
STUDIA UNIV. "BABE� BOLYAT", INFORMATICA, Volume XLIT, Number 2, 1997

REUSE ANOMALY IN OBJECT-ORIENTED CONCURRENT

PROGRAMMING

DAN MIRCEA SUCIU

Abstract. The integration of the concurrent mechanisms in object-oriented

programming is without doubt, an attractive idea. Unfortunately, the de-
sign of some efticient programming languages that can achieve this thing is

extremely difficult.
The primitives of communication and synchronization between concur-

rent activities interfere with features of the object-oriented programming

causing the deterioration of some properties of some concepts that form the
basis of those two programming techniques.

The inheritance anomalies represent the most intensively studied in the
literature conflicts generated by such interference. A systematically analysis
of these conflicts was not been done until now. Moreover, we want to prove
that any of the classifications of these anomalies achieved until now are not

complete.
We will show as well, that conflicts between concurrency and delegation

or between concurrency and association are of the same type as the inher-

itance anomalies, and the key of these latter determines automatically the
elimination of those other conflicts. In this way, we will suggest in the end

the global treatment of all conflicts of this type (and not only of inheritance
anomalies in particular) using the generic name of reuse anomalies.

1. Introduction

The integration of the concurrent mechanisms in object-oriented programming
is without doubt, an attractive idea. Unfortunately, the design of some efficient
programming languages that can achieve this thing is extremely difficult. The
"efficient" attribute defines firstly the capacity of an object-oriented concurrent

Received by the editors: February 23, 1998.
1991 Mathemutics Subject Classification. 68NI5, 68Q10.
1991 CR Calegories and Descriptors. D.I.3 (Programining Techniques: Concur

rent Progranming; D.1.5 [Programming Techniques]: Object-oriented Programming; D.2.1

(Software Engineeringj: Requirements/Specilications languages, methodoloyies; D.3.2 [Pro-
gramming Languages]: Language Classifications - concurrent languages, object-oriented lan

guages; D.3.3 |Programmiug Languages]: Ianguage Constructs and Features concurrent

programming structures

74

US ANOMALY IN OBJECT-ORIENTED CONCURRENT PROGRAMMI
amming language for owning the reunion of all advantages that are partially haracteristic for every progranining technique (concurrent, respectively object oriented).

The problem of concurrency integration must be studied very seriously. A n aDproach of concurrent concepts can determine designing classes that sat- only the neccssities of a particular application. In this way, it will be difi eult (even impossible) to reuse the respective classes within developnent of other nnlications. Combining concurrency with object-oriented nechanisms in object oriented concurrent programming languages is not a simple process. In older
researches (for example [YON87|) is highlighted the existence of sorne conficts be
tween inheritance and concurrency within the framework of such languages. These

conficts have determined many designers of object-oriented concurrent languages
to exclude the inheritance from their languages or to implement mechanisms of
coordination of flexible concurrent interactions independently of the hierarchy of

inheritance.
The term of inheritance anomaly is used in the literature for the description of

the conflict between inheritance and concurrency in the object-oriented program-
ming languages, and it was used for the first time in [MAT90]. Though there were

done many efforts for the analysis and elimination of these conflicts, the concrete
solution to solve entirely this problem is still to wait for. The classifications of
inheritance anonalies elaborate until now, are in our opinion unfinished, and the

approach of these classifications is inadequate. Actually, the only papers
had as subject exclusively the analysis and classifications of inheritance anomalies
are MAT93 and ZEN97b]. The classifications of [MAT93]" have been referred on

nany papers that have suggested new coordination mechanisms of the concurrent

Interactions integrated in an object-oriented environment.
Within the framework of this article, we will present the results obtained

unl now. In addition, we will analyze all constructions and mechanisns used

implement concurrency in concurrent object-oriented programming languages.

Onevaluation of these mechanisms, there will be determined the main causes

ead to the appearance of inheritance anomalies. A unified view concern-

Chese mechanisms ag well can suggest ways of approach ot so!ne compleue

solutions, if these solutions exist.

8 previous classifications of the inheritance
anomalies. We will also show ner goal of this article is that of getting a constructive criticisn con-

nce anomaly Lerm is unsuitable. In this way we will prove
that the

Chanisms of initiation
oriented concur

and coordination of the concurrent
activities in object-

Conficts between gramming languages
which exist at the moment, generate

Concurrency and delegation,
respectively

between
concurrency

An inheritance ar

nchronizing
vities) cannot 7 fact the coordinating

code of the
interactions

between the
concurrent

75

uGs defined in that paper
as the phenomena

through
which the

ectively inherited without
nontrivial

class
re-definitions.

DAN MIRCEA SUCIU

The causes and the behavior of thcse conflicts are intimatelu
and aggregation.

related with those that determine inheritance anomalies. At the end of this paner
we will suggest a more general terim for the description of these conflicts betweer
concurrency and object-orieuted primitives, namely the term of reuse anomalies

In the second part, there are shortly prescnted the main concepts that are based on the object-oriented concurrent programming. In addition, a classificatjon of the object-oriented concurrent programming languages through the viewpoint of the rclationships between the concepts of concurrency and object is presented Moreover, an evaluation of the constructions used for the specification of in- teractions between the activities of the concurrent objects bascd on sorme criteria
is achieved. Respecting these criteria is fundamental for the avoiding of the con-
flict appcarance between concurrency and object-oriented programming concepts (the criteria are achieved based on considerations detailed in [PHI95), [MAT931, FRO92) and [PAP89]).

Information is used in the third part, which is detached from the analysis of the
concurrent constructions from the previous part, for establishing all cases in which
inheritance anomalies arise. There are noticed all classifications of inheritance

er,
een

anomalies which exist until now, together with some critics concerning the way of
approach of these classifications.

It is finally shown that the term of inheritance anomaly defines a particu-
lar conffict generated by the integration of the concurrency in an object-oriented
context, and the term reuse anomaly is more suggestive.

2. Object Oriented Concurrent Programming
2.1. General Aspects. In the last two decades, the design of object models hav-
ing concurrent features has represented a constant concern for many researchers.

This was happening for mainly two reasons. On the one hand, as an effect of

the obtained technological progress, many object-oriented programming languages
having concurrent features have been designed during this time (over 100 such lan-

guages have been discussed and systemized in [PHI95]).
On the other hand, the fact is known that object-oriented programming has

been developed having as a mnodel our environment (seen as a set of objects among

which several relationships exist and which communicate between thern by message

transmission). However, in the real world these objects are naturally concurrent,
which leads to the normal trend of transposing this thing into programming

It is interesting how two distinct criteria, the first one objective (determined by
the rise of performances and complexities of the calculus systems), and the second
one subjective (actually determined by "decency", which urges us to solve different
abstract problems looking for similitude with the real world), have finally led to
the development of some concepts, some programming techniques and implicitly

of some efficient analysis and design methods for developing applications.

76

REUSE ANOMALY IN OBJECT-ORIENTED CONCURREN'T PROGRAMMING The concurrcnt programming has occurred before the object-oriented pro
Cramming. It has becn applied for the first time within the framework of pro- cedural languages. Here the main problems studied have been concerned to the SVnchronization of the parallel execution of some instruction sequences and to the information transimission among many other concurrent activities. Once with the appearance of object-oriented programming software develop- ment has met a qualitative and meaningful leap. In this way, the development of these programs (or applications) does not involve the decomposition of problems into algorithmic procedures, but independent objects that interacts among them. An evaluation of the coordinating primitives of these interactions will be achieved in a concurrent system.

2.2. Evaluation of concurrency coordinating primitives. A concurrent pro- gram (object-oriented or not) can put into execution parallel activities which do not interact among them. The activities are executed in this way, so that without knowing of each other and without a mutual influence. However, such programs are very rare. Very often, an interaction among activities is necessary for achiev-
ing some aims of the program. The interaction between two activities that are
executed in parallel can arise in two cases:

when the activities use some resource in common, as peripheral equipment,
memory, buffer zones or variables, or

when activities must cooperate in some way (for example, a certain activity
uses results of some other activities).

Yet, the interactions among activities rise new problems that do not arise in
the case of sequences programming or of independent concurrent activities. In this

ay, the simultaneous action of many activities concerning some shared resources

1or example, can lead mostly, either to unpredictable results, which come true by
ne softness of data, or even by unexpected endings of the concurrent programns.

The interaction between two activities became manifest under two ways: com-

nication, respectively synchronization between activities

Communication represents transmission of information among activities. It

3chieved by means of some shared variables (for the object-oriented concur-

POgamming this thing is achieved in the case of the intra-object concurrency)

co gh message transmission among activities (specifically for the inter-object

concurrency).
.Chronization is achieved using restrictions on time evolution of an activity

exc uzallon is used to avoid simultaneous access at a critical resources (mutual

a Certo or tor a postponed execution of an activity until the accomplishment of

a certain ndition conditional synchronization).

2 criti

77
EBOurce = resource that cannot be used erclusively by a single activity

DAN MIRCEA SUCIU

The modeling of interactions among activities is done by means of some ne ome new
primitives introduced in the language, because of "traditional" sequence progr gram ming are not adequate. These language primitives are generally represented in. a
programming language by means of diverse instruction or declaration modalities

Primitives are generally common for both types of interaction, because thev
mutually involve themselves. In this way, comnunication between two activitie
involves the existence of a certain level of synchronization between them. That
is because the operation of transmission of intformation by the first activity must
precede the operation of receiving or taking over the information of the second
activity. Mutually, synchronization of two activities involves the fact that the
execution of an activity depends at a very moment on a certain information, or a
specific action for the second activity. Information, respectively the achievement
of the action can be known by the first activity, only in the case of communication
to the second activity.

In the following, we will show the criteria that must be satisfied by the prim-
itives of oncurrent coordination in an object-oriented context. These criteria
ensure that the specific qualities of concurrent programming or of obJect-oriented
programming are not reduced or even cancelled. There has to be noticed from the

very beginning that, unfortunately, none of the implemented primnitives does com-
pletely comply with these criteria. The problem of inter-activities communication
and mainly the problem of their synchronization are unsatisfactorily solved in the
existent object-oriented concurrent programming.

The below enumerated criteria, have been described in [PHI95] and they have
been determined on the basis of some previous studies included in diverse articles,
among which: [MAT90], [MAT93], [FRO92], [PAP89]) and [MEY93]:

i): Goal of Called-Oriented Coordination. To guarantee an accurate pro-
gramming, the complete specification of concurrent interactions must be
implemented at the level of the called concurrent activity (or, more exactly,
within the class which is concurrently accessed). If the principle i
plied with, there is the risk of destroying the modularity of the
the activity (or object) which initiates the interaction has to know certain
details of implementation, relatively to the called activity (object).

i): Goal of Coordination Erpressibility. A primitive of interaction must allow
the expression of certain types of condition, as follows:

a): Intra-Object Concurrency. The concurrent invocation of many meth-
ods of an object must be possible. The concurrent interaction primi-

tives must offer the possibility of specification of methods that can be
executed concurrent.

b): State Procecd-Criteria. The coordination primitives of concurrency
must supply specification modalities of the calling opportunity of a
method or the postponement of this, because of the non-observance of
some conditions that depend on the intern status of the object.

78

DEUSE ANOMALY IN OBJECT-ORIENTED CONGURREN'T PROGRAMMING :History Proceed-Criteria. There must also exist a modality of spec-
ification whether a method can be called (the appealing being post-
noned) depending on methods of the object which have been called previously. This requirement of specification is included in b.), be-
cause there can be hold information concerning the history of the calling methods by simple addition of a member variable. However, because the conditions of synchronization dependant on the history of calling methods are frequently used in the object-oriented concurent programming, the separate presentation of such a principle has been considered useful.

iii): Goal of Isolated Coordination Code. A concurrent interaction prirmitive must achieve the clear separation of the code that implements the func tionality of a method to the adequate code of the concurrent interaction constraint. In the case of non-observance of this principle, the mecha- nism of inheritance can be affected, taking place the so called inheritance anomalies which will be described in detail in the next part. iv): Goal of Separable Coordination Code. A mechanism of concurrent inter- action must permit the separate inheritance of the interaction code.
In (SUC98] we have done an analysis of the characteristics of all primitives implemented in the object-oriented concurrent languages that still exist, related

to the above stated criteria. Table 1 presents the synthesis of these results. The
classification and description of all these primitives is not very important here.
However, the main goals of the table presentation are those of suggesting the big
amount of implemented primitives and for demonstrate that none of these com-

pletely follows the above-enumerated criteria. Details concerning the functioning
each mechanism of coordination treated in the table can be found in (SUC98|.

3. Inheritance anomaly

e OI the most important problems raised by the object-oriented concurrent Ond
programming is
Ject is in a certain state, it can accept only one subset of the whole messages for synchror ronization of concurrent objects. When a concurrent ob-

ohin amed in the literature as synchronization cornstraints ot the concurrent

objects.
faces a

enance of its internali integrity. This restrictions required on the object inter

faces

for the plementation of nchronization and communication among the methods

OSt object-oriented concurrent languages the responsibilhty of explicit

mplementation tion constraints, epresent the developer's task.

In the m

within the framework of the methods regard to synchroniza-

or achieving this thing, the programner
must have at his disposal primiti ves

dred evi
All types of primitives that were

implemented in one of those over one

undred existing
of objects.

79 imperative obiect-oriented
concurrent languages were presented

DAN MIRCEA SUCIU

Coordinaien
Exp ressibility

solated
CoordinationCoordinatim

Code

Calb orientd
Ceorlinaien Separah

Priaies
Code

No
No

yc. bytermuneto n
Setaphoe, rtz bck No (somet1mes yes)
ConditboTe critcal mgwn No (sometmes yes)

gR ocked syc.
iorato
Coadton vanab jes

Coadtoa wat

No
No o

No No No
Yes Yes Yee

Yes No
No Yes

No
No

o Yes

No Inchdekzde methods
Be hervaca ebstractio
Actor mooe
Maod guan
Enabe s
Peth epes0n

Yes

Yes No Mo
No), b), c)

a) (sometirres), b) Alrmost ye
b), c)
a),c)

a)(soraetimes), b)
,b)

b) (restricted)
b restricded

a), 6)

Yes

Yes
Almost yes

Yes
Almost yes

Yes

Yes

No Yes
No Yes

Yes Generalzed hfe routire

(UnSerialzed Method
Feaderrunter prtocol

Relectrve controi

Yes Yes Yes
Yes Yes es

Yes TNo poss yes)

TABLE 1

in the previous part. Likewise the previous part, we have suggested the fact that,

in certain cases, the coordination code of the concurrent interactions cannot be

inherited in fact without generating trivial redefinition of methods. This conflict
has been identified and studied in many papers; in one of these papers, namely in
(MAT90], this conflict was named as inheritance anomaly.

Three distinct cases have been here also identified, in which the utility of the
inheritance concept is more diminished (in some particular cases even cancelled):

the defining of a new subclass K' of the class K requires the redefining of
its methods (the sarne thing available even for the descendants of the class

K')
the modification of a new method m of the class K within the framework

of the inheritance hierarchy involves the modification, apparently indepen
ent, of certain methods as well in class K as in its descendants.

the defining of a method can force other methods (inclusively those that

will be defined as subclasses in the future) to follow the specific protocol
which wasn't necessary in the case in which the respective method wouldn't
have to exist. The maintenance of the encapsulation property of classes

will be therefore very difficult.

An important remark is that the communication and synchronization priml-

tives of a specific language influence appearance of inheritance anomalies. It results

from here that the problem of inheritance anomalies is generated by the semantic

80

REUSE ANOMALY IN OBJECT-ORIEN'TED CONCURRENT PROGRAMMING
conflicts betwecn the descriptions of synchronization and of the inheritance spe- eific for a language, and not of the way in which the features of the language are implemented.

Two classifications of inheritance anomalies will be presented as follows, shown in [MAT93] and [ZEN97b|. We will prove further on, that these classifications are not complete. In addition, we will prcsent another classification that won't take into consideration only the couilicts belween concurrency and inheritance, but als0 the conflicts between concurrency and relationship of aggregation, respectively between concurrency and delegation mechanism. Based on this new classification, we will suggest a new naming which is nore adequate for describing these two types of conflicts between concurrency and object-oriented programming concepts.

3.1. Matsuoka-Yonezawa Classification. This classification has been achieved
and presented in MAT93]. It was based on the demonstration of correctness
of many object-oriented concurrent-programming languages ("correctness" inter preted through the viewpoint of the implementation of concurrent interaction and
initiation mechanisms that was to hinder the appearance of inheritance anomalies). Unfortunately, although the Matsuoka-Yonezawa classification is praiseworthy to
be the fruit of a laborious analysis of the conflicts between inheritance and con-

currency, it has a lack generated by the modality in which this analysis has been

approached.
In this way, the appearance of anomalies in diverse situations was demon-

strated using examples; but the examples do not represent an adequate basis

for classification.
on 15 correct or complete. Particularly, such a classification cannot be used for

demonstrating the absence of the inheritance anomalies within the framework of
a programming language.

On the other hand, the example studied in [MAT93] hasn't been presented

ageneral context, but using particular mechanisms of specification of the con-

rent interactions. In this way, the used mechanisms were: erplicit receiving of

spath-eapressions, life routines, behavior abstraction [THO94), cnable-set

guarded methods FER951. Nevertheless, as we have shown in the prev1ous

Pthe multitude of the developed mechanisms is much greater.

931Present clearly the categories of inheritance anomalies determined in |MAT-

(fi sed a classical example, namely the implementation of a bounded buffer

of In addition, Matsuoka and Yonezawa used the concept of abstract state

resor CL. For achieving a concise and suggestive presentation of both, we wil

SCribede modeling of the behavior of the object, using the statecharts, de-

annotations

Therefore, it doesn't exist any guarantee that the classifica-

n

[HAR86] At these statecharts we have attached many formal

for the specification of the objects consistency (in figure 2 is presented
as

example the behavioral model of the Buffer class).
81

DAN MIRCEA SUCIU

A first category of inheritance anomalies is that determined by the partilion: of the abstract states. In this way, let's suppose that the specialization of Buffer class (figure 1) is wanted by addition of a new method, Get2(), which to extract simultaneously from the buffer two elements (the first one
Buffer

meElem:inte ger
ininege
Dutinte.ger
Lutce:E lemert) void
LgetElenen

demiis Element

BBuffer
lockedhoolean
lodk0void

uni ck(ivoid

Buffer2

Get2(1SeElement

HB uffer

getAfterPut)Elemert

FiGURE 1. Hierarchy of classes used by Matsuoka-Yonezawa for
classification of inheritance anomalies

Buffer
GEt O in-aut=1]_ Partial

Pue)in-ou-ma»E lem-1]

uEova iart8
in.aut:0)sand in-outnaxElem

Empy Fu
L gett Lpute)

Ivaiant«| Larlants
n-otema xflen

inuariarts
on-0) and (out-0)and

Gneoutandfin-autsemaE lem1

FIGURE 2. Behavior model of class Buffer

The behavior model of s1uch a class, named Buffer2, is presented in figure

3. Here it's shown the Partial abstract state, characteristic for the Buffer class,

which has in this case two sub-states, Partial2 and One (actually the Partial

state is replaced in the behavioral model by those other two states).

In examples presented in [MAT93] is shown that the addition of method Get2() in

the Buffer2 class using, for instance, enable-sets mechanism, implies the redefintng

of all methods of the Buffer class. That is because the partition of the Partial

state must be treated by all these methods. On the other hand, it has been shown

82

REUSE ANOMALY IN OBJECT-ORIENTED CONCURRENT PROCBAnE chanism with guarded methods doesn't lcad to the appearance of this

that the mechanism

type of inheritance anomaly.

Bufer 2

Partlal
puto)
get

pue)
pue ne

Partial2 get2)
Empy tTTge2

Lgct- get20 FuH

inwariarte
in-0) and (out=0) and
nsenutandfin auts=naxE am

FiGURE 3. Behavior model of class Buffer2

A second category pointed out in [MAT93] is that of the inheritance anom-
alies determined by the history sensitiveness of states. 'The example that was
studied by the authors of the paper, is that of a subclass, HBuffer, which contains
a method getAfterPut () which can be executed only if the previous accepted
method was Put (). So the method getAfterPut () won't be immediately exe-
cuted, after the acceptance of a Get () method or getAfterPut (O). This situation
needs the addition of a new member variable (in the case of the mechanism of
behavior abstractions or the enabled sets). The model of behavior presented in

figure 4 is available for both cases.
For the enabled sets, re-definitions are necessary, because the new state must

aen into consideration by all methods. In the case of methods with guards,

vlae necessary considerable re-definitions because the suitable setting of the

he new variable has to be achieved in all nethods. Yet, in this last case,

Cognition of the plementation of the redefined methods is not necessary, so

there doesn't take place a violation of modularity.

bstract states. The shown example for defining this type of anomalhes,
omsists of the

methods, respectively Unlock(0 of the new
created

BBuffer
class. This case was

also
lemented using the mentioned

mechanisms of synchronization.
In this

ents. poSSi bility of obstruction the extraction and addition of the bulter

elements. In thi
of buffer eleme

way, it is necessa (in case of enabled sets) to add a new
state. This addition

st category of inherit ance anomalies is that determined by the modihca-

n1S Way the state of an object won't depend only on the numbers

Us, but also on the value of the member variable locked (ligures I

and 5).

The blocking and release of the buffer is achieved by means of the Lock()

83

DAN MIRCEA SUCIU

HBuffer
getA terPuto Empy

geto
pue

:At erPutput()

Partia e)

o tAerPut
get) RutelFuu

geto
getA fe rPut0

getAterP uO

FIGURE 4. Behavior model of cBass HBuffer

BB uffer

Unlock
pufe Partialpute).
Get)

Empty
Full unlock)

Lock
wariart
bot locked

ariants:
locked

FIGURE 5. Behavior model of class BBuffer

involves the appearance of the inheritance anomalies, as you could see in the

previous example. n the case of guarded methods, the modification of the guards

conditions is necess ary for taking into account the new member variable lockea.

Therefore the redefining of the Put () and Get () methods is necessary without any

altering of their functioning.
The classification of the inheritance anomalies achieved by Matsuoka and

Yonezawa represents a first systematic determination attempt of the causes that
lead to the appearance of inheritance anomalies. This classification has unior
tunately no theoretical basis, basing strictly on the test of the cases where the

multitude of abstract states of a class is altered in its descendants. Therefore,
there doesn't exist any guarantee that the respective classification is complete or

correct, its achieverment depends strictly on the authors' "decency" and experience.

84

rC ANOMALY IN OBJECT-ORIENTED CONCURRENT PROGRAMMING Overriding New
Refers to

parent method

Extensions

method method
E1 No Yes No E2 No Yes

Yes E3 Yes No
No E4 Yes No Yes E5 Yes Yes No E6 Yes Yes Yes

TABLE 2. Extension possibilities for a class

More than that, there doesn't considered the case which leads to an inheritance anomaly without modifying abstract states in a subclass. For above examples and
1sing certain particular coordination mechanisms, the building of a new subclass
of the Buffer class that contain a method which extracts the first element from
buffer, leads to unjustified redefining of all methods of the superclass. This thing can be easily demonstrated using the mechanism of concurrent interaction with

semaphores, for example.

3.2. Zeng-Schach Classification. The classification suggested by Zeng and Schach
has been relatively recently achieved, in [ZEN97]. They suggest here an analysis
of the way in which the inheritance functions, more precisely of the way in which

the subclass can extend the superclass without taking into consideration either

mechanism of particular concurrent interactions.
Syntactically, a subclass can extend the parent classes in three ways: by

aenning a new member variable, by defining a new method or by rewriting the

Innerited methods. Although the three modalities of extension are othogonal, the

dcdition of a new menmber variable involves logically the defining or re-defining
0 less than a method with which has to actuate. That's why Zeng and Schach

abstract states sets of ana object, but with the new defined methods of this. [MAT93], because the inheritan anomalies are not watched, related to the

on modalities of a superclass. This approach is totally different of that

in

ered that the appearance of inheritance anomalies is bound to the last two

More than that, the situation are taken into consideration where other meth-

ods of an object are table 2 there are
SItuations for generating non-trivial

re-definitions of methods.

resents one of the drawbacks of the approach. Namely the tact

en into consideration only the problem of redefinition of meth-

,pect has been ignored, the
characteristic aspect of inheritance

mentioned within the framework of a new defined method. In

ered Dde presented the analyzed cases in [ZEN97] which have been consid

This fact repr
that
ds and another as anomalies,

.c:
s that the analysis of those six cases presented in table

alon only the inter-object
concurrency,

considering
that we

85

namely that of violation of class modularity.

Another drawbar
akes i

DAN MIRCEA SUCIU

deal with objects which own only one activity in execution at a very moment
Therefore, either in this case, it cannot be asserted that the results of the anals
lead to a complete classification.

The result of the analysis is not an astonishing one, it asserts the existence of two categories of anomalies. The first category, named the category of anomali
of forced overriding, is determined by the necessity of redefining of one or more methods in a subclass generated by definition of a method within the franework of this. The second determined category is that of the synchronization anornalies which rcfers to the impossibility of calling a method because of its synchronization

ysis

constraints.

The anomalies of the first category seem to correspond to the inheritance anomalies of the Matsuoka-Yonezawa classification. The here-achieved analysis doesn't permit the determination of those three subcategories, which was men- tioned in the previous part.
On the other hand, the synchronization anomalies are not characteristic for the object-oriented concurrent programming. As the authors even asserted, these

anomalies are present also in non object-oriented environments, and the problem is very similar with nested monitor call problem.
Therefore, the classification introduced here doesn't bring anything new. More

than that, the source of anomaly appearance is not very clear spotlighted. This
thing is due firstly to the approach of the problem that doesn't take into consid-
eration particular implementations of mechanisms of concurrent interaction.

3.3. Reuse Anomaly. The concept of inheritance anomaly has been initially
introduced for describing the conflicts that appear between concurrency and in-
heritance mechanism of the object-oriented programming. However, in the time,
as can be seen in diverse articles with these
anomalies have been considered as representing the only main conflict proceeded from the fusion between concurrency and object-oriented concepts. This thing is
totally wrong, because, as we will present further on, anomalies with a similar
behavior take also place in the case of other mechanisms characteristic for the

object-oriented programming. |ZEN97| represents one of the few papers where
was taken in account other anomalies, not just those related with inheritance.
Unfortunately, as we have seen, the achieved studies in this paper lead unsatisfac-
tory conclusions. Although the forced overriding anomalies introduced in [ZEN9T|
seem to have a more general character, they replace the concept of inheritance
anomaly only on the level of naming.

Between the classes that describe a specific problem may exist four types of
relatiouships. A first type of relationship is that of inheritance which allows, as it
is well known, the reuse of the structure and function of a class in the definition

opics in the last years, inheritance

of another class.

86

REUSE ANOMALY IN OBJECT-ORIENTED CONCURRENT PROGRAMMING
There exist programming languages (as in the SINA example) which haven't implemented a mechanism for the rewriting of such a relationship. For simulating the inheritance in one ot these languages, the mechanism of delegation is used. The relationship ot delegation between two classes is also a reuse relationship and sinDOSses the potential redirection of received messages by an object to a so- called delegated object. "The delegated object must be effectively included in the construction of the first object. The delegation is a stronger relationship than the inheritance, because it can stimulate this relationship, and more than that, it can

model the dynamic evolution of systems (thing which the inheritance, as a static
relationship between classes, cannot achieve).

The association relationship is the third possible relationship where two classes
of a system can be present. This relationship is also named as reuse relationship,
because at a very moment the object of a class is used by the services offered by
an object of the associate class.

The forth relationship between the classes of a system is the aggregation rela-
tionship. It involves the existence of relationship of the type whole-part between
the instances of classes being present in this relationship. This relation was con-
sidered by some authors as a particular type of association.

The four above described relationships also represent many ways of reuse
of the defined classes in a certain. library. We will show as follows that in a
concurrent context, the existence of one of these relationships can deternine in
certain conditions non-trivial re-definitions of methods as serious encapsulation
violation. Therefore, exactly the considered effects at the description of inheritance

anomalies in [MAT93].
The relationships of delegation, aggregation and association involves at least,

ne existence of a communication between objects, communication which is based

on the access or calling of public variables and methods of an object. The access

at the public member variables of this one in a concurrent context and in the

Ence of an adequate synchronization mechanism can determine the bringing into

a nrmness state of the object. Therefore, methods or objects level which access the

structure of an object found in a relationship of aggregation, association

gation, must be found communication and synchronization
mechanisms

it ection of the consistency of data. For the most of these mechanisms (as

ds been demonstrated also in the case of inheritance anomalies) this thing

SCS the knowledge of implementation of methods (public or not) trom the

OWhich structure is accessed. Therefore the encapsulation of classes can

object of which
oyed, and the reuse of classes which belongs to a library of classes, 1s once

be destroy

of urdened. More than that, the modification of classes within the framework

of

of a

whi
library of classes involves the taking into

consideration of the code of all classes

of which it s is in an
above-mentioned

relationship.

87

DAN MIRCEA SUCIU

The fact is obvious that in the cases of associations and aggregations. th

anomalies of this type can be climinated by the consideration of all member vari-

ables of a class being private member variable.

However, the most of existent object-oriented programming languages allow

the defining of many kinds of visibility for the memuber variables.
that, in some languages (for example Cft) the methods may return references of

member variables. In this way the state of an object can be altered in the sam

manner as using public member variables (and invol ve the same anormalics
Because of the obvious rescmblance between this type of anomalies and that

he

More than

known in the literature as inheritance anomalies, we think the unitary treatrnent
of them is more natural than the findng of a general naming of defining them.
The most adequate naming seems to be that of reuse anomalies.

The criteria mentioned in the third part of this paper represcnts necessary con-
ditions for avoiding the appearance of reuse anomalies and the untouched quality
keeping of the introduced concepts as well the concurrency mechanismns as the

object-oriented technique. Unfortunately, there hasn't been realized a communi-
cation and synchronization mechanism of the concurrent activities which are to

satisfy all these principles.

4. Conclusions

The problems generated by the implementation of concurrency within the
framework of the object-oriented programming haven't yet found a solution. The

objective models developed until now do not satisty all criteria which provide a
correct and efficient programming.

We have shown in this paper that a rigorous analysis of the conflicts between
the mechanisms of concurrent interaction specification and the concepts of object- oriented programming hasn't been achieved until now. The inheritance anomalies
have been defined as a representation of conflicts between inheritance and concur-
rency. These anomalies are characterized by the re-definitions of methods and by
the destruction of encapsulation.

We have also demonstrated that these are not the only types of conflicts
specific for the inclusion of concurrency within an object-oriented framework and
we have introduced the term of reuse anomaly. This term secms more adequate and offers the possibility of treatment of these conflicts on a higher level.

References
BRI93] Jean-Pierre Briot, Object-Oriented Concurrent Programining: Introducing a Neuw Pro-

gramming Methodology, Proceedings of the 7th International Meeting of Young Com-
puter Scientists, 1993.

ELE91] Petru Eles, Horia Ciocârlie, Programarea concurenta în limbaje de nivel înalt, Editura Stiintifica, Bucuresti, 1991.

88

RIISE ANOMALY IN OBJECT-ORIPENTED CONCURRENT PROGRAMMING

7E1 Szabolcs Ferenczi, Guarded Meth ods vs. Inherilance Anomaly / Inheritance Anomaly Solved by Nested Guarded Meth od Calls, SIGPLAN Notices 30(2): 49-58, 1995.
rRO921 Svend Frolund, Inherilance o Synchronization Constraints in Concurrent Obiect-

Oriented Programming Languages, Proceeding of ECOOP'92, 1L. Madsen editor, Lecture
Notes in Computer Science, vol. 615, pp. 185-196, Springer-Verlag, Utrecht, Nether
lands, 1992.

nARRGl David Harel, Statecharts: A Visual Pormalism for Cornpler Systems, Science of Com-

puter Programming, North-Holland, 1986.
MAT90) Satoshi Matsuoka, Ken Wakita, Akinori Yonezawa, Synchronization Constraints With

Inheritance: What Is Not Possible So What ls?, Technical Report 10, Department of
Information Science, University of Tokyo, 1990.

MAT93) Satoshi Matsuoka, Akinori Yonezawa, Analysis of Inheritance Anomaly in Otject
Oriented Concurrent Programming Languages, Research Directions in Concurrent

Object-Oriented Programming, pp.107-150, MIT Press, Cambridge, 1993.
MIT94) S. E. Mitchel, A. J. Wellings, Synchronization, Concurrent Object-Oriented Program

ming and the Inheritance Anomaly, Jun. 1994.

PAPS9 Michael Papathomas, Concurrency Issues in Object-Oriented Programming Languages,
in D. Tsichritzis, editor, Object Oriented Development, Pg. 207-245, University of

Geneva, Switzerland, 1989.
PAP97] M. Papathomas, Anders Andersen, Concurrent 0bject-Oriented Programming in

Python with ATOM, Proceedings of the 6th International Python Conference, Cali-

fornia, Oct. 1997.
PHI95] Michael Phillipsen, Imperative Concurrent Object-Oriented Languages, Technical Re-

port TR-95-049, International Computer Science Institute, Berkeley, Aug. 1995.

SCU97 Marian Scuturici, Dan Mircea Suciu, Mihaela Scuturici, lulian Ober, Specification of
active objects behavior using statecharts, Studia Universitatis "Babes Bolyai", Infor
matica, Vl. I1, Nr. 1, 1997.

SUCS7] Dan Mircea Suciu, Limbaje de programare orientate obiect concurente, PC REPORT,

Aug. 1997.
SUC98] Dan Mircea Suciu, Anomalii de mostenire in programarea orientata-obiect concurenta,

referat de doctorat, mai 1998.

aU4 Laurent Thomas, lnheritance Anomaly in True Concurrent Object Oriented Lan-

guages: A Proposal, Research Report, University of Tokyo, Department of Information

Science, 1994.
Y AKinori Yonezawa, Jean-Pierre Briot, Inheritance and Synchronization in Concurrent

Uect Oriented Programming, Proceedings of the European Conference on Object-

Orlented Programming (ECOOP'87), Lecture Notes in Computer Science, no. 276, PP.

32-40, Springer Verlag, 1987.
han Zeng, Stephen R. Schach, A New Approach to the Inheritance Anomaly,

5ubmitted for publication, 1997.

BABE^-BoLYAI" UNIVERSII3400 CLUJNAPOCA, RoMANIA RSITY, FACULTY OF
MATHEMATICS AND COMPUTER SCENCE, RO-

-Tail address: tzutzu@cs.ubbcluj.ro

89

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

