

and, respectively, if for a certain xj there is at least an Li so that d(xj , Li) = 0,
the memberships of xj fulfill the conditiopn

Ai(xj) = 0, ∀i so that d(xj , Li) 6= 0.
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Theorem 1.2. The set of prototypes L = {L1, . . . , Ln} that minimizes the func-
tion J(P, ·) given by relation (1) is characterized by

(3) vi =

∑p
j=1(Ai(xj))2xj

∑p
j=1(Ai(xj))2

;

ui is the unit eigenvector corresponding to the largest eigenvalue of the matrix Si

defined as

(4) Si = M




p∑

j=1

(Ai(xj))2(xj − vi)(xj − vi)T


M.

For the proof of these two theorems please see [2].
Following these two results, the linear clusters structure of the data set X may

be built using the following Fuzzy n-Lines algorithm:

S1.: Chose an arbitrary partition P (0) = {A1, . . . , An} of X and set l = 0.
S2.: Computes the prototypes Li(vi, ui), i = 1, . . . , n of the partition P (l)

using (2) and (3).
S3.: Determines a new partition P (l+1) using relation (1).
S4.: If partitions P (l) and P (l+1) are close enough, that is if

‖P (l+1) − P (l)‖ < ε,

where ε is a predefined value, then stop, else increase l by 1 and continue
from step S2.

2. The Fuzzy 1-Lines algorithm

Let us consider a data set X = {x1, . . . , xp} ⊂ Rs. Let us suppose that the
set X does not have a clear clustering structure or that the clustering structure
corresponds to a single fuzzy set. Let us admit that this fuzzy set, denoted by
A, may be characterized by a linear prototype, denoted by L = (v, u), where v is
the center of the class and u, with ‖u‖ = 1, is its main dirrection. We rise the
problem of finding the fuzzy set that represents the most suitable the given data
set. We propose ourselves to do this by minimizing a criterion function similar to
those presented in [6, 10, 5, 2, 3].

In order to obtain the criterion function we will have in mind that we wish to
determine a fuzzy partition {A,A}. The fuzzy set A is characterized by the proto-
type L. In what it concerns the complementary fuzzy set, A, we will consider that
the dissimilarity between its hypotetical protptype and the points xj is constant
and equal to α

1−α , where α is a constant from (0, 1), with a role to be seen later
in this paper.
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Based on the notations from the previous section, the inadequacy between the
fuzzy set A and its prototype L will be

I(A,L) =
p∑

j=1

(A(xj , L))2D(xj , L),

and the inadequacy between the complementary fuzzy set A and its hypothetical
prototype will be

p∑

j=1

(A(xj))2 · k.

Thus, the criterion function J : F (X)× Rd → R+ becomes

J(A,L; α) =
p∑

j=1

(A(xj))2 · d2(xj , L) +
p∑

j=1

(A(xj))2 · α

1− α
,

where α ∈ (0, 1) is a fixed constant.
With respect to the minimization of the criterion function J the following two

results are valid.

Theorem 2.1. Let us consider the fuzzy set A of X. The prototype L = (v, u)
that minimizes the function J(A, ·) is given by

(5) v =

p∑

j=1

(A(xj))2xj

p∑

j=1

(A(xj))2
;

u is the eigenvector corresponding to the maximal eigenvalue of the matrix

(6) S = M

p∑

j=1

(A(xj))2(xj − v)(xj − v)T M.

Theorem 2.2. Let us consider a certain prototype L. The fuzzy set A that mini-
mizes the function J(·, L) is given by

(7) A(xj) =
α

1−α
α

1−α + d2(xj , L)
.

The optimal fuzzy set will be determined by using an iterative method where
J is succesively minimized with respect to A and L. The proposed algorithm will
be called Fuzzy 1-Lines:
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S1: We choose the constant α ∈ [0, 1]. We initialize A(x) = 1, for every
x ∈ X, and l = 0. Let us denote by A(l) the fuzzy set A determined at
the l-th iteration.

S2: We compute the prototype L = (v, u) of the fuzzy set A(l) using the
relations (5) and (6).

S3: We determine the new fuzzy set A(l+1) using the relation (7).
S4: If the fuzzy sets A(l+1) and A(l) are closed enough, i.e. if

‖A(l+1) −A(l)‖ < ε,

where ε has a predefined value, then stop,
else increase l by 1 and go to step S2.

We experimentally noticed that a good value of ε with respect to the similarity
of A(l) and A(l+1) would be ε = 10−5. We used this value for all the computations
performed in this paper.

In order to avoid the dependency of the memberships of the scale, in practice
we will use in the relation (7), instead of the distance d the normalized distance
dr given by

dr(xj , L) =
d(xj , L)

maxx∈X d(x, L)
.

Thus, the relation used to determine the memberships is

(8) A(xj) =
α

1−α
α

1−α + d2
r(xj , L)

.

The algorithm modified in this way will be called Modified Fuzzy 1-Lines:

S1: We chose the constant α ∈ [0, 1]. We initialize A(x) = 1, for every
x ∈ X, and l = 0. Let us denote by A(l) the fuzzy set A determined at
the l-th iteration.

S2: We compute the prototype L = (v, u) of the fuzzy set A(l) using the
relations (5) and (6).

S3: We determine the new fuzzy set A(l+1) using the relation (8).
S4: If the fuzzy sets A(l+1) and A(l) are closed enough, i.e. if

‖A(l+1) −A(l)‖ < ε,

where ε has a predefined value (10−5), then stop, else increase l by 1
and go to step S2.

3. The properties of the produced fuzzy set

In this section we will study the properties of the fuzzy set obtained via the
algorithm presented above.
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Theorem 3.1. Let X be a given data set and let A and L be the fuzzy set
respectively its propotype as they were determined by the Modified Fuzzy 1-Lines

algorithm. The following relations are valid (the notations are those used by now):

(i): A(x) = 1 ⇐⇒ d(x, L) = 0;
(ii): A(x) = α ⇐⇒ dr(x, L) = 1;
(iii): A(x) ∈ [α, 1] for every x ∈ X;
(iv): α = 0 ⇐⇒ A(x) = 0 for every x ∈ X;
(v): α = 1 ⇐⇒ A(x) = 1 for every x ∈ X;
(vi): A(xi) < A(xj) ⇐⇒ d(xj , L) < d(xi, L);
(vii): A(xi) = A(xj) ⇐⇒ d(xj , L) = d(xi, L).

The proof is quite simple. All the relations come from 7 ¤.
The algorithm presented here converges towards a local minimum. Normally,

the results of the algorithms of this type are influenced by the initial partition
considered [4, 1]. In this case the initial fuzzy set considered being X, the obtained
optimal fuzzy set is the one situated in the vicinity of X, and this makes the
algorithm even more attractive.

Let us remark that the role of the constant α is to affect the polarization of
the partition {A,A}. Also, now is clear why α was chosen to be in (0, 1) and the
values 0 and 1 were avoided.

By using the relative dissimilarities Dr, this method is independent of the linear
transformations of the space.

Having in mind the properties (i) – (vii) and the remarks above, the fuzzy set
A determined here may be called fuzzy set associated to the classical set X
and to the membership threshold α.

On the model of the theory presented above we may build a theory to determine
the fuzzy set A represented by a point proptotype, or by any geometrical prototype.

As seen above, the (Modified) Fuzzy 1-Lines algorithm produces the fuzzy set
associated to the classical set X and to the membership threshold α, together
with its linear representation. This particular procedure may also be called Fuzzy
Regression.

4. Quality indices

Taking into account the contradictory values of different quality
coefficients and the diversity of methods concerning their algorithm, we are

introducing two new quality coefficients, namely Q1 and Q2.
The first coefficient, Q1 refers to the maximum of absolute residuals,

(9) Q1 =

√√√√
p∑

j=1

(
rj

max |rj |
)2

,
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and Q2 is referring to the mean of absolute residuals,

(10) Q2 =

√√√√
p∑

j=1

(rj

r

)2

,

where rj is the distance from the point xj to the regression line L,

rj = d(xj , L)

.
Theorem 4.1. The following relations are valid:

(i): 1 ≤ Q1 ≤ √
p;

(ii):
√

p ≤ Q2 ≤ p.
The proof is straightforward ¤.
Based on the result above we will introduce the normalized variants of these

coefficients, namely NQ1 and NQ2, which take values within the range [0, 1], and
thus appear to be more practical:

(11) NQ1 =
Q1 − 1√

p− 1

and

(12) NQ2 =
Q2 −√p

p−√p
.

Based on our practical experiments [11], it may be stated that these new quality
coeficients concerning the goodness of fit proposed in this paper confirm our main
conclusions and are in a good agreement with the statements in the analytical
literature.

Conclusions

A new fuzzy regression algorithm has been described in this paper. It was com-
pared with conventional ordinary and weighted least squares and robust regression
methods. The application of these different methods to relevant data sets proved
that the performance of the procedure described in this paper exceeds that of the
ordinary least squares method and equals, and often exceeds that of weighted or
robust methods, including the two fuzzy methods proposed in [9] and [7].

Moreover, we underline the effectiveness and the generality of
the two new criteria proposed in this paper for diagnosing the linearity of cali-

bration lines in analytical chemistry.
In addition, we have to emphasize that the fuzzy regression method discussed

above includes not only the estimates of the parameters, but also additional infor-
mation in the form of membership degrees. In this way the fuzzy regression algo-
rithm gives a new aspect to regression methods. Using the membership degrees of
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each point to the regression line we may compute the informational energy and/or
the informational entropy. These quantities allow us to appreciate the presence of
outliers and the linearity of the regression line.
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[11] Pop, H. F., and Sârbu, C. A new fuzzy regression algorithm. Journal of Analytical Chem-
istry 68 (1996), 771–778.

“Babes-Bolyai” University, Faculty of Mathematics and Computer Science, RO-3400
Cluj-Napoca, Romania

E-mail address: hfpop@cs.ubbcluj.ro


