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Circular Distance in Directed Networks

DANIELA MARIAN

Abstract. In this article we define the circular distance in strongly directed
networks. Its basic properties are studied. We adopt the definition of network
as metric space introduced by Dearing and Francis (1974) and the definition
of directed networks introduced by Facob (1994).

We start with an undirected, connected graph G = (W, A), without loops or
multiple edges. To each vertex w; € W = {w1, ..., wn} we associate a point v; from
an euclidean space X. Thus yields a finite subset V — {v1,...,un} of X, called the
vertex set of the network. We also associate to each edge (w;, w;) € A a rectifiable
arc [v;,v;] C X called edge of the network. We assume that any two edges have
no interior common points.- Consider that [vi,v;] has the positive length l;; and
denote by U the set of all edges. We define the network N = (V,U) by

N={ze X |3 (wi,w;) € Aso that r € [vi, v;]}

It is obvious that N is a geometric image of G, witch follows naturally from an
embedding of G in X. Suppose that for each [vi,v;] € U there exist a continuous
one-two-one mapping 0;; : [v;,v;] — [0, 1] with 0ij (vi) = 0,8;; : (v;) = 1, and
01’3‘ ([U,’, ’Uj]) = [0, 1]

Any connected and closed subset of an edge bounded by two points z and Yy
of [v;,v;] is called a closed subedge and is denoted by [z, y]. If one or both of z,y
miss we say that the subedge is open in z, or in y or is open and we denote this by
(z, ylor [z,y) or (z,y),respectively. Using 0:; , it is possible to compute the length
of [z,y] as (=, y]) = |65 (z) — 65 (y)| - lij. Particularly we have ! ([u, vi]) =iy,
(([”iw]) = 0;; (z)lij and [ [z, vj]) = (1 —6;j (z)) - ;;. By analogy with graphs we
Introduce the notion:

The degree gy (v) of v € V in N is the number of closed edges which contain
V. The verteyx v with gn (v) = 1 is called terminal vertex.

We consider the points z,y € N and the following edges and at most two

) .
Vubijges at the extremities
—
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[I,i'l] \ ['('1.1")1 y sy [vk~~||“k] ) [“k; '/] ) k € N)k S I, {”Ia"')vk} C V

when the vertex vy, ..., vx are not indispensable distinctly.

A path L (x,y) linking the point @ and y in N is the union of all edges ay
subedges n the sequence considered. If & = y and k > 3 the path is called cycle
The length of a path (cycle) 1s the sum of the lengths of all its component edges
and subedges and we denote it by [ (L (z,y)). If a path (cycle) contains only
distinct vertices then we call it elementary.

A network is connected if for any points x,y € N there exist a path L (z,y) ¢
N. i
A connected network without cycles is called tree.

Let L* (z,y) be a shortest path between the points z,y € N. This path is
also called geodesic. We define a distance on N as follows: d (z,y) = [ (L* (z, y)),
for any z,y € N. It is obvious that (N, d) is a metric space.

Definition 1. A verter v of a network is calledf point of articulation if N\ {v} is
not connected.

The directed networks was introduced by E. lacob in [[a94]. Because we
already presented undirected networks we will specify only the difference between
that and directed networks. If in an undirected network N = (V,U ) we attach
at all edges a sense the result will be a directed network and edges with the
respectively sense we will called arcs. :

We denote an arc between vertex v;,v; € V also with [v;, v;] and the sense of
arc will be from initial vertex v; to final vertex v;. If 2,y € [u;, v;] then the subarc
[z,y] is a connected subset of [v;, v;] having the same sense with arc [v;, v;]. The
notion length of arc and subarc is identical with the length of edge respectively
subedge. So in the sequel we suppose that the arc [v;, v;] have a positive length
l;:.

’ A directed path D (z,y) from the point € N to point y € N in a directed
networks NV is a path passing once through a vertex in witch all arcs and subarcs
have the same sense witch is the sense of directed path too.

So is the lots of points who belong to arcs and subarcs of sequence

[1'; Ul] ) [91792] ERES} [vk—l) 'Uk] ) ['Uk,!/] ) k € N)
k<n{vi,,, o} CV,|{vy, LUk =k
If z = y the directed path D (z,y) is called directed cycle.
We denote with 1D* (2, y) a shortest directed path between the points z,y € V.

Definition 2. A directed networks N is called strongly connected if for all x,y €
N exist a directed path from = to Y.

We V\{ill endow the directed networks N with a metric space similar to the
structure introduced for directed graphs by B.Zelynka in [Ze197]
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We recall that in an undirected graph the digt
usually defined as the length of the shortest path connecting these vertices. Th
distance is a metric on the vertex set of the graph. Analogously in"a’dir‘eétie;' 1}5
(usually the str(?ng C(‘)nnecl.edness 18 supposcd) the distance ¢ (z Y) frgm ‘a ‘if;pl
r to a vertex y 1s defined as the length of the shortest directed [,mt,h from z Lo V.
In general d (z,y) thus defined is not & metric, because it is not, syrrime»trir- lyn
{ZelQT] B. Zelinka. define a certain distance in a directed graph which ig ;mc:;‘ric
namely circular distance. B

Let G be a strongly connected directed graph and let z,y be two vertices of

ance between two vertices is

G.

Definition 3. [Zel97] The circular distance d° (z,y)

_ between the vertices z,y in
the graph G 1s defined as

4 (2,y) =d (2, ) +d (y,z)
were d denotes the usual distance in directed graphs (sec above).

Proposition 4. [Zel97] The circular distance d° (z,y) is a metric on the verter
set V(G) of the graph G.

We consider in what follows a strongly connected network N and T, yEN.

Definition 5. The distance from z to y, d(z, y) 1s the length of the shortest di-
rected path from z to y

(1) d(z,y) =1 (D" (z,y))

As in directed graphs d (z,y)thus defined is not a metric, because it is not
symmetric.

Analogous to circular distance in directed graphs we define the circular dis-
tance in directed networks, which is a metric.

Deﬁnition 6. The circular distance d° (z,y) between the points z,y in the strongly
“onnected network N s
) d*(z,y) = d(z,9) +d(v,2)
where d s the distance defined in [1]

In other words d° (z, y) is the length of the shortest directed path going from

Y and then back to z

N - ~ and arcs may
rey Ote that in the mentioned path, called circular path, vertex an
:J(‘,}it.

z g

r and i tontaih all arcs
')fthln t.he directed network in fig.1 such circular path. for z and y ¢
- Airecte network and the arc e occurs twice in IL.
= f0“0Wing proposition is evident.

Y0pogiy: s a metric on N,
08 : . 0 ( a metrt /
ftion 7. 7y, circular distance d° (,y) i 69
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As 1n directed graphs, we define:

Definition 8. The length of the shortest directed cycle in the directed network N
15 called the directed girth of N and is denoted by g (N)

Proposition 9. If z,y are two distinct points of a strongly connected network N,
then
d° (z,y) > g (N)
Proof. Let 2,y € N. Then

& (2,3) = 1(D" (z,9)) + (D" (,2)) O

The union of directed path D* (z,y) and D* (y, ) must contain a directed
cycle. The length of this cycle is greater than or equal to ¢ (N) and less than or
equal to the sum of lengths of D* (z,y) and D* (y,z). This implies the assertion.

Analogously as for the usual distance, we may introduce the circular radius
and circular diameter.

Let z€ N =(V,F) and AC N. Then
e’ (z) = max{d0 (z,y) |lye N}
is called circular elongation of z and

& (2, A) = max {d° (,y) | y € A)
18 called circular elongation of z relative to A.

Definition 10. The circular radius r° of N is

| r? = min {e” (v;, V) | v; € V)
The absolute circular radius r® of N is

re = min{e (z,V) |z € N}

The general circular radius v) of N is
0 = (.0 x
rg = min{e’ (vi) | v; € V}
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The continuous circular radius r0 of N s
re = min {co.(a:) |z € N}
Any vertex v; € V such that e (v;, V) = 19 ig 4 circular center and the circular
center set 1s thus
C0 = {‘U.‘ eV l el (’U,-, V) = 7'0}

Any point z € N such that e (z,V) = ra is circular absolute center and the
circular absolute center set is

Co={zeN|e(z,V) =10}

Any vertex v; € V such that e° (vi) = rg 1s a circular general center and the
circular general center set is

Cy = {v; EV]eo(v,'):rg}

0

¢ 1s a circular continuous center and the

Any point £ € N such that ¢°(z) = r
circular continuous center set is

C’g:{xENleo(x):rg}
Let us consider now the maximum circular distances between points. We denote
the diameter of N by:
6% = max{d0 (vi,v5) | vi,v; €V} = max {e® (v;, V) | v; € v}
the absolute diameter by: '
6 =max {d®(z,v;) |z € N,v; € v}
the continuous diameter by: ‘
80 = max{d° (z,y) | z,y € N}
Proposition 11. For the circular radius r° and circular diameter 6° of a strongly
“onnected directed network N the following inequality holds:
r? < 8% < 2rf

Proof. The first inequality is true because the minimum.of a set Is less_or

"9ual than the maximum of a same set. For the second inequality we denote with

% an circular center of N, so
e’ (v;, V) = r® = min {e° (vj, V) | vj € v}o

W /) = &° is case Jv; € V
80 ”We denote with vk the vertex for who € (vg, V) = 4V, In this case Jv;
o Lhgt,

8% = ¢ (vg, V) = d° (vg, vj) < d vk, Vi) tdo (vi, vj) <
<e¥ (v, V) +e (v, V)=2r

50
"¢ have g0 < 2r0,
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Proposition 12. For the diameter, absolute diameter and continuous diameter
of a strongly connected directed network N the following inequalily holds:

(5() < 5(') < A‘()
Proof. By the definitions:
60 = max {d° (vi,v;) | vi,v; € V} <49 =
= max{d(z,vi) |z € N,v; € V} <
<de =max{d(z,y) |z,y € N}

Proposition 13. For the circular radius r° and for the absolule circular radius
r0 and the following inequality holds .

r0 < 270

— a
Proof. Let ¢, denote the circular absolute center, v the circular center and
ve a vertex such that d® (vg,ve) = r°. Both d° (vk,cqs) < rQ and d° (v,,cq) < 75
by definition of ¢,. By the triangle inequality
2r0 > d° (vg, ca) + d° (ve, ca) > d° (vk, ve) = 7°
so we have r® < 2r0. 0
Definition 14. [La85] A network N is a cactus if no two cycles have more than
one verter in common.

Note that trees and cycles are special cases thereof.

Definition 15. A directed cactus is any directed network which is obtained from
a cactus by orienting its edge.

The following proposition is easy to prove.

Proposition 16. For any two distinct vertices u,v of N there exist a unique
directed path from u to v in N if and only if N is a strongly connected directed

cactus.
Thus we see that in certaln sense strongly connected directed cactl are ana-

logues of trees in the case of directed networks. That form a particular case of the
concept of unipathic directed networks defined as follows, analogously to unipathic

digraphs defined in[Har65).

Definition 17. A unipathic directed network is a directed network N in which for

any two pownts u,v € N there exist at most one directed path from u to v.
Further on we prove:

Theorem 18. If z,y are lwo distinct vertices of a directed cactus network N,
then d° (z,y) 15 equal to the sum of lengths of all cycles in N which have common
edges with the path I (z,y).
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Proof. 'The proof is analogously with that done for Zelinie, in[Zel97}for di-
rected cactus graphs. O . '

Wwe will proceed by induction according to the number k of cycles which
contain edges of D(x,y)l .H k :.1’ then z and y are iy the same cycle B and
this cycle is the (edge-disjoint) union of D (2, y) and p (y,2), therefore 4 (z, y)is
equal to the length of cycle B.

Now let k > 2 and suppose that for k — | the assertion is true. Let the first
odge of D (2, y) be in the cycle Biand let a be the terminal vertex of the Jagt edge
of D(z,y) being in By. Then a is an articulation between Bi and another cycle
B, which contains the edge of D (z, y) outgoing from a. The path D(a,y) is part
of D(z,y) and there are k — 1 cycles containing edges of D (a,y), namely all those
containing edges of D (z,y) except B;. By the induction hypotesis d° (a, y) is the
sum of lengths of these cycles. Not only D (z,y), but also D (y, z) goes through
a and therefore d° (z,y) = d° (z,a) + d° (a,y), which is the sum of lengths of all
cycles which contains edges of D (z,).
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