STUDIA UNIV. “BABES-BOLYAI" INFORMATICA, Volume XLTI, Number 2, 1997

REUSE ANOMALY IN OBJECT-ORIENTED CONCURRENT
PROGRAMMING

DAN MIRCEA SUCIU

Abstract. The integration of the concurrent mechanisms in object-oriented
programming is without doubt, an attractive idea. Unfortunately, the de-
sign of some efficient programming languages that can achieve this thing is
extremely difficult. »

The primitives of communication and synchronization between concur-
rent activities interfere with features of the object-oriented programming
causing the deterioration of some properties of some concepts that form the
basis of those two programming techniques.

The inheritance anomalies represent the most intensively studied in the
literature conflicts generated by such interference. A systematically analysis
of these conflicts was not been done until now. Moreover, we want to prove
that any of the classifications of these anomalies achieved until now are not
complete.

We will show as well, that conflicts between concurrency and delegation
or between concurrency and association are of the same type as the inher-
itance anomalies, and the key of these latter determines automatically the
elimination of those other conflicts. In this way, we will suggest in the end
the global treatment of all conflicts of this type (and not only of inheritance
anomalies in particular) using the generic name ol reuse anomalies.

1. Imtroduction

The integration of the concurrent mechanisms in object-oriented programming
is without doubt, an attractive idea. Unfortunately, the design of some efficient
programming languages that can achieve this thing is extremely difficult. The
“efficient” attribute defines firstly the capacity of an object-oriented concurrent

Received by the editors: February 23, 1998,

1991 Mathematics Subject Classification. 68N15, 68Q10.

1991 CH Categorics and Deacriptors. D.1.3 [Programiing Techniques]: Concur- ;
rent Programming; D.1.5 [Programming Techniques|: Object-oriented Programming; D.2.1 |
[Software Engineering]: Requirements/Specifications - languages, methodologies; D.3.2 [Pro-
gramming Languages|: Language Classifications — concurrent languages, object-oriented lan-
guages; D.3.3 [Programming Languages): Language Constructs and Features — concurrent
programming structures .

74

programming language for owning the reunion of al] oAMMING

. ‘ , \ all advantages that a .
characteristic for every programming technique (concurrent are part'lally
oricnted). . . AITTent, respectively object-

em of concurrency i ati |

e p::))ach of (:oncurrl;rl(tnfy- l‘ntegr(it, e studied very seriously. A
wrong app co ‘ u)n-(,cpts can determine designing classes that g
isfy only the necessities of a particular application. In this way jt "1'8“‘}4?‘ sfat'f
cult (even impossible) to reuse the respective ¢lagses within rJein’(, o t): it
applications. Combining concurrency with object-orientecd rrxe;;h;zn[i;(;:rli;]()r ro.th‘:r
oriented concurrent programming languages is not a simple pr()(:ess. In) ;J;*dr;
researches (for example [YON87)) is highlighted the existence of some C.Onﬂ;{'tg h«r
tween inheritance and concurrency within the framework of such languages,‘ rhs:qe
conflicts have determined many designers of object-oriented com;urrentllanguagﬂe;
to exclude the inheritance from their languages or to implement mechanisms of
coordination of flexible concurrent interactions independently of the hierarchy of
inheritance.

The term of inheritance anomaly is used in the literature for the description of
the conflict between inheritance and concurrency in the object-oriented program-
ming languages, and it was used for the first time in [MAT90]. Though there were
done many efforts for the analysis and elimination of these conflicts, the concrete
solution to solve entirely this problem is still to wait for. The classifications of
inheritance anomalies elaborate until now, are in our opinion unfinished, and the
approach of these classifications is inadequate. Actually, the only papers that have
had as subject exclusively the analysis and classifications of inheritance anomalies
are [MAT93] and [ZEN97b]. The classifications of [MAT93]' have been referred on
many papers that have suggested new coordination mechanisms of the concurrent

interactions integrated in an object-oriented environment. -
Within the framework of this article, we will present the results. obtained
until now. In addition, we will analyze all constructions and mechanisms used

‘0 implement, concurrency in concurrent object-oriented programming languag ‘
ermined the main causes

Ba§ed on evaluation of these mechanisms, there will be.e det ‘ main caree
Which lead to the appearance of inheritance anomalies. A unified view fofnplete
g all these mechanisms as well can suggest ways of approach of some ¢

solut; : : :
Utions, if these solutions exist. ' cructive ¢
- Another goal of this article is that of getting a LO;]Js-es We will also show
t'}‘fn”.lg Previous classifications of the inheritance a‘norll 1 e will prove that the
”mt nheritance anomaly term is unsuitable. In this way ‘;‘; \cetivities in object-
1eChap - ey » concurrer :
“hanismg of initiation and coordination of the con nt, generate

Orlent e .1 oxist at the mome
lted concurrent programming languages which exis

onfl; i sn concurrency

(,()“ﬁ]cts l . J \ t,ion respectlvely betweUl
: >etween concurrency and delegatiof o
—— hrough w’HCh the
current

REUSE ANOMALY IN OBJECT-ORIENTED CONCURRENT

riticism con-

enomena t

: . h
at paper 48 the p s between the con

An inhers Y '
*nc roniz'mhc”tancc anomaly was defined ¥ tZ of the interactions o<
Mg code (in fact the coordinating cod¢ | class re-definitions:

“) €annot be effectively inherited without nontrivid 75

o

“etiviyy

DAN MIRCEA SUCIU

and aggregation. The causes and the behavior of these conflicts are Intima
related with those that determine inheritance anomalies. At the end of thig Paper
we will suggest a more general term for the description of thege conflicts hf:tw(af;,;
concurrency and object-oriented primitives, namely the term of reuse anomalié;
In the second part, there are shortly prescnted the rmain concepts that ,m
based on the object-oriented concurrent, programming. In addition, a cla,ssiﬁf:a,t,ifu;
of the object-oriented concurrent programming languages through the Viewpoint
of the relationships between the concepts of concurrency and object is pn;sem{:d‘
Moreover, an evaluation of the constructions used for the specification of in-
teractions between the activities of the concurrent objects based on some Criteriy
1s achieved. Respecting these criteria is fundamental for the avoiding of the cop.
flict appearance between concurrency and object-oriented programming conceptg
(the criteria are achieved based on considerations detailed in [PHI95], [MAT93]
[FRO92] and [PAP89)]). .
Information is used in the third part, which is detached from the analysis of the
concurrent constructions from the previous part, for establishing all cases in which
inheritance anomalies arise. There are noticed all classifications of inheritance
anomalies which exist until now, together with some critics concerning the way of
approach of these classifications.
It 1s finally shown that the term of inheritance anomaly defines a particu-
lar conflict generated by the integration of the concurrency in an object-oriented
context, and the term reuse anomaly is more suggestive.

tely

2. Object Oriented Concurrent Programming

2.1. General Aspects. In the last two decades, the design of object models hav-
ing concurrent features has represented a constant concern for many researchers.
This was happening for mainly two reasons. On the one hand, as an effect of
the obtained technological progress, many object-oriented programming languages
having concurrent features have been designed during this time (over 100 such lan-
guages have been discussed and systemized in [PHI95]).

On the other hand, the fact is known that object-oriented programming has
been developed having as a model our environment (seen as a set of objects among
which several relationships exist and which communicate between them by message
transmission). However, in the real world these objects are naturally concurrent,
which leads to the normal trend of transposing this thing into programming.

It is interesting how two distinct criteria, the first one objective (determined by
the risc of performances and complexities of the calculus systems), and the second
one subjective (actually determined by “decency”, which urges us to solve different
abstract problems looking for similitude with the real world), have finally ledl to
the development of some concepts, some programming techniques and implicitly
of some eflicient analysis and design methods for developing applications.

76

REUSE ANOMAL, uC
LY IN OBJEC I‘-OR]EN’I‘EI‘) (;'ON(,'UH.IU')N'I‘ PROGRAMMING

The concurrent Programming hag occurred before the op;
gramming. It has been applied for the first t:imv 'witrh" ?} ohie
cedural la.nglhmg(‘s. Here the main problems S'.ll(li;‘(i hdi/: l')m ff.
synchron.izat.lon of t.he parallel execution of sore iIl“Sf,rUCfilOIl e ‘J?H‘Cerned o the
information .transnnssion among many other concurrent ‘a('tijiet('luam'es o the

Once with the appearance of object-oriented program‘minlles'ft
ment has met a qualitative and meaningful leap. In this way F hiod Waic ovelor
these programs (or applications) does not, involve the decom;x;‘;i‘tio(ralvffifopm[E;Il]t .
into algorithmic procedures, but, independent objects that interlacts amopmthemS
An evaluation of the coordinating primitives of these interactions wil] bé I;Ehieifarg
In a concurrent system:. . o

ct-oriented pro-
amework of pro-

2.2. Eval.uation of concurrency coordinating primitives. A concurrent pro-
gram (object-oriented or not) can put into execution parallel activities which do
not interact among them. The activities are executed in this way, so that without
knowing of each other and without a mutual influence. However, such programs
are very rare. Very often, an interaction among activities is necessary for achiev-
Ing some aims of the program. The interaction between two activities that are
executed in parallel can arise in two cases:

e when the activities use some resource in common, as peripheral equipment,
memory, buffer zones or variables, or-

* when activities must cooperate in some way (for example, a certain activity
uses results of some other activities). '

Yet, the interactions among activities rise new problems that do not arise in
the case of sequences programming or of independent concurrent activities. In this
Way, the simultaneous action of many activities concerning some shared resources
for €xample, can lead mostly, either to unpredictable results, which come true by
the softness of data, or even by unexpected endings of the concurrent programs.

The interaction between two activities became manifest under two ways: com-
Munication, respectively synchronization between activiti'es. .

Communication represents transmission of information among act1v1t1ea.. t
¢an be achijeved by means of some shared variables (for the ob Ject-—orle‘nteq co?:.:r)-
rent Programming this thing is achieved in the case of thtf l_ntr&kObJe;‘}t w“t((urf::bl .C)é ;
°r throug}, message transmission among activities (specifically for the inter-obje
(;()nCun-enc) . . o
G Soistion i e i ssictons o i vt of w1ty
;:){({;Zﬂ'OniZati(‘m 18 used fo avoid Siml.}lwniéus T:fvsi; u(?x:/il the accomplishment of

0]]) or f()r a pOStI)On(’,({ execution o all &

“ertain condition (conditional syn(,,h(onlm(mu)

TT—— lusively by @ single activity

—

2 opi d exc
Y t be use
‘ritical resoyrce = resource that canno -

DAN MIRCEA SUCIU

The modeling of interactions among activities is done by means of some New
primitives introduced in the language, because of “traditional” sequence Program,.
ming are not adequate. These language primitives arc generally represente in a
programming language by means of diverse instruction or declaration modalitjeg

Primitives are generally common for both types of intcraction, because thQ};
mutually involve themselves. In this way, communication between two activitjeg
involves the existence of a certain level of synchronization between them That
1s because the operation of transmission of information by the first actlvity gt
precede the operation of receiving or taking over the information of the second
activity. Mutually, synchronization of two activities involves the fact that the
execution of an activity depends at a very moment on a certain information, or 5
specific action for the second activity. Information, respectively the achievement
of the action can be known by the first activity, only in the case of communicatiop
to the second activity.

In the following, we will show the criteria that must be satisfied by the prim-
itives of concurrent coordination in an object-oriented context. These criteria
ensure that the specific qualities of concurrent programming or of object-oriented
programming are not reduced or even cancelled. There has to be noticed from the
very beginning that, unfortunately, none of the implemented primitives does com-
pletely comply with these criteria. The problem of inter-activities communication
and mainly the problem of their synchronization are unsatisfactorily solved in the
existent object-oriented concurrent programming. .

The below enumerated criteria, have been described in [PHI95] and they have
been determined on the basis of some previous studies included in diverse articles,
among which: [MAT90], [MAT93], [FRO92], [PAP89] and [MEY93]:

i): Goal of Called-Oriented Coordination. To guarantee an accurate pro-
gramming, the complete specification of concurrent interactions must be
implemented at the level of the called concurrent activity (or, more exactly,
within the class which is concurrently accessed). If the principle isn’t com-
plied with, there is the risk of destroying the modularity of the classes,
the activity (or object) which initiates the interaction has to know certain
details of implementation, relatively to the called activity (object).

i1): Goal of Coordination Ezpressibility. A primitive of interaction must allow
the expression of certain types of condition, as follows:

a): Intra-Object Concurrency. The concurrent invocation of many meth-
ods of an object must be possible. The concurrent interaction primi-
tives must offer the possibility of specification of methods that can be
executed concurrent.

b): State Procecd-Criteria. The coordination primitives of concurrency
must supply specification modalities of the calling opportunity of a
method or the postponement of this, because of the non-observance of
some conditions that depend on the intern status of the object.

78

REUSE ANOMALY IN OBJECT-ORIENTED CON(*URRE

c): History Proceed-Criteria, There mygt al
tfication whether a methoq can be c:alled‘ ?0
poned) depending on methods of (he
previously. This requirement,

NT PROGRAMMING

exist, g modality of spec-
(the appealing being post-
.ob‘]ect, which haye been called
of specification s included ip b.), be-

programming, the separate presentation of such g principle h
considered useful.
ii1): Goal of Isolated Coordination Code. A concurrent interaction primitive
must achieve the clear separation of the code that implements the func.
tionality of a method to the adequate code of the concurrent interaction
constraint. In the case of non-observance of this principle, the mecha-
mism of inheritance can be affected, taking place the so called inheritance
anomalies which will be described in detail in the next part.
iv): Goal of Separable Coordination Code. A mechanism of concurrent inter-
action must permit the separate inheritance of the interaction code.

In [SUC98] we have done an analysis of the characteristics of all primitives
implemented in the object-oriented concurrent languages that still exist, related
to the above stated criteria. Table 1 presents the synthesis of these results. The
classification and description of all these primitives is not very impqrtant herf:.
However, the main goals of the table presentation are those of suggesting the big
amount of implemented primitives and for demonstfrate that none of thesg com-
Pletely follows the above-enumerated criteria. Details concerning the‘functlongng
of each mechanism of coordination treated in the table can be found in [SUC98].

3. Inheritance anomaly

: 1ect-orl ncurrent

One of the most important problems raised by‘the ob{;/c}feﬁrlaenctsgciirem .

programming is synchronization of concurrent objects. ft;helwhole messages for

s in a certain state, it can accept only one subset o ed on the object inter-

e ance of its internal integrity. This reSt.“Ct.lons l.eq'ltlmz'mﬂs of the concurrent
68 are Named in the literature as synchronization cons

Objects. he responsibility of explicit
n the most object-oriented concurrent lang“agcsut] i{s cegard to synchroniza-

E'Ode impl‘mlentaltion within the framework of the metho

o “Onstraings. represent the developer’s twk-lust have at

for ‘O'r aChieving this thing, the p rogr.ammedl' Lrol;lllllllli(ltltion amon

° Implementation of synchronization an

: h
, d in one of t
of oy P were implemente s were pI
hundJects. All types of primitives that d concurrent language

! v A . . : te
¢ Xisting imperative object-orien

his disposal primitives
g the methods
ose over one
esented

79

DAN MIRCEA SUCIU

Cale-enientd Ceordination | Isolaked $
Primifives | Ceerdinaien Fxp ressihility (Coordinasion rm
i Code Code
SYIC OV SerTonEton No a),b) No [
Semaracw muwtes ok | Mo (sometmesyes) | a) [Mo [F
Condiome cmhaal mgon | N (sometumes yrs) - b; | Wo T W
:@;ﬁzﬁrrr] “No b | Mo O
Norator ;Y" o - ~ Yes - NG
Conde1on vanab ies ‘es b Ho [
e e
»:-..l:.:"-!rxm » 7_:{’__;'___) o o Mo
Inchxdeleinde methods | ~ Yes B h) T He T He
[Behenor eosimactiors T VYes by T T Ho T He
| Actor model i "{ ~ Yes), b), c) ~ To R
Methcd gaars | Yes a) (sometirees), b) | Alraost ves B/
Eratle st B Yes . | b)o Almost yes Tes
| Ptk expression | Yes a).c) Yes o
L Zr mutie o Yes a) (somstimes), b) | Almost yes Ho
| Ceneraizad i) wutre | Yes 1), b) Yes Yes
{ ‘m i Ves b) (restricted) Yes YO
readerfemier priocol Ves b) (restricted) Yes Tes
YeTectve control Ves R)) Yoz | Mo lpos 7e5)
TABLE 1

in the previous part. Likewise the previous part, we have suggested the fact that,
in certain cases, the coordination code of the concurrent interactions cannot be
inherited in fact without generating trivial redefinition of methods. This conflict
has been identified and studied in many papers; in one of these papers, namely in

[MATY0], this conflict was named as inheritance anomaly.
Three distinct cases have been here also identified, in which the utility of the

inheritance concept is more diminished (in some particular cases even cancelled):

e the defining of a new subclass K of the class K requires the redefining of
its methods (the same thing available even for the descendants of the class
k')

e the modification of a new method m of the class K within the framework
of the inheritance hierarchy involves the modification, apparently indepen-
dent, of certain methods as well in class K as in its descendants.

e the defining of a method can force other methods (inclusively those that
will be defined as subclasses in the [uture) to follow the specific protocol
which wasn’t necessary in the case in which the respective method wouldn’t
have to exist. The maintenance of the encapsulation property of classes
will be therefore very diflicult.

An important remark is that the communication and synchronization primi-
tives of a specific language influence appearance of inheritance anomalies. It results
from here that the problem of inheritance anomalics is generated by the semantic

80

REUSE ANOMALY IN OBJECT-ORIENTE CONCURRENT PROGRAMMING

conflicts between the descriptions of synchronization and of the
cific for a language, and not of the way in which the features of t
implemented.

Two classifications of inheritance anomalics will be presented ag follows, shown
in [MAT93] and [ZEN97b]. We will prove further on, that these classiﬁcati,ons are
not complete. In addition, we will present another classification that won’t take
into consideration only the conflicts between concurrency and inheritance, but ajso
the conflicts between concurrency and relationship of aggregation, respectively
between concurrency and delegation mechanism. Based on this new classification,
we will suggest a new naming which is more adequate for describing these two types
of conflicts between concurrency and object-oriented programming concepts.

inheritance spe-
he language are

3.1. Matsuoka- Yonezawa Classification. This classification has been achieved
and presented in [MAT93]. It was based on the demonstration of correctness
of many object-oriented concurrent-programming languages (“correctness” inter-
preted through the viewpoint of the implementation of concurrent interaction and
initiation mechanisms that was to hinder the appearance of inheritance anomalies).
Unfortunately, although the Matsuoka-Yonezawa classification is praiseworthy to
be the fruit of a laborious analysis of the conflicts between inheritance and con-
currency, it has a lack generated by the modality in which this analysis has been
approached.

In this way, the appearance of anomalies in diverse situations was demon-
strated using examples; but the examples do not represent an adequate basis
for classification. Therefore, it doesn’t exist any guarantee that the classifica-
tion is correct or complete. Particularly, such a classification cannot be used for
demonstrating the absence of the inheritance anomalies within the framework of
& Programming language. ,

. On the other hand, the example studied in [MAT93] hasn’t been presented
I a generg] context, but using particular mechanisms of SpeCIﬁcatllO.Il of thg con-
current interactions. In this way, the used mechanisms were: explicit f‘ecezrglng o{
Messages, path-ezpressions, life routines, behavior abstraction [TH(_)94]}; chd ei;)slfs
“d gugrdeq methods [FER95). Nevertheless, as we have shown in the prev
Part, the multitude of the developed mechanisms is much‘greater. ned in [MAT-
.. Lopresent clearly the categories of inheritance anomall‘es deterrgmt;)ded b for
%] Was used 3 classical example, namely the implementation of a f?lli‘tnct state
gure 1). In addition, Matsuoka and Yonezawa u.scd the cox?c?L')L 0 f&b ;h‘ o will
of an object. For achieving a concise and suggestive prese‘ntatlon ?tatoche;,rts i
f‘(%s'ort to the modeling of the behavior of the object, using t%leh:d rr;any fo,rmal
'Smbed by Harrel in [HARBS6]. At these statecharts we have attac s preseated
dnnotations for the specification of the objects consistency (in figure

as e . P
“Xample the behavioral model of the Buffer class). .

DAN MIRCEA SUCIU

A first category of inheritance anomalies 18 that determined by the
of the abstract states. In this way, let’s suppose that the Sp(‘.(}ialiyj
Buffer class (figure 1) is wanted by addition of a new method, Get(
to extract simultaneously from the buffer two elements (the first one)

Partation,,,
a,tl()n ()f th(\
), which y,,

[Duffer |
meaxElem:integer
inineger —
Loutinteger
put(e Elemerty void

| 1
Buffer2 * BBuffer

lock O:-void
ni ck (1 void

e(YSefElement)

HB uffer

getAferPut)Element

FIGURE 1. Hierarchy of classes used by Matsuoka-Yonezawa for
classification of inheritance anomalies

B uffer R
SEtOlin-aut=1) Partial j '
puie) n-oud=maxt lem-1]
: (g8t
— rua niarts:
<
Empty L' -
o e) . Full
Irvariants Iwarfants:
ants:
in>=0) end (out-=0)and

FIGURE 2. Behavior model of class Buffer

The behavior model of such a class, named Buffer2, is presenBtecfiflenr f:lgdlzf:

3 Here it’s shown the Partial abstract state, characteristic f‘or tlllle t‘}ll e ial
which has in this case two sub-states, Partial2 and One (a‘ct.utas)y
state is replaced in the behavioral model by those ot}:;z. t.wo atfd nfet}.wd car20) i
In examples presented in [MAT93] is shown that the addition ot m tod et ing
he 2 class using, for instance, enable-sets mechanism, l.rgplxes er e
the Buffz;oc(i:s of the Bl’xffer class. That is because the partlthn of the Parhown
Otfa?;':el rlrlllsst be treated by all these methods. On the other hand, it has been s

s

82

REUSE ANOMALY IN OBJECT-ORIENTED CONCURRENT ppog,

mechanism with guarded methods doe

e sn’t lead o th
g’lpe of inheritance anomaly. " ppearance of e
— N R —
______ a0 [Patal
(4 ——--~\,ﬂ . D“'{O_}
o o |
a2) e 99%0
Empy ,“
w00 fu J
Invaniante '
in>=0) and (out~=0) and J

FIGURE 3. Behavior model of class Buffer?

A second category pointed out in [MAT93] is that of the inheritance anom-
alies determined by the history sensitiveness of states. 'The example that was
studied by the authors of the paper, is that of a subclass, HBuf fer, which contains
a method getAfterPut() which can be executed only if the previous accepted
method was Put (). So the method getAfterPut() won’t be- immediately exe-
cuted, after the acceptance of a Get () method or getAfterPut()). This situation
needs the addition of a new member variable (in the case of the mechanism of
behavior abstractions or the enabled sets). The model of behavior presented in
figure 4 is available for both cases. .

For the enabled sets, re-definitions are necessary, because the new state must
be taken into consideration by all methods. In the case of methods w1t.h guards,
there are necessary considerable re-definitions because the suitab.le setting of the
alue of the new variable has to be achieved in all methods. Yet, in this list case,
'he cognition of the implementation of the redefined methods is not necessary, so

tl!}re doeSD’) . : l t
_ t take place a violation of modularity. . odifica-
The last, category of inheritance anomalies 18 that determined by “fl‘; ,I::)malies,
1 2bstract states. The shown example | addition of the buffer
e']:;"“s“‘ of the possibility of obstruction the extra) he numbers
8. In this way the state of an object won (figures 1

0, })
&fld)u'f)rer elements» but also on the value of the me
9),

tjr)n
ction an t
t depend only on

mber variable locked

chieved by means of .Lhe Lociig
:(i BBuffer class. ’l"hls (:alac e
’ fs nchronization. n b

” This addition

83

e The blocking and release of the buffer s a

algg 98, fespectively Unlock() of the new creatt '
Way " Plemented using the mentioned mecham:.ndd o dtate.
s Necessary (in case of enabled sets) t0 &

A

DAN MIRCEA SUCIU

bbb Al

T

"

FIGURE 4. Behavior model of class HBuffer

BB U fer]
i Unlock)
putle) [o, o 1. uef)
- Partial e
(Empty |
S [Full]
ré e . \mbcko
{T_J
Lock
ariats
ot locked i J

Imeariants:

FicuRrE 5. Behavior model of class BBuffer

involves the appearance of the inheritance anomalies, as you could see in the
previous example. In the case of guarded methods, the modification of the guardS‘
conditions is necessary for taking into account the new member variable locked.
Therefore the redefining of the Put () and Get () methods is necessary without any
altering of their functioning.

The classification of the inheritance anomalies achieved by Matsuoka and
Yonezawa represents a first systematic determination attempt of the causes that
lead to the appearance of inheritance anomalies. This classification has unfor-
tunately no theoretical basis, basing strictly on the test of the cases where the
multitude of abstract states of a class is altered in its descendants. Therefore,
there doesn’t exist any guarantee that the respective classification is complete OF
correct, its achievement depends strictly on the authors’ “decency” and experience:

84

REUSE ANOMALY IN OBJECT-ORIENTEp CONCURRENT p
RENT PROGRAMMING

Wxtensions New FOV(‘rrldlng | Refers g
method met CER 50
5 No T —yod -batent method.
E2 No [Ve [y
E3 Yes | No [N
E4 Yes No \\“"“ij«-. :
Bs Yos | Voo |
= ——— | C
E6 ij_‘ Yes -\uy; —
——

. ¢ “\ - T _7“.'— 177-7 . T -
TABLE 2. Extension possibilities for a ¢]ags

More than that, there doesn’t considered the cage which leads to an inher;
anomaly without modifying abstract states in a subclass. For above ex:rln elmancg
using certain particular coordination mechanisms, the building of a new Suisc?fn
of the Buffer class that contain a method which extracts the first element fr:IsIsl
buffer, leads to unjustified redefining of all methods of the superclass. Thislthin
can be easily demonstrated using the mechanism of concurrent interaction wit}gx
semaphores, for example.

3.2. Zeng-Schach Classification. The classification suggested by Zeng and Schach
has been relatively recently achieved, in [ZEN9T7]. They suggest here an analysis
of the way in which the inheritance functions, more precisely of the way in which
the subclass can extend the superclass without taking into consideration either
mechanism of particular concurrent interactions. '

Syntactically, a subclass can extend the parent classes in three ways: by
deﬁning a new member variable, by defining a new method or by rewriting the
inherited methods. Although the three modalities of extension are orthogonal, the
*ddition of 2 new member variable involves logically the defining or re-defining
of less than a method with which has to actuate. That’s why Zeng and Schach
“nsidered that the appearance of inheritance anomalies is bound to the last two
;:tenSiOH modalities of a superclass. This approach is totally different of th}?t
abs[tMAT%]’ because -the inheritance anomalies are not watched, ‘relfa:}e:iis to the

fact states sets of an object, but with the new defined methods o -

) : . : ; here other meth-
ore than that, the situations are taken into consxdera.tlondzvﬁrfed method. In

0ds of
an obiect . . . ork of a new ;
Ject are mentioned within the framew h have been consid-

t?ible 2 *
s < there are presente 2 alvged cases in [ZEN97] whic .
prescnted the analysed o= on-tr[ivial re-definitions of methods.

ks of the approach. Narpcly the latt;t
blem of redefinition of meth-
teristic aspect of inheritance

Ted

3 potentia] situations for generating n
thay :9 fact represents one of the drawbac
ods, o €en taken into consideration only the Pro
aiea:l()ther aspect has been ignored, the Chalr arcity b
. Anoyy Bamely that of violation of class mOd};’ ae six cases presented 10 abe
4 takeg ; et drawback is that the analysis of thos onsidering that We

S |) . . .+ concurrency, ¢
Mo consideration only the inter-object €0 85

9 | o

DAN MIRCEA SUCIU

deal with objects which own only one activity in execution at a ver
‘Therefore, either in this case, it cannot be asserted that the results of ¢
lead to a complete classification.

The result of the analysis 1s not an astonishing one; it, asserts the existence of
two categories of anomalies. The first category, named the category of anom
of forced overriding, is determined by the necessity of redefining of one o ,
methods in a subclass gencrated by definition of a method within the framewor)
of this. The second determined category is that of the synchronization anormaljeg
which refers to the impossibility of calling a method because of its synchronizatior;
constraints.

The anomalies of the first category seem to correspond to the inheritance
anomalies of the Matsuoka-Yonezawa classification. The here-achieved analysis
doesn’t permit the determination of those three subcategories, which was men.
tioned in the previous part.

On the other hand, the synchronization anomalies are not characteristic for
the object-oriented concurrent programming. As the authors even asserted, these
anomalies are present also in non object-oriented environments, and the problem
1s very similar with nested monitor call problem.

Therefore, the classification introduced here doesn’t bring anything new. More
than that, the source of anomaly appearance is not very clear spotlighted. This
thing is due firstly to the approach of the problem that doesn’t take into consid-
eration particular implementations of mechanisms of concurrent interaction.

y mOment.
he analygjq

al i(;g
Nore

3.3. Reuse Anomaly. The concept of inheritance anomaly has been initially =
introduced for describing the conflicts that appear between concurrency and in-
heritance mechanism of the object-oriented programming. However, in the time,
as can be seen in diverse articles with these topics in the last years, inheritance
anomalies have been considered as representing the only main conflict proceeded
from the fusion between concurrency and object-oriented concepts. This thing is
totally wrong, because, as we will present further on, anomalies with a similar
behavior take also place in the case of other mechanisms characteristic for the
object-oriented programming. [ZEN97] represents one of the few papers where
was taken in account other anomalies, not just those related with inheritance.
Unfortunately, as we have seen, the achieved studies in this paper lead unsatisfac-
tory conclusions. Although the forced overriding anomalies introduced in [ZEN97]]
seem to have a more general character, they replace the concept of inheritance
anomaly only on the level of naming.

Between the classes that describe a specific problem may exist four types of
relationships. A first type of relationship is that of inheritance which allows, as 1t

is well known, the reuse of the structure and function of a class in the definition
of another class.

86

REUSE ANOMALY IN OBJECT-ORIEN’I‘ED CONCURRENT PROGRAMMING

| There exist programming Ianguag(.es' (as in the SINA example) which haven’t
implemented a mechanism for the rewriting of such a relationghi For simulati
the inheritance in one of these languages, the mechanism ot: dg;, Otr simulating
The relationship of delegation between two classes js also a rouse‘ rﬁZt]'on E Usecz
it supposes the potential redirection of recejved messages b;/ ‘an ob'el(:tl;l St b
called delegated object. The delegated object must be effectively in<:,]1uldedoi1iL :}I
CODSt.“UCtion of the ﬁrst objec.t.. The delegation is a stronger relationship than the
inheritance, becal{se 1t can stimulate this relationship, and more than that, it can
model the. dynamic evolution of systems (thing which the inheritance, as z; static
relationship between classes, cannot achieve).

The association relationship is the third possible relationship where two classes
of a system can be present. This relationship is also named as reuse relationship,
because at a very moment the object of a class is used by the services offered by
an object of the associate class.

The forth relationship between the classes of a system is the aggregation rela-
tionship. It involves the existence of relationship of the type whole-part between
the instances of classes being present in this relationship. This relation was con-
sidered by some authors as a particular type of association.

The four above described relationships also represent many ways of reuse
of the defined classes in a certain. library. We will show as follows that in a
concurrent context, the existence of one of these relationships can determine in
certain conditions non-trivial re-definitions of methods as sertous encapsulation
violation. Therefore, exactly the considered effects at the description of inheritance
anomalies in [MAT93]. S ,

The relationships of delegation, aggregation and assoc1at10r'1 mvolyes gt least,
the existence of a communication between objects, comr_nunicatlog which is based
on the access or calling of public variables and methods of an object. T};e .acczaﬁs
at the public member variables of this one in' a concurrent _contexg and m‘nt;3
absence of an adequate synchronization mechanism can Qetermme the bringing 1

.) biects level which access the
a firmness state of the object. Therefore, methods or ob)

' ' ' tion, association
| ' ' s relationship of aggregation, .
o el O e o and synchronization mechanisms

of delegation, must be found communicanon f these mechanisms (as
for protection of the consistency of data. For t:,he most o 1Omalies) biv thing
't has been demonstrated also in the case of mheflgan?iu?llic or not) from the
SUpposes the knowledge of implementation of metho s‘aP " lation of classes can
Object of which structure is accessed. Therefore the en; Iiil))rary of classes, is once
¢ deStfoyed and the reuse of classes which be!ongsftﬁasscs within the framework
48ain bUrder;ed. More than that, the modiﬁcathFl{O Ltion of the code of all classes
of 3 libra,l‘y of classes involves the taking i“'to, COTAS erd
of which it is in an above-mentioned relationship-

87

DAN MIRCEA SUCIU

The fact is obvious that in the cases of asso(:izbit,ionsland aggregationg, the
anomalies of this type can be eliminated l',)y the consideration of all membey vari-
ables of a class being private member v;mab!e. |

However. the most of existent object-oriented pr,ogrnmrm‘ng languagcs allow
the defining of many kinds of visibility for the member variables. More than
that, in some languages (for example C+-4) the methods may return referenceg of
member variables. In this way the stale ol an objecl can be altered in the
manner as using public member variables (and involve the same anornalics).

Because of the obvious resemblance between this type of anomalies and th
known 1n the literature as inheritance anomalies, we think the unitary treatment
of them 1s more natural than the finding of a general naming of defining them.
The most adequate naming seems to be that of reuse anomalies.

The criteria mentioned in the third part of this paper represents necessary con-
ditions for avoiding the appearance of reuse anomalies and the untouched quality
keeping of the introduced concepts as well the concurrency mechanisms as the
object-oriented technique. Unfortunately, there hasn’t been realized a communi-

cation and synchronization mechanism of the concurrent activities which are to
satisfy all these principles.

Same

4. Conclusions

The problems generated by the implementation of concurrency within the
framework of the object-oriented programming haven’t yet found a solution. The
objective models developed until now do not satisfy all criteria which provide a
correct and efficient programming.

We have shown in this paper that a rigorous analysis of the conflicts between
the mechanisms of concurrent interaction specification and the concepts of object-
oriented programming hasn’t been achieved until now. The inheritance anomalies
have been defined as a representation of conflicts between inheritance and concur-
rency. These anomalies are characterized by the re-definitions of methods and by
the destruction of encapsulation.

We have also demonstrated that these are not the only types of conflicts
specific for the inclusion of concurrency within an object-oriented framework and

we have introduced the term of reuse anomaly. This term seems more adequate

and offers the possibility of treatment of these conflicts on a higher level.

References

[BRI93] Jean-Pierre Briot, Object-Oriented Concurrent P
grammaing Methodology, Proceedings of the 7th
puter Scientists, 1993.

[ELE91] Petru Eles, Horia Ciocarlie, Programarca con
Stiintifica, Bucuresti, 1991,

rogramrning: Introducing a New Pro-
International Meeting of Young Com-

curenta in limbaje de nivel inalt, Editura

88

REUSE ANOMALY IN OBJECT-ORIENTED CONCURRENT PROGRAMMING

Szabolcs I“CFC“CZi" Guarded Methods vs. ’T@critamrc Anomaly / Inheritance Anomaly

Solved by Nested (:uard'ed Method Calls, SIGPLAN Notices 30(2): 49-58, 1995.

[FRO92] svgnd Frolund, In.h(:rttnn(rc of .‘.vynchrom:zation Constraints in Concurrent Object-
0mentfd Iir'ogramnasrlg.Lflngttages, Proceeding of ECOOP'92, 1,. Madsen editor, Lecture
Notes in Computer Science, vol. 615, pp. 185-196, Springer-Verlag, Utrecht, Nether-
lands, 1992.

[HARSG] David Harel, Statecharts: A Visual Formalism for Complez Systems, Science of Com-
puter Programming, North-Holland, 1986.

[MAT90] Satoshi Matsuoka, Ken Wakita, Akinori Yonezawa, Synchronization Constraints With
Inheritance: .Wf'hat Is N(?t Possible - So What I5%, Technical Report 10, Department of
Information Science, University of Tokyo, 1990.

[MATQB] Satoshi Matsuoka, Akinori Yonezawa, Analysis of Inheritance Anomaly in Object-
Oriented Concurrent Programming “Languages, Research Directions in Concurrent
Object-Oriented Programming, pp.107-150, MIT Press, Cambridge, 1993.

[MIT94] S. E. Mitchel, A. J. Wellings, Synchronization, Concurrent Object-Oriented Program-
ming and the Inheritance Anomaly, Jun. 1994. .

[PAP89] Michael Papathomas, Concurrency Issues in Object-Oriented Programming Languages,
in D. Tsichritzis, editor, Object Oriented Development, pg. 207-245, University of
Geneva, Switzerland, 1989.

[PAP97] M. Papathomas, Anders Andersen, Concurrent Object-Oriented Programming in
Python with ATOM, Proceedings of the 6th International Python Conference, Cali-
fornia, Oct. 1997. :

[PHI95] Michael Phillipsen, Imperative Concurrent Object-Oriented Languages, Technical Re-
port TR-95-049, International Computer Science Institute, Berkeley, Aug. 1995.

:SCUQ?] Marian Scuturici, Dan Mircea Suciu, Mihaela Scuturici, lulian Ober, Specification of

active objects behavior using statecharts, Studia Universitatis "Babes Bolyai”, Infor-

matica, Vol. II, Nr. 1, 1997.
1SUC97] Dan Mircea Suciu, Limbaje de programare orientate obiect concu

Aug. 1997. |
[SCC%] Dan Mircea Suciu, Anomalit de mostenire in programarea orientata-obiect concurenta,

[FER95]

rente, PC REPORT,

o~ referat de doctorat, mai 1998. _ . _
[THO94] Laurent Thomas, Inheritance Anomaly in True Concurrent Object Oriented Lan-

guages: A Proposal, Research Report, University of Tokyo, Department of Information
YOx Scieflce, 1994. . ‘

IN87) Akinori Yonezawa, Jean-Pierre Briot, Inheritance a
Object Oriented Programming, Proceedings of the !
Oriented Programming (ECOOP’87), Lecture Notes in Comput
32-40, Springer - Verlag, 1987.

] Nanshan Zeng, Stephen R. Schach, A New
submitted for publication, 1997.

nd Synchronization in Concurrent

European Conference on Object-
er Science, no. 276, pp.

e Inheritance Anomaly,

[ZM\Y’H Approach to th

s AND COMPUTER Science, RO-

“]
340 (?A”E*BOLYAI” UNIvERsITY, FAcuLTY OF MATHEMATIC
\,VLUJ-NAP()(:A, ROMANIA

“Mmail address: tzutzu@cs . ubbcluj.ro

89

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

