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THE U LANGUAGES — A SUBCLASS OF THE ¥ LANGUAGES
A. F. BOER

Abstract. In this paper we define a subclass of the class of ‘W-languages, and we

prove some closure propertics. The idea for this class was a stronger correlation of the

derivation, which may be achieved through the unambiguous indexes.

1. Definitions, remarks

Definition 1.1. Let G = (N, T, F, P. §S) be an jndexed grammar [1], i.e. a grammar iy
which the following conditions hold: @) N =N; U Na, Ny NNy =D, S € Ny b) The rules
of P have the form A — Bf with A € N, B e N, f € F. ¢) The rules in the indexes have
the form A — z, with A € N, z €N, U T)". We will say that the index f € F s
unambiguous, if it does not contain any two rules with the same left side.

Definition 1.2. A U-grammar is a Y-grammar [3], in which each index is
unambiguous.

Remark 1.3. In a U-grammar after the application of the first index the generated
(produced) word is uniquely defined.

Example 1.4. G = (N, T, F, P, §), where N = {§, 4, B, By, C, C,, Cp}; the application
of indexes begins always by the nonterminal symbol C; T = {a, b}; the set F contains
three unambiguous indexes: g = [B; > a, C; > a, By, = b, Cp - b], f= [B, - (,
B, Cp—a, By —> Cp Bp, Cp > b], h = [C — B;Bp], P contains three rules: S — 4g,
A — Af, A — Ch. Each derivation in G has the following form: S-— 4 go*¥Afig—>Ch
f'g—>(B,Bp S g=Byf gBpf g forth, the derivation from B, is made such that:

Baf’g“’cng—lgBaf'-lg_’aBaf"]g —aC,fgB,f7 g —>*

a Baf"zg —* . ¥ C,gB,8>*d"

And the derivation from By, is made similarly changing a with b and obtaining ©"

with the same n; finally the language I = [d"b" Ine N }is obtained.

Remark 1.5. A U-grammar for the language { a; a,...a'|ln e N} for each t € Nt
may be built similarly, 1 |
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proposition 1.6. Each finite language can pe senerated by a U-grammar
Proof. Let L = {x;, .., x,,} < T* The grammar G = (s, ) F, P, S} where F°

contains the indexes.f/: =[c > w}-/ for each W from L, and p contains the rules § f.
It is obviously that G is a U-grammar and /, - L(G). ' l

Proposition 1.7. L3 < L (U), ie. each regular langy
grammar, but not inversely, and the inclusion s strong.

Proof. Let G = (N, T, P, ) be a 3-type grammar, thus all the ryles in p have the
form 4 — a ot 4 — aB where A, B are nonterminal symbols, « is termina] symbol. We
construct the U-grammar G' = (N T F, p’ 57 s0: N = Nuls” C} where S” and € are
new nontermunals; F contains an index f for each rule 4 > aand A4 — 4z from P and an
index more: & = /C — SJ; P contains the rules S’ —> §f for each f from F and the rule §°
— Ch; the application of the rules from indexes-properly speaking of the rules from p-
begins with the symbol C. It is obviously that £(G’) = L(G) and that G’ is a U grammar.
That the inclusion is strong results €.g. from the fact that the language /4" 4" fn>1)is
not a regular, but it is a U-language as is shown in the Example 1.4.

Proposition 1.8. L( U) c L ( ¥) c L (Ind).
The proof results from the definition of the corresponding grammars.

2. Closure properties of the family L(U)

Lemma 2.1. For each U grammar G = (N, T, F, P, §) a U-grammar G’ = (N LE. P,
S”) can be effectively constructed, in which the application of index rules begins always
Jrom the same nonterminal symbol.

Proof. We denote by N the set of such nonterminals 4 € N from which it can
begin the application of the index rules. (This set can be effectively found:. 11' contains
from such symbols a € N for which existsa B € Nandf € F +so that B — Afis In P End /
“Ontains a rule with the left side 4, i.e. 4 =z z € (N; U T)".) For each symbol 4 orIn
Ne we introduce a new, ,,dual“ symbol A and we denote the set of these ,,dual* symbols

r»

. ’_ / ! @ 1\ A
With N‘C- Let C ¢ N a new nonterminal symbol. We define N'=(N;-N¢) © N

) . c, =/C
[C) p : : . . anew Index ¢4 =/
G F Contains all indexes from F and for each 4 € N contains

4/ where C is the new nonterminal ‘
. i : al symbols
P” contains the rules from P, changing all symbols 4 € N¢ with the dual s

A’ and we add to P’ the rules A’ — Cc 4 for each 4" from N ¢ s the dual 8" of' 3.
The new initial symbol §”"is S, if § is not in N¢ othc.rW1§e s t(\ci “d;\ }ulcs i
The ney Grammar G’ is equivalent to G, the “'Pp“f&.u.“?l‘llt:mmbigu“us (80 wete
Y5 from the same nonterminal symbol €, and all indexes are
idexes in ),

d Wa
the

ool under the union.

Le , .
“mg 2 7, The family L(U) is effectively close
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Proof. Let G’ = (N', T', F', P’, §") and G = (N", T"', F", P"", §”) two 1.
grammars. We can consider that the sets N' and N, and F” and F"’ are distine
(otherwise we can rename the symbols). Let S be a new nonterminal symbol and / a ney,
index. The grammar G = (N, T, F, P, ) with N =N U N U (S}, T=T"UT" F = p
UF"Uh=[4 >Aforall 4 fromN' UN""] },P=P UP"U{S—>S5hS =8
is a U-grammar which generates the union, i.e. L (G) =L (G) VL (G").

Lemma 2.3. The family L(U) is not closed under the intersection.

Proof. We consider two U-languages L; and L) and show that their intersection

has greater density [2] than linear. So the intersection can not be a W-language [3] anq
then from the proposition 3 follows that it is not a U-language.

The two languages and their grammars are: Ly = {a* [p=2",n=1,2, ... } and L,
={a"|p=n2"n=1,2, ...}, Li=L(G), L,=L(G’),

G={N,T.F, P, S}, where N=(S, T, A}, T = {a}, F= {f, h}, with [ = [T — A4, 4
— AA4], h=[A —> a], and P containstherules S —»>7Th, T > If,and G’ = (N, T F’,
P,S), whete N={S, T.A, B}, F'={h’ f}withh’=[a—>a B—>al],f =[A—>A4B
— aB, T — AA4B], and P’ contains the rules § — TH, T — Tf, as in G too.

To find the intersection L; N L, = {a’|p = 2" = m2")} we must solve the
diophantine equation 2" = m2™. It is obviously that for m > I we have m < n. Dividing
the equation by 2" we obtain 2" = m, with n-m > 0, so m has the form 2*. Replacing m
with 2* we have 2% = 2* ie. n-2* = k, and from this we have n = 2* + k. So the
general form of the solutions is (#, m) = (2* + k, 2°) and in conclusion the intersection is
LinL={f|lp=2"2% k=12 ..}

Now we will show that this language has greater density as all linear functions. (it
has the cn®). For this it is sufficient to show this fact for the set of lengths: M = {2 *%|
k > 0}; we suppose that the density of this set is linear, that is that there exists a natural
constant n( and a natural constant ¢ so that for all n > n) there is an m in M for which n

<m < cn [2].1e. for each n 2 n there is a natural number & which satisfy the relations
n <2 % < cn. From this: logy n <2< log) ¢ + log) n, and so log,(logy n) Sk <
log(logy n + log) ¢) for all k (beginning at a value). But this is not possible because for

an n sufficient great the difference between the two margins — which generally are not
integers — becomes less than the unity. We have logy(log, n + log 5 ¢) - logy(logy n) <!
if and only if log, (log, n +log, ¢) / logy n < I, and so if log, (1 + log, ¢ /logam) <1,
Le. if log, ¢ /log; n < I, what is true for n < c. So, if log2(10g2 n) is not an integer and

n > ¢ then we have no element of the set M between n and n + cn, and so the density
cannot be linear.

Lemma 2.4. The family is effectively closed under the concatenation.

Proof Let L” = L (G7), L" = L (G")), where G* and G’ are U-grammars. We will
show that from the grammars G’ and G’ the grammar G can be construct which
generates the concatenation L°L"’. We ma

ars are diff ° may suppose that all the symbols in the tWO
grammars are different (because when it is not so, we can rename them), and according
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to the Lemma 2.1 we can consider that in the two grammars G
G'=WN" T F', P"S§") th; application of the index rul
nonterminals C’ and C”’, respectively. We will denote the
concatenation by G = (N, T, F, P'.S'), where =7 U T N= p UN" U7 D
p"}, Z D’ D' are new nontemnals (Z g N UN", which will not appear in the left
side of any rule from P or from indexes, from D wil] begin the generation of the words
according to the grammar G’, form D"-according to G"). P is built in the following
way: it contains all the rules from P’, but each rule of the form 4 — ¢’ £ changed in
the rule 4 = D’ f; it contains all the rules from P*’, but each rule of the form 4 — ¢ f
is changed in the rule 4 -5 D"’ f; we add two new rules: D’ - S"h’ where ' = [C" 5
C’, > ]is a new index, and D"’ — Dh’’ where h’’ = [ D - CC”] is another new
index, which really make the concatenation.

The set of indexes of G is formed in the following way: to each index S from F”’
we add the rule C* — C’; through this process the unambiguously of the indexes is
preserved, because we supposed that all the syrhbols from the two grammars G’ and G’
are different; maintaining the notation of the indexes from F’’ with
take for the new index set F = F* U F”’ U {h,h”
and 4’ are unambiguously too.

Each derivation in the grammar G begins with: § —* D’ z’, where z’ € F”; forth —
when in the grammar G’ the application of the index rules begins — only the rule D’ —»
§”'h’ can be applied, because the new nonterminal symbol D’ does not appear in the left
side of any index rule from F~ and in any other rule from, thus it obtains D'z’ — S’ b’
z’; forth it can apply only the rules from P, while the application of the index rules
from F*’, and for a derivation from G’ of the form §”’ — C’’z”"itis obtained S*" 4’ z’
D"z h’z’; similarly to the first part of the derivation (which models the derivation in
G’), now too, when it begins the application of the index rules, the only possibility is the
application of the new rule D’’ — Dh’’ from P, after that no rule from P can be applied
any rule from P, only the rule D — C’C"’ from 4", and so we obtain § —* D'z’ — S
Wz >*D" 2 DR h 2 > (CC)z"h’'z2’=C"z2"h’'z2’C”’z" h’z".
Forth for the first part, the only possibility is C’ 2z’ h’z" —-* C’h’z’ — C’ z’; from this
Place it continues exactly like in G": if the derivation is not terminal in G’, then it will
Mot be terminal in G too, and if we had in G the derivation S’ —* C'z’»>*x e,
then we haye here the same derivation C’z’ -* x’ € T"*, For the second partC"’z" h’
2" cu C” 2" we think similarly for the string C’ z": if the derivation in C*’ was not
te’minal, it will be not terminal in G too and it stops at last by the index 4’ which doesn’t

“Ontain any rule with the nonterminals from N, and if we had in G’ a derivation of the

=(N,"TF, p S’) and
es begins from the same
grammar which generates the

the new rules, we
}; we remark that the new indexes 4’

form ¢ 50 *x"" € T"'*, then we will have the same derivation in G.

S0, for each two terminal derivations S’ —* x* & T"* in the g fr G o nd
S *X & T% in the grammar G’ we have the terminal derivation §* >*x'x"" €
["*Tl)‘ - T*

» and any other terminal derivation isn’t possiblg. -
¢ We remark that the proof is constructive: it gives effectively a method for building
Ol the grammar G from the two given grammars G and G"'.

Lemmg 2.5, The Jamily L(U) is effectively closed under the Kleene-closure.
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The proof may be similarly to the proof of previous lemma. It is easy to see that the
Kleene closure is formed from words of the form x x5 ... x,,, where x; € L, and from the

empty word e. Let G = (N, T, F, P, S) a U-grammar in which the application of the index
rules begins always with the same nonterminal symbol C (see the Lemma 2.1). We
construct (effectively) a new U-grammar G =(N' T F', P’,S’) which will generate the
language L* and in which the application of the index rules begins always with the
nonterminal C’. The terminal alphabet is, obviously, the same, 7. For each nontermina]
4 from N we introduce a ,.dual“ A7 and we denote the set of these ,,duals™ with N;. Let

N'=NUNguU{C’, M} (Mis anew nonterminal symbol). P’ will contain all rules of P,
all ..dualised* rules, i.e. if A — Bf was in P then 44 —> Bg fis in P’ too, and the new
rules: Cg > Ch, Cg—>Sh’, C—>S h, C — C’ h, where h and h’ are new indexes: h =

[CCH>CMM->CM] k=[M->C,C - C’]. In each index from F we change
the symbol C in C’ and we add the rule M — M. F” will contain all this changed indexes
from F and the two new indexes h and A"

Each derivation in G’ begins with: §” —* Cj zj, if § =* (z; (z1 € F'*) was a
derivation in G, exactly as in the grammar G, but changing all nonterminal symbol A4
with 4. If in G it follows the application of the index rules, here the rule Cz —»C'h or
the rules Cy — Sh’ from P P’ can be applied; in the first case follows the application of

the rule C’ — C’ from h (doesn’t exist any other possibility) and continues exactly as in
the grammar G, and in the second case a new sequence of indexes S —* C zy may be

generated from S and so in the grammar G we obtain the derivation S° —>* Czz; — Sh’
z] &* Czy h’ zj. From C we can obtain Sk or C’h; in the first case it continues similarly
again, in the second case it follows the application of the index rules. Anyway, after a
finite number of steps we obtain: S* =>* Cyz; — Sh'zy >*Czyh’z;>* ... >* Cz,
hzy, jh..hzyh'z] (forj=1,..,nwe havezj e F'*). If it applies now the rule C —
C’h, then follows the application of index rules, because C’ don’t appears in the right
part of any rule from P’. From the index h it applies the rule C’ — C’M, and it obtain the
sequence C’'zphzy, [ h.. hz) hzyMz,hzy h.. hzyh’ zp; from Czy, it obtains
the same-terminal or nonterminal-word as in the grammar G from Cz,,, and from M z, h
2z, h... hzy h’z] it obtains Mhz, jh.. hzyh' z;. From M applying again the index
h, it obtains C’M again, and all repeats until it goes to Mh’z;. It applies the rule M -
C’. and forth it proceeds with C’zy as previously. If a derivation C'zp — Xk does not

result a terminal word, the all the derivation stops at a word that isn’t in T*; if all
derivations C’zy — xj give words x in T%, then it obtains finally the word XpXp.] -

xpx1 in T*. L(U) is closed (effectively) under the union and it contains all the finite

languages, so we can add the empty word e to L’, if it is necessary. The constructions
was effective. So the lemma is proved.

Lemma 2.6. The family L(U) is effectively closed under the e-free homomorphisms.
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Proof. Let the language L = [, (G), where G = (N, TF P
eU,and i: T — T an e-free homomorphism, W
(N, T, F', P ") which will generate the languag
a in T we introduce a new nonterminal symbol N4 and we denote their set with Ny . Nt
={Ngja €T} LetN'=NUNpU{S” ), where S is a new nhonterminal, the new .initial
symbol. P’ will contain all rules from P and a new rule: S — Sp p - [Ny = h(a) for

all a from 7] is @ new index; we observe that h is unambiguous. In each index from F we
change cach nonterminal symbol a which appears (in the right part) of the rules with its
dual” N and we add the rules Ng - N, for each a in 7. f~ will contain all such
modified indexes and the new index 4.

Each derivation in G’ begins with cu S’ — Sh, after that follows a derivation as in
G, and we obtain a word in which each terminal symbol a is changed in its , dual* Ny if

the word obtained in G was a terminal word X, then through the application of the index
h we obtain A(x)-the homomorphic image of the word x, and if the word obtained in G
was not in T¥, then it contains nonterminal symbols for which the index /4 cannot be
apply and so in the grammar G we do not obtain a terminal word too. Since G’ is a U-
grammar, it is obviously that L (G’) = h ( L) and the construction was effective, so the
lemma is proved.

S) is a grammar of the
€ construct a new U-grammar G’ =
e L’ = h(L). For each terminal symbol

Lemma 2.7. The family L(U) is not closed under its complement.

The proof results from the relation 4 N B = C(C (4) v C (B) ) and from the
Lemmas 2.2 and 2.3.

Remark 2.8. To exemplify the utility of these grammars we consider the mathematical
formulas and expressions. These — e.g. from the algebra or mathematical analysis — can
be generated through a context-free grammar. But if we have a function with one or
more variables and we want to generate the replacement of the variables with given
values, then the context-free grammars are not sufficient. This problem may be easy
solved by the U-grammars. To generate polynomials of any degree, ordered (ascending
or descending) on the X, the context-free grammars are not sufficient again, but the U-
erammars can be used successful in this case too.
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