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THE U LANGUAGES- A SUBCLASS OF THE Y LANGUAGES 

A. F. BOER 

Abstract. In this paper we define a subclass of the class of P-languages, and we 

prove some closure propertics. The idea for this class was a stronger correlation of the 

derivation, which may be achieved through the unambiguous indcxes. 

1. Definitions, remarks 

Definition 1.1. Let G = (N, 7, F, P. S) be an indexed grammar |I/, ie. a grammar in 
which the following conditions hold: a) N = N; UN, N, N, = 0, S E N;,. b) The rules 

of P have the form A >Bf with A e Ni, B e N, fe F. c) The rules in the indexes have 

the form A >z, with A e N, z E(N2 U T). We will say that the indexf e Fis 

unambiguous, if it does not contain any two rules with the same left side. 

Definition 1.2. A U-grammar is a Y-grammar [3], in which each inderis 

unambiguous. 
Remark 1.3. In a U-grammar after the application of the first index the generated 
(produced) word is uniquely defined. 

Example 1.4. G (N, T, F, P, S), where N {S, A, Ba B. C, Ca Ch}; the application 
of indexes begins always by the nonterminal symbol C; T = {a, b}; the set F contains 

three unambiguous indexes: g = [Ba a, Caa, Bp > b, Ch> b}. f= [Ba > Ca 

Ba, Caa, Bh>Cb B, Ch-> b], h =[C -> BBb), P contains three rules: S > Ag. 

A -Af, A > Ch. Each derivation in G has the following form: S Ag -s* Afg -Ch 
faB4 Bpfg =Baf' gBps s; forth, the derivation from Ba is made such that: 

BafgCfg Basg->aBaf g >aCasg Baf g -> 
a Basg*. a Cag Bag->* a" 

And the derivation from B, is made similarly changing a with b and obtaming 
with the same n; finally the language L = { a" b" |ne N*} is obtained 
Remark 1.5. A U-grummur for the language {a^a,...a"|n e N} for each t E 

may be built similarly. 
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THE U LANGUAGES - A SUBCILASS OF THE " LANGUAGES 
Praposition 1.6. Each Jinite language can be generated by a U-grammar Proof. Let L = {*1, Xn ET The grammar G = ({S, C}, T, F, P, S} where F ntains the indexes [c ->wi for each w from L, and P contains the rules S>C. t is obviously that G is a U-grammar and L = L{G). 
Dranosition 1.7. Lz cL (0), ie. each regular language cun be generated by a U grammar, but not inversely, and the inclusion is strong.

Proof. Let G = (N, T, P, S) be a 3-type grammar, thus all the rules in P have the form A>a or A> aß where A, B are nonterminal symbols, a is terminal symbol. We construct the U-gramnmar G" = {N, 7, F, P, S) so: N" = NU{S, C} where S' and C are new nonterminals; F contains an index ffor each rule A >a and A > aß from P andan index more: h = [C-> S); P contains the rules S" -> Sffor each f from F and the rule S" >Ch; the application of the rules from indexes-properly speaking of the rules from P. begins with the symbol C. It is obviously that E(G) = L(G) and that G' is a U grammar That the inclusion is strong results e.g. from the fact that the language {a' b° jn 21} is 
not a regular, but it is a U-language as is shown in the Example 1.4. 

Proposition 1.8. L{ U) cL(¥)EL Ind). 
The proof results from the definition of the corresponding grammarS 

2. Closure properties of the family L(U) 
Lemma 2.1. For each Ugrammar G (N, T, F, P, S) a U-grammar G' = (N', T, F', P 
can be effectively constructed, in which the application of index rules begins always 
jrom the same nonterminal symbol. 

Proof. We denote by Nc the set of such nonterminals A e N from which it can 

the application of the index rules. (This set can be effectively found: it contains 
Om such symbols a e N for which exists a B e N andfe F so that B > Afis in Pandf 

nlains a rule with the left side A, i.e. A > z, z e (N UT)".) For each symbol 4 from 

Nc introduce a new, ,dual" symbol A'and we denote the set of these ,dua" synbols 
MA C Let CeNa new nonterminal symbol. We define N-(N-No UNcUN with N'c Le 

Contains all indexes from F and for each A E Nc contains a new index c4 =1C C}. F* con 
A where C is the new nonterminal. 

A',a dWe add to P' the rules A'> CeA for each A' from NC 
ains the rules from P, changing all symbols A e Nc with the dual sy1nbols 

alWays fro Orammar G' is equivalent to G, the application of index rules begins 

from t 

CW initial symbol S' is S, if S is not in Nc, otherwise is the dual S" ot s. 

The new 

the indexes in G). 
Uhe same nonterminal symbol C, and all indexes are unambiguous (so were 

41he fumily L{U) is effectively closed under the union. Lemma 
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Proof. Let G' = (N', T', F', P, S) and G" (N*, T", F*, P*, S') two U 
grammars. We can consider that the sets N' and N°', and F and F" are distinct 
(otherwise we can rename the symbols). Let Sbe a new nonterminal symbol and h a new 
index. The grammar G = (N, T, F, P, S) with N N° u N"U {S), T= TuT'", F =F" 
UFUfh - [A >A for all A from N" UN"]}, P = P° uP" U {S>S'h, S >S"h} 

is a U-grammar which generates the union, i.e. L (G) = L (G) UL (°'). 

Lemma 2.3. The family LAU) is not closed under the intersection 

Proof. We consider two U-languages L and L2 and show that their intersection 

has greater density [2] than linear. So the intersection can not be a ¥-language [3] and 

then from the proposition 3 follows that it is not a U-language. 
The two languages and their grammars are: L= {a* |p=2, n=1,2, .. } and L� 

{a"Ip=n2", n= 1,2,.}, L = LG), L2 = L{G), 

G(N, TF,P S}, where N = {S, 1, A},T= (a}, F= f. h}, withf= [T>AA, A 
AA], h = [A > a}, and P contains the rules S> Th, T> T, and G' = (N', T, F, 

P',S), where N {S, T, A, B), F'= {h,f} with h'= [a >a, B>a),f = [A > AA, B 

aB, T-AAB], and P' contains the rules S> TH, TTf, as in G too. 
To find the intersection Ly n Lz {d'p = 2" = m2")} we must solve the 

diophantine equation 2" = m2". It is obviously that for m 2 1 we have m Sn. Dividing 

the equation by 2" we obtain 2"" m, with n-m 20, so m has the form 2". Replacing m 
with 2 we have 27- = 2", i.e. n-2 = k, and from this we have n = 2* +k. So the 

general form of the solutions is (n, m) = (2 + k, 2) and in conclusion the intersection is 

LnL{#'\p = 2*2, k = 1, 2, .. }. 
Now we will show that this language has greater density as all linear functions. (it 

has the cn). For this it is sufficient to show this fact for the set of lengths: M = {2 

k 0}; we suppose that the density of this set is linear, that is that there exists a natural 
constant ng and a natural constant c so that for all n 2 ng there is an m in M for which n 

m < cn [/2]. Ie. for each n 2 ng there is a natural number k which satisfy the relations 

ns2 cn. From this: log2 n S 2" < log2 c + log2 n, and so logzlog2 n) Sk< 

log2(log2 n+ log2 c) for all k (beginning at a value). But this is not possible because for 

an n sufficient great the difference between the two margins 
integers becomes less than the unity. We have logz(log2 n + log2 c) - log2(log, n) <! 

if and only if loga (loga n + loga ¢)/ loga n <1, and so if loga (1 + loga c/loga n) < 

i.e. if loga c/ log2 n <1, what is true for n <c. So, if log2(log2 n) is not an integer ana 

n>c then we have no element of the set M between n and n + cn, and so the denisiy 

which generally are not 

cannot be linear. 

Lemma 2.4. The family is effectively closed under the concatenation. 

Proof Let L' = L (G), L" = L (G"), where G' and G' are U-grammars. We wl show that from the grammars G' and G', the grammar G can be construct whiCu 
generates the concatenation LL". We may suppose that all the symbols in the two 

grammars are different (because when it is not so, we can rename them), and accoraus 
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to th hTemma 2.1 we can consider that in the two grammars G = (N', T, F', P, S) and 

nont 

c=N, T" F", P", S) the application of the index rules begins from the same .minals C' and C'", respectively. We wll denote the grammar which generates the atenation by G = (N, T, F, P, S°), where T= T' U T", N.= N' UN"U {Z, D: . D', D" are new nonterminals (Z gN UN, which will not appear in the left af any rule from P or from indexes, from D will begin the generation of the words cardine to the grammar G', form D-according to G'). P is built in the following wA: it contains all the rules from P, but each rule of the form A >C'f is changed in the rule A >D'f, it contains all the rules from P", but each rule of the formA ->C"{f is changed in the rule AD°"f we add two new rules: D'>S°h', where h' = [C'- C ] is a new index, and D">Dh" where h" = [D->C'C"] is another new index, which really make the concatenation. 
The set of indexes ofG is formed in the following way: to each index f' from F" 

we add the rule C' - C; through this process the unambiguously of the indexes is preserved, because we supposed that all the syrmbols from the two grammars G' and G" 
are different; maintaining the notation of the indexes from F"" with the new rules, we 
take for the new index set F = F'UF"U {h',h°"}; we remark that the new indexes h' and h are unambiguously too. 

Each derivation in the grammar G begins with: S >* D'z', where z' e F'; forth -
when in the grammar G' the application of the index ules begins only the rule D'> 
Sh can be applied, because the new nonterminal symbol D' does not appear in the left 
side of any index rule from F' and in any other rule from, thus it obtains D'z'>S"h' 
z, forth it can apply only the rules from P, while the application of the index rules 
from F", and for a derivation from G' of the form S*' >C'z'" it is obtained S" h'z' 
D2"h'z'; similarly to the first part of the derivation (which models the derivation in 
), now too, when it begins the application of the index rules, the only possibility is the 
application of the new rule D'" -> Dh" from P, after that no rule from P can be applied 
any rule from P, only the rule D >C'C' from h*", and so we obtain S -* D'z'>S" 
h'z*D"z"h'z'->Dh'"z "h'z' > (C'C") z" h'z' = C'z "h'z' C'z"h'z'. 
Forth for the first part, the only possibility is C'z'"h'z'>*C'k'z'>C'z; from this place it continues exactly like in G': if the derivation is not terminal in G', then it will 
not be terminal in G too, and if we had in G' the derivation S' >*C'z'->*x' e T*, 

nen we have here the same derivation C'z' ->*x' e T**, For the second part C"z"h Cu C' z" we think similarly for the string C' z': if the derivation in C was not 

inal, it will be not terminal in G too and it stops at last by the index h' which doesn't 
31n any rule with the nonterminals from N", and if we had in G"a derivation of the 
01m Cz'"*x" ET'*, then we will have the same derivation in G. 

or each two terminal derivations S xe T* in the grammar G' and 

P T"" in the grammar G" we have the terminal derivation S' >*x'x"e 
ST*, and any other terminal derivation isn't possible. 

Temark that the proof is constructive: it gives effectively a method for building of the grammar G from the two given grammars G'and G*'. 

na 2.5. 7he family L(U) is effectively closed under the Kleene-closure. 
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The proof may be similarly to the proof of previous lemma. It is easy to see that the

Kleene closure is formed from words of the form x px2.. n, where x; e L, and from the 

empty word e. Let G = (N, T, F, P, S) a U-grammar in which the application of the index 
rules begins always with the same nonterminal symbol C (see the Lemma 2.1). We 
construct (effectively) a new U-grammar G' = (N, T, F, P, S) which will generate the 

language L* and in which the application of the index rules begins always with the 
nonterminal C". The terminal alphabet is, obviously, the same, T. For each nonterminal 

A from N we introduce a ,dual" Ag and we denote the set of these ,duals" with N,a. Let 

N NuNa U{ C', M} (M is a new nonterminal symbol). P° will contain all rules of P, 
all ,dualised" nules, i.e. if A - Bf was in P then Ad> Bafis in P' too, and the new 

rules: Cd>C'h, Cd ->Sh', C->Sh, C>C'h, where h and h' are new indexes: h = 

[C C 'M, M> C'M], h' = [M -> C, C'>C]. In each index fromF we change 
the symbol C in C" and we add the rule M M. F' will contain all this changed indexes 

from Fand the two new indexes h and h'. 
Each derivation in G' begins with: S' >* Ca Z1, if S->* Czj (zl e F°**) was a 

derivation in G, exactly as in the grammar G, but changing all nonterminal symbol A 

with Ad. If in G it follows the application of the index rules, here the ruile Cd >C'h or 

the rules Cd > Sh' from P P' can be applied; in the first case follows the applicationof 

the rule C' >C' from h (doesn't exist any other possibility) and continues exactly as in 

the grammar G, and in the second case a new sequence of indexes S >* Cz2 may be 

generated from S and so in the grammar G' we obtain the derivation S' >* Caz1 > Sh' 

Z*Cz2 h'zj. From C we can obtain Sh or C'h; in the first case it continues similarly 

again, in the second case it follows the application of the index rules. Anyway, after a 

finite number of steps we obtain: S" >* Cd 31> Sh' z1 >* Cz2 h'zj>* ... *C zn 

h zn-j h ... h z2 h'z1 ( forj =1, ., n we have zj e F*). If it applies now the rule C-> 

C'h, then follows the application of index rules, because C' don't appears in the right 

part of any rule from P'. From the index h it applies the rule C'>C'M, and it obtain the 

sequence C' n h 2n-1h ... h 22 h' z1 M zn h zn-1 h ... h 22 h'z1; from C'*n it obtains 

the same-terminal or nontermninal-word as in the grammar G from Czz, and from Mzn h 

n- h .. h z2 h'zj it obtains M h zn-1 h ... h z2 h'z1. From M applying again the index 

h, it obtains C 'M again, and all repeats until it goes to Mh'z. It applies the rule M> 

C', and forth it proceeds with C'zj as previously. If a derivation C'zk >*k does not 

result a terminal word, the all the derivation stops at a word that isn't in 7T*; if all 

derivations C'zk - *k give words xk in T*, then it obtains finally the word xnXn-1 

x2x in T*. L(U) is closed (effectively) under the union and it contains all the finite 

languages, so we can add the empty word e to L', if it is necessary. The constructions 

was effective. So the lemma is proved. 

Lemma 2.6. The fumily L(U) is efjectively closed under the e-free homomorphisms. 
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THE U LANGUAGES - A SUBCLASS OF THEY LANGUAGES 
Proof. Let the language L = L (G), where G = (N, 7, F, P, S) is a grammar of the type IU. andh: T->T'an e-free homomorphism. We construct a new U-grammar G' = NT'F', P, S) which will generate the language L" = h{L). For each terminal symbol a in T we introduce a new nonterminal symbol Na and we denote their set with NT: NT 

= Nla e T}. Let N=NUNTU{ S'}, where S" is a new nonterminal, the new initial 
sumbol. P' will contain all rules from P and a new rule: S" -> Sh, h = {N, -> h(a) for 
alla from T] is a new index; we observe that h is unambiguous. In each index from F we change each nonterminal symbol a which appears (in the right part) of the rules with its dual" Na and we add the rules NaNa for each a in T. F° will contain all such 
modified indexes and the new index h. 

Each derivation in G" begins with cu S' Sh, after that follows a derivation as in 
G. and we obtain a word in which each terminal symbol a is changed in its ,dual" Ng; if 
the word obtained in G was a terminal word x, then through the application of the index 
h we obtain h(1)-the homomorphic image of the word x, and if the word obtained in G 
was not in T*, then it contains nonterminal symbols for which the index h cannot be 
apply and so in the grammar G' we do not obtain a terminal word too. Since G' is a U 
grammar, it is obviously that L (G) = h (L) and the construction was effective, so the 

lemma is proved. 

Lemma 2.7. The family L{U) is not closed under its complement. 
The proof results from the relation A n B = C( C (A) UC (B) ) and from the 

Lemmas 2.2 and 2.3. 

Remark 2.8. To exemplify the utility of these grammars we consider the mathematica 
ormulas and expressions. These - e.g. from the algebra or mathematical analysis 
be generated through a context-free grammar. But if we have a function with one or 
more variables and we want to generate the replacement of the variables with given 
viuCS, then the context-free grammars are not sufficient. This problem may be easy 

5Olved by the U-grammars. To generate polynomials of any degree, ordered (ascending 
or descending) on the X, the context-free grammars are not sufficient again, but the U 
grammars can be used successful in this case too. 

can 
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