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A Note on the Isomorphic Representation of Nondeterministic

Nilpotent Automata 

ILDIKÓ sZÉKELY 

Abstract. It is known that if an automaton of s states can be embedded 

isomorphically into a direct product of automata having fewer states than

s, then the automaton considered can be embedded isomorphically into a 

direct product of two automata having fewer states than s. n particular,
this staternent is also valid for classes of automata which are closed under 

homomorphism. In this paper, it is shown that this observation does not 

hold for nondeterministic automata in general. 

1. Introduction 

Let M be an arbitrary class of automata which is closed under the homomor- 

phism, and let A be an element of M with s states. From a theorem of Birkhoff 

see 4), we can conclude that if A can be embedded isomorphically into a direct 
product of automata from M having fewer states that s, then A can be embed- 

ded isomorphically into a direct product of two automata from M having fewer 
states than s. Here, we show that this statement is not true for nondeterministic 

automata in general. Namely, we consider the class of nondeterministic nilpotent 
automata which is closed under the homomorphism, and construct a nondetermin- 

istic nilpotent automaton with 6 states such that this automaton can be embedded 

isomorphically into a direct product of three nondeterministic nilpotent automata 

having fewer states than 6, but cannot be embedded isomorphically into a direct 
product of two nondeterministic nilpotent automata having fewer states than 6. In 
this way, we prove that not every nondeterministic nilpotent automata which can 
be embedded isomorphically into a direct product of nondeterministic nilpotent 
automata having fewer states can be also embedded into a direct product of two 

nondeterministic nilpotent automata having fewer states. 
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2. Preliminaries 

The notion of the nilpotent automaton (sce e.g. |, 15] and |8),) can b extended to nondeterministic automataa, and it is an interesting question whethe a given nondeterministic nilpotent automaton can be embedded isomorphicall into a direct product of nondeterministic nilpotent automata with fewer states than the considered one. This problen is solved in 9. Studies on representation of nondeterministic automata under stronger compositions than the direct pro duct can be found in the works [2], [3], [6] and [7). Here, we deal with the simplest composition, the direct product. First of all, we recall the basic notions and some results given in [9. lf X and A are nonempty finite sets and every E X is realized in A as a binary relation A then the system A = (X, A) is called a nondeterministic automaton. X is the set of input signs and A is the set of states. For a given z E X and a E A, the set {a'|a' E A and ar*a'} is denoted by ar 
It can be regarded as the set of all states in which the automaton transits if the current state is a and the input sign is . For ap¬X, the binary relation apa can be defined in the following way: 

ap = bEaqA U br* if p= q where z EX and q E X*, 

if p= a where z EX. 
arA 

If MC A, z E X, p EX*, then MrA = UaA and MpA = U apA 
aE M 

aEM Let now A = (X, A) and B = (X, B) be two nondeterministic automata. It 
is said that B is a subautomaton of A if B C A and oB is the restriction of A 
to Bx X, ie. arB = arAnB holds, for all a E A and z E X. A mapping u of 
A into B is called homomorphism, if a{ar") = p(a):" is valid, for all a E A and 
rEX. If is also a one-to-one mapping onto B, then s is called isomorphism. 
In this latter case, we say that A and B are isomorphic. Let k be an arbitrary positive integer and A, = (X7, A,),r = 1,.. . ,k be 
nondeterministic automata. By the direct product of A, = (X7, A,), r = 1, . . . ,k, 

we mean the automaton A = (X, A) where A = A1 x. . x Ak and for every 

a = (a1,. . . ,ak) E A and r E X, ar^ = («1,... , ak)*A = a^rAix. x ak***, 
We will denote by Aj x x Ak the direct product of A1,..., Ak. A nondeter-
ministic automaton A can be embedded isom0rphically into the direct product of 

A Ax i1 A 15 1somorphic to a subautomaton B of A X x Ak. 

A nondeterministic automaton A = (X, A) is called complete if ar^ # 

holds, for all a E A and z ¬ X. As in [9], by nondeterministic automaton we will 

always nean complete nondeterministic automaton having at least two states. In 

this note, we deal with a special class of nondeterministic automata, the class of 

nondeterministic nilpotent automata defined as follows. 
A nondeterministic automaton A = (X, A) is called nilpotent if there exists 

a positive integer n such that ApA = {ao} is valid, for all p ¬ X* with |p2 n, 
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where Ipl denotes the length of the word p. "The distinguished state do is called 
the absorbent state of A. 

For the class of the nondeterministic nilpotent automata the following state- 
ment can be easily proved. 

Lemma 1. The class of nondeterministic nilpotent automata is closed under the 
homomorphism. 

Let us detine the following relation on A: a < b if and only if a =b or there 
is a p E Xt such that b E ap*, It is easy to scc that the introduced relation is 
a partial ordering on A. If one of the relations a b or b a is valid for some 
a,b E A, then a and b are called comparable. Otherwise, we say that they are incompaable and we denote it by a a b. 

It is obvious that the absorbent state ao is the greatest element in (A, ). Furthermore, since |A| > 2, there must be at least one bo # ao E A such that bo is a maximal element in (A \{ao}, <). A direct consequence of the nilpotency of A is that ag and bo satisfy the identity aorA = borA, for all a EX. If there is exactly one pair of different states a # b in A satisfying arA = brA, for all z E X, then these states have to be ao and bo. We use the following sentence to express this "A has exactly one pair of different states ao, bo for which agr* = boz* holds for all z E X". 
The following property shows that no "loops" or "circuits" may appear on the states of a nondeterministic nilpotent automaton except for the absorbent state. 

Lemma 2. 1f A = (X, A) is a nondeterministic nilpotent automaton with the absorbent state ao, then a f apA holds, for all a E A\{a0} and p ¬X*. 
From the definitions we can immediately see that if A1,... , Ak are nonde- terministic nilpotent automata with the absorbent states a,. , ak, respectively, then their direct product is a nondeterministic nilpotent automaton with the ab- Sorbent state (a,.. . , a. Furthermore, every complete subautomaton of the direct product is nilpotent with the absorbent state («1,.. . ,a). This also yields that if a nondeterministic nilpotent automaton A = (X, A) with the absorbent State ao can be embedded under the isomorphism 4 into A1 X X Ak, then H(ao) = (a?, ... , a) 

emma 3. Assume that A = (X, A) is a nondeterministic nilpotent automaton ERas eractly one pair of different states ao, bo for which agr^ = bo*^ holds, Jor all E X. Let A, = (X, A,),r = 1,... , k, (k 2 2) be nondeterministic potent aulomata with the absorbent states a,.. , ak, respectively, and let u: B A1 x. . x Ak be an isomorphism embedding A into A1 X x Ak. f denote by (69,.. . , b) the image of bo under u and by I the following set of indi I= {i e {1,... , k}la? # b, then the components a;,b}withi E I may 
Ppcar n no other elements of B but u(ao) and p(0o). 
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Now, we recall a result from 19 giving a sufficient condition for the isom 

embedding of a 
nondeterministic nilpotent automata. 

somorph 

hold 
Lemma 4. Let A = (X, A) be a 

nondeterministic nalpolent automaton uith la 

k 
4 that has eractly one pair of d1fferent states ao, bo for which agzA = bozA 

for all r E X. lf there is a natural number k> 2 and there are c, c1,... .e 

with c Cr, r= 1, 
. ,k, such that 

Vr E X (H e {1,... ,k} : egr* n{ao, bo} C cr" n {a0, bo}) holds, 

then A can be embedded isomorphically into a dircct producl of k +1 nondete 
ministic nilpotent automata having feuer stales than |A|. 

3. A nondeterministic nilpotent automaton having no subdirect decom 

position of two factors 
Let us consider the following automaton: A = (X, A), where X = {z,y 

A = {a0, bo, d, c, e, f} and the binary relations rA and yA are given by the followin= 

table 
A 

bo 
d {bo} {bo} 

{bo, d {bo 
{ao, d} e {bo} 

ao)bo, d, e} l| 
The transition graph of A is depicted in Figure 1. We will show that th- 

automaton given above can be embedded isomorphically into a direct product 
ree pondeterministic nilpotent automata having fewer states than |4| but canno 

be embedded into a direct product of two nondeterministic nilpotent automat 
having fewer states than |A. 

Theorem 1. The automaton A can be embedded isomorphically into a direct pnu 

duct of three nondeternministic nilpotent automata having fewer states than ja 
Proof. It is obvious that A is a nondeterministic nilpotent automaton witE 

the absorbent state do and that ao and bo form the only pair of different states 
A satisfying ao2* = bozA and aoy^ = boA. Morcover, we have the state c, wh 
is incomparable with e, f for which the statements eaAn{ag, boB C crAn {40, 0o. 
and Sy n{40, bo} C ey^ n {ao, bo} hold. 

Hence, the conditions of Lemma 4 are satisfied, and thus, A can be embedu 
isomorphically into a direct product of three nondeterministic nilpotent au ta. 0 

ma- 
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A A 

Do, 

FIGURE 1. Automaton A. 

Theorenm 2. The automaton A given above cannot be embedded isomorphically into a direct product of two nondeterministic nilpotent automata having fewer siates than |A|. 

Proof. For verification by contradiction, let us assume that A can be em- bedded isomorphically into a direct product of two nondeterministic nilpotent automata having fewer states than |A| = 6. Thus, there exist nondeterministic Dilpotent automata A, = (X, A,) with |A,| < |A| = 6, r = 1,2 and there also 
eXIsts an isomorphism : A > B C A x Az that embeds A into A; x A2. Let B 
denote the isomorphic image of A in Aj x A2. Furthermore, let p(ao) = (a, a) and (bo)= (6}, 62). Since ag# bo, (a}, a) # (8,b2). Therefore, af # 6 or 

f b. Without loss of generality, it can be supposed that aj b. Further- 
Ore, the set of the first components of p(c), #(d), p(¬), p(f) is disjoint to {af, b9 

Irom Lemma 3. We use the following notations: p(c) = (C1, C2), #(d) = (d1, da), 
e)(ej , c2) and u(f) = (f1, f2). Now we distinguish two cases depending on 
aand b, namely a = b or a # b 

ase 1. Let a = b. Then A{ao) = (af, a) and A(40) = (88, a?). Let us 
enote by a the state which occurs in at least two diftferent pairs of B on the first 
pOSIon. The existence of a follows from the fact that |Ail < |A| = 6. Then 
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ILDIKÓ sZÉKELY 
a1 iaj1,6}. According to this and to Lemma 2 saying that in a nondetermin 1stic nilpotent automaton no state may have loops"or "circuits" except for the absorbent state, the ancestors with respect to of thc pairs of B which have 7 on the first position are incomparable in A. Since the inconparable pairs in A are ce and cJ, we have ai ==C. The two possible cases are when ej 1s C1 or when fi is c1. C1 = e1 and c1 = fi cannot be satisfied in the same time, because and f are comparable in A. 

SUppose tirst that ju(e) = (¢1, ez). Prom u(ey^) == {(«, a2), (d1, da)} and (e)y= C1yA1 x c2yA2nB, we have a E c1yA. In the same time, from u(cy*) = (,a2) and u(c)y" = c1yAi x cayAa n B, we can conclude a E C2Y*2, This 
yields (aj, a2) E ciyA x c2yAanB, whieh implies inmediately (aj, a2) E (¢1, Ca)y" and u(a) E p{c)y". Since u is an isomorphism, we must also have do E cy*, which 
is not true by the definition of the automaton A. 

Suppose now that AS) = (c1, f2). Then, u(frA) = {(a?, a?)} and u(f)z" = 
C1Ax fara2 n B yield a? E cjaA1. On the other hand, we have s(cr*) = (6,a2), (d1, d2)} and p(c) x8= c1rAL x c2rA2 n B, which imply a E C2tA:. 
Consequently, (af, a) E (¢1, c2)r" and thus u(a") Ep(¢):", resulting in ag E czA which is also a contradiction. 

Case 2. Let a # 62. Then p(ao) = (af, a) and p(bo) = (69, 62). Since 
A and Az have fewer states than |A|, there has to be an �1 E A1 which appears 
in at least two different pairs of B in the first component and there has to be an 

a2 E Ag which appears in at least two different pairs of B in the second component, 
furthermore a, {at, b>},r = 1,2. The mentioned pairs of B are the images of 
incomparable states of A. Since the incomparable pairs of A are c e and 
c pf, u(c) = (a1,a2). We have to discuss the following four possibilities: first 
A(e) = (C1, ez) and a() = {Ji, ca), second pfe) = (e1, ca) and u(f) = (C1, f), third (e) = (c1, ca) and fourth p(f) = (C1, c2). In the first two cases the proof is 

similar to the ones given in Case 1. 

If (e)= (c1,¬2) and p(f) = (fi, ca), then u(ey^) = A(¢)y" yields d1 ¬ c1yA and (fyA) = #(S)y" yields d2 E C2y*, which lead to the contradiction d E cy If we assume p(e) = (e1,c2) and a($) = (1, S2), then we have u(fyA) = 

fB, which yields di E c1**, On the other hand p(eyA) = p{e)y" implies da E c2yA2, These two statements lead to d E cy*, which is in contradiction with the definition of automaton A. 
If (e) = (C1, C2), then u(c) = #(e) and since p is an isomnorphism, this yields c = e, which is a contradiction. The proof is similar in the fourth case. Thus, we have shown that the starting assumption of our proof leads to a contradiction in all cases. This completes the proof of Theorem 2. 0 
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