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Circular Distance in Directed Networks 

DANIELA MARIAN 

Abstract. In this article we define the circular distance in strongly directed 
networks. Its basic properties are studied. We adopt the definition of network 
as metric space introduced by Dearing and Francis (1974) and the definition 
of directed networks introduced by Bacob (1994). 

We start with an undirected, connected graph G = (W, A), without loops or 
multiple edges. To each vertex wi ¬ W= {w1,..., Wn} we associate a point v; from 
an euclidean space X. Thus yields a finite subset V = {v1, .., Vn} of X, called the 
vertex set of the network. We also associate to each edge (w;, w) E A a rectifiable 
arc vi, v]CX called edge of the network. We assume that any two edges have 
no interior common points. Consider that (v;, v has the positive length li; and 
denote by U the set of all edges. We define the network N = (V,U) by 

N= {r ¬X |3 (w;, w;) E A so that z E [vi, vjl} 
It is obvious that N is a geometric image of G, witch follows naturally from an 

embedding of G in X. Suppose that for each [vi, vg] EU there exist a continuor 
one-two-one mapping 6i [v%, v; |0,1 with 6i; (vi) = 0,8ij (v)=1, and 
di (lvi, v]) = [0,1]. 

Any connected and closed subset of an edge bounded by two points r and y of [vi, v] is called a closed subedge and is denoted by [a, y. If one or both of z, y miss we say that the subedge is open in c, or in y or is open and we denote this by 

or lz, v) or (z, v),respectively. Using 6ij ,it is possible to compute the length 
of ,as ([2, 3i]) = (0 (z) - 0;,; (y)|-ij. Particularly we have (%, vz)) = lij , 

, ) = 0ij (r) ij and ([2, v,]) = (1 - 6ij (#)) lij. By analogy with graphs we 

introduce the notioon 
The degree gn (u) of v E V in N is the number of closed edges which contain 

he vertex v with gw (u) =1 is called terminal vertex. 
e ConSider the points ,y E N and the following edges and at most two 

Subedges at the extremities 
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, vil, [1, t2], Vk-1, 'a],lVk, y,ke N,kn, {vi,.., Vk}CV 
when the vertex v, .., Uk are not indispensable distinctly. 

A path L (r, y) linking the point r and y in N is the union of all edges and 

subedges in the sequence considered. lf r = y and k > 3 the path is called cycle. 

The length of a path (cycle) is the sum of the lengths of all its component edges 
and subedges and we denote it by (L (7, y)). If a path (cycle) contains only 
distinct vertices then we call it elementary. 

A network is connected if for any points a, y ¬ N thecre exist a path L (2, y) c 

N. 
A connected network without cycles is called tre. 

Let L (z, y) be a shortest path between the points z, y EN. This path is 

also called geodesic. We define a distance on N as follows: d(z, y) = l (L' (z, y), 
for any r, y ¬ N. It is obvious that (N, d) is a metric space. 

Definition 1. A verter v of a network is caledf point of articulation if M\ {v} is 
not connected. 

The directed networks was introduced by E. acob in [la94). Because we 
already presented undirected networks we will specify only the difference between 

that and directed networks. If in an undirected network N = (V, U) we attach 
at all edges a sense the result will be a directed network and edges with the 
respectively sense we will called arcs. 

We denote an arc between vertex v;, V; E V also with |vi, vi| and the sense of 

arc will be from initial vertex v, to final vertex vj. If 2, y e [vi, v;] then the subarc 
, y is a connected subset of lv;, vj] having the same sense with arc [vi, vz The 
notion length of arc and subarc is identical with the lêngth of edge respectively 
subedge. So in the sequel we suppose that the arc lv;, vj] have a positive length 

A directed path D (z, y) from the point z E N to point y E N in a directed 
networks N is a path passing once through a vertex in witch all arcs and subarcs 

have the sane sense witch is the sense of directed path too. 
So is the lots of points who belong to arcs and subarcs of sequence 

, v1,v, v2]., Vk-1, Vk], [vk, y, k ¬ N, 
kn, {v1, , , Uk} V,|{U1,... Uk}|= k 

Ifr = y the directed path D (r, y) is called directed cycle. 
We denote with D* (:, y) a shortest directed path between the pointsz, y EN. 

Definition 2. A directed nectworks N is called strongly connected if for all r, y E 
N exist a directed path from r to y. 

We will endow the directed networks N with a metric space similar to the 
structure introduced for directed graphs by B.Zelynka in (Zel97]. 
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CIRCULAR DISTANCE IN DIRECTED NETWORKS We recal that in an undirected graph the distance between two vertices is 
lly defined as the length of the shortest path connecting these vertices. This distance is a metric on the vertex set of the graph. Analogously in a directed graph ally the strong connectedness is supposed) the distance d (z, y) from a vertex a avertex y is defined as the length of the shortest directed path from r toy. Tn general d(r, y) thus defined is not a netric, because it is not symmetric. In t7ol971 B. Zelinka define a certain distance in a directed graph which is a metric, namely circular distance. 

Let G be a strongly connected directed graph and let z, y be two vertices of G. 

Definition 3. [Zel97] The circular distance d° (z, y) between the vertices x, y in the graph G is defined as 

(7,y) = d(z, y) + d (y, z) 
were d denotes the usual distance in directed graphs (see above). 
Proposition 4. [Zel97] The circular distance d° (r, y) is a metric on the verter set V (G) of the graph G. 

We consider in what follows a strongly connected network N and z,y ¬ N. 
Definition 5. The distance from r to y, d (7, y) is the length of the shortest di- rected path from z to y 

(1) d(, v) =l (D" (7, y)) 

As in directed graphs d (z,y)thus defined is not a metric, because it is not symmetric. 
Analogous to circular distance in directed graphs we define the circular dis- 

tance in directed networks, which is a metric. 

Definition 6. The circular distance d (c, y) between the points z, y in the strongly 
connected network N is 
2) d(z, y) = d (z, y) + d (y, ) 

In other words d° (z, y) is the length of the shortest directed path going from 

Note thatin the mentioi path, called circular path, vertex and arcs may 

of the directed network and the arc 
evident. 

e occurs twice in il. 

uhere d is the distance defined in [1. 

to y and then back to r. 

Tepeat 
In the directed netwo 
The following proposition is evident. 

vork in fig.1 such circular path for r and y contain all arcs 

Proposition 
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FIeURE1

As in directed graphs, we define: 

Definition 8. The length of the shortest directed cycle in the directed network N 
is called the directed girth of N and is denoted by g (N). 
Proposition 9. Ifz, y are two distinct points of a strongly connected network N, 
then 

d(, ) 2 g (N) 
Proof. Let x, y E N. Then 

d(, y)=l(D° (7,u)) +1 (D° (v, r)) 0 
The union of directed path D" (7, y) and D* (y, a) must contain a directed 

cycle. The length of this cycle is greater than or equal to g (N) and less than or 
equal to the sum of lengths of D* (7, y) and D (y, *). This implies the assertion. 

Analogously as for the usual distance, we may introduce the circular radius 
and circular diameter. 

Let r E N = (V, E) and A c N. Then 

e(r) = max {d° (c, y)|veN} 
is called circular elongation of r and 

(, A)= max {d" (z, v) |y ¬ A} 
is called circular elongation of z relative to A. 

Definition 10. The circular radius r of N is 

r=min {e" (vi, V) | v, E V} 
The absolute circular radius ra of N is 

mn e" (7, V) |r ¬ N} 
The general circular radius ofN is 

min {«° (u%) | v, ¬ V} 
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CIRCULAR DISTANCE IN DIRECTED NETWORKS 
The continuous circular radius r of N is 

=min fe()|z¬ N} 
Any vertex v; E V such that e" (v;, V) =r" is a circular center and the circular center set is thuss 

C= {u ¬V |e° (v,, V) = r®} 
Any point E N such that e (r, V) = r is circular absolute center and the circular absolute center set is 

c={z¬ NI(E, V) = r2 
Any vertex v; ¬ V such that e" (vi) = r is a circular general center and the circular general center set is 

C= { E V|e (ux) = r} 
Any point z E N such that e (z) = r is a circular continuous center and the 
circular continuous center set is 

c= {z¬ N |e(e) = } 
Let us consider now the maximum circular distances between points. We denote 
the diameter of N by: 

0max {4° (v%, vz)| vi, v E V} = max {e" (v, V) | v% E V} 
the absolute diameter by: 

6 = max {d' (r, vi) |z ¬ N, vi E V} 

the continuous diameter by: 

=max{d (7, v)|c,y¬ N} 
Toposition 11. For the circular radius r" and circular diameter of a strongly 
cOTnected directed network N the follouing inequality holds: 

802r 
Too. The first inequality is true because the minimum of a set is less or 

nan the maximum of a same set. For the second inequality we denote with 
an circular center of N, so 

e(vi, V) = r° = min {e° (vj, V)| v; ¬ V} 

e denote with v the vertex for who e (Vk, V) = d. In this case suj E 
that 0 

= e(v, V) = d° (vg , V;) d° (Uk, v,) + d°(vi, v;) 

Se (vi, V) + e° (vi, V) = 2r® 

S0 we have 60<2. 
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Proposition 12. For the diameter, absolute diameter and continuous diameter 
of a strongly connected directed network N the Jollowing inequalily holds: 

Proof. By the definitions: 

max {d° (vi, v;) | v%, v ¬ V} 6 = 

max {d (z, v;) |a E N,v; ¬ V} < 
oe = max {d (r, y)|*, y E N} 

Proposition 13. For the circular radius r and for the absolule circular radius5 

and the following inequality holds 

2 
Proof. Let ca denote the circular absolute center, vk the circular center and 

ve a vertex such that d° (vk, ve) = r°. Both d (vk, Ca) ra and d (ve, Ca) r 

by definition of ca. By the triangle inequality 

2rd2d(Uk, Ca) + d° (ve, Ca) 2 d" (ve, ve) = r" 

so we have r" <2rd. 

Definition 14. [La85] A network N is a cactus if no two cycles have more than 

one verter in common. 

Note that trees and cycles are special cases thereof. 

Definition 15. A directed cactus is any directed network which is obtained from 

a cactus by orienting its edge. 

The following proposition is easy to prove. 

Proposition 16. For any two distinct vertices u, v of N there erist a unique 

directed path from u to v in N if and only if N is a strongly connected directed 

cactus. 

Thus we see that in certain sense strongly connected directed cacti are ana- 

logues of trees in the case of directed networks. That form a particular case of the 

concept of unipathic directed networks defined as follows, analogously to unipathic 

digraphs defined in[Har65]. 

Definition 17. A unipathic directed network is a directed network N in which for 

any two points u, v E N there erist at most one directed path from u to v. 

Further on we prove: 

Theorem 18. f t,y are two distinct verticcs of a directed cactus network N, 

then d (z, y) is equal to lhe sum of lengths of all cycles in N which have comnon 

edges with the path D(z, y). 
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CIRCULAR DISTANCE IN DIRECTED NETWORKS 
Poof. The proof is analogously with that done for Zelinka in[Zel97|for di- 

rected cactus graphs. O 

We will proceed by induction according to the number k of cycles which ain edges of D(r,y). It k = 1, then z and y are in the sane cycle B and this cycle is the (edge-disjoint) union of D(T, ) and D(y, z), therefore d (c, y)is equal to the length of cycle B. 

Now let k> 2 and suppose that for k - 1 the assertion is true. ILet the first 
edge of D (r, v) be in the cycle Bi and let a be the terminal vertex of the last edge of D(z, y) being in B1. Then a is an articulation between B1 and another cycle Bo which contains the edge of D(r, y) outgoing from a. The path D (a, y) is part of D (,y) and there are k-1 cycles containing edges of D (a, y), namely all those 
containing edges of D(7,y) except B1. By the induction hypotesis d° (a, y) is the 
sum of lengths of these cycles. Not only D(z, y), but also D (y, z) goes through 
a and therefore d° (t, y) = d°(x, a) + dd (a, y), which is the sum of lengths of all 
cycles which contains edges of D(2,y) 
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