STUDIA UNIV. "BABEŞ-BOLYAI", INFORMATICA, Volume XLII, Number 2, 1997

SEMANTIC TABLEAUX FOR SEMI-NORMAL DEFAULTS THEORIES

MIHAIELA LUPEA

Abstract. This article presents the semi-normal default theories and the classes of semi-normal default theories which have allways extensions. A proof method based on semantic tableaux for semi-normal default theories is provides and some interesting considerations related to particular classes of theories are exposed.

1. Introduction

Default logic was introduced by Reiter [2] and provides a formalism for an important part of human reasoning, the non-monotonic reasoning. Non-monotonic reasoning means infer conclusions from incomplete information, conclusions which may be invalidated by adding new facts. Default logic is widely used for declarative representations of problems in a variety of areas, including diagnostic reasoning, theory of speech acts, natural language processing, inheritance hierarchies with exceptions.

Definition 1.1. Let L be a first-order language. A default theory $\Delta = (D, W)$ consists of a set W of closed formulas in first-order logic and a set D of defaults $d = \frac{\alpha(x):\beta_1(x),\ldots,\beta_m(x)}{\gamma(x)}$, where

 $-\alpha(x), \beta_1(x), \ldots, \beta_m(x), \gamma(x)$ are well formed formulas in first-order logic; $-\alpha(x)$ is called the prerequisite of the default d; $-\beta_1(x), \ldots, \beta_m(x)$ are called justifications of the default d; $-\gamma(x)$ is called the consequent of the default d.

A default is interpreted as follows:"if I believe α and I have no reason to believe that one of the β_i is false, then I can believe γ . Defaults are inference rules which model the non-monotonic reasoning.

Received by the editors: June 17, 1997.

¹⁹⁹¹ Mathematics Subject Classification. 03B35,68Q40,68T27.

¹⁹⁹¹ CR Categories and Descriptors. F4.1 [Mathematical Logic and Formal Languages] Mathematical Logic – mathematical theorem proving, proof theory; 12. [Artificial Intelligence] Deduction and Theorem Proving – nonmonotonic reasoning and belief revision, resolution.

We denote $PRE(D) = \bigcup \{ \alpha | \frac{\alpha; \beta_1, \dots, \beta_m}{\gamma} \in D \};$ $CONS(D) = \bigcup \{ \gamma | \frac{\alpha; \beta_1, \dots, \beta_m}{\gamma} \in D \} \text{ and}$ $JUST(D) = \bigcup \{ \beta_1, \dots, \beta_m | \frac{\alpha; \beta_1, \dots, \beta_m}{\gamma} \in D \}$

The set of defaults D induces an extension on W. Intuitively, an extension is a maximal set of formulas that is deducible from W using the defaults in D and the inference rules from classical logic.

Definition 1.2. Let $\Delta = (D, W)$ be a closed default theory. For any set of closed formulas $S \subseteq L$, let $\Gamma(S)$ be the smallest set satisfying the following properties: (i) $W \subseteq \Gamma(S)$; (ii) $Th(\Gamma(S)) = \Gamma(S)$, where $Th(S) = \{P|S \vdash P\}$; (iii) if $\frac{\alpha:\beta_1,\ldots,\beta_m}{\gamma} \in D$ and $\alpha \in \Gamma(S)$ and $\neg \beta_1,\ldots,\neg \beta_m \notin S$ then $\gamma \in \Gamma(S)$. A set of closed formulas $E \subseteq L$ is an extension for Δ if and only if $\Gamma(E) = E$, i.e. E is a fixed point of the operator Γ .

The default theories can have zero, one or more extensions.

Definition 1.3. The set of generating defaults of an extension E of a closed default theory is

 $GD(E,\Delta) = \{ d \in D | d = \frac{\alpha:\beta_1,\ldots,\beta_m}{\gamma} \text{ and } \alpha \in E \text{ and } \neg\beta_1,\ldots,\neg\beta_m \notin E \}$

Theorem 1.4. Let E be an extension of the closed default theory $\Delta = (D, W)$. Then $E = Th(W \cup CONS(GD(E, \Delta)))$.

2. The semi-normal theories

Definition 2.1. A semi-normal default is a default of the form: $\frac{\alpha:\beta\wedge\gamma}{\beta}$ A default theory is called semi-normal if all the defaults of the theory are semi-normals.

Semi-normal default theories are not as well behaved as normal default theories, they may have zero, one or many extensions.

Etherington [1] constructed the class of ordered semi-normal default theories, which have always an extension.

Definition 2.2. A clausal default theory is a default theory $\Delta = (D, W)$ in which any sentence in $W \cup PRE(D) \cup JUST(D) \cup CONS(D)$ is logically equivalent to a conjunction of disjunctions of literals.

Definition 2.3. Let $\Delta = (D, W)$ be a clausal semi-normal default theory. The partial relations \ll and \ll on LITERALS \times LITERALS, are defined as follows: (1) If $\alpha \in W$, then $\alpha = \alpha_1 \vee ... \vee \alpha_n$ for some $n \ge 1$. For all $\alpha_i, \alpha_j \in \{\alpha_1, ..., \alpha_n\}$, if $i \ne j$, let $\neg \alpha_i \ll \alpha_j$ (2) If $\delta \in D$, then $\delta = \frac{\alpha:\beta \wedge \gamma}{\beta}$. Let $\alpha = \alpha_1 \wedge ... \wedge \alpha_r, \beta = \beta_1 \wedge ... \wedge \beta_s$, and

SEMANTIC TABLEAUX FOR SEMI-NORMAL DEFAULTS THEORIES

 $\gamma = \gamma_1 \wedge ... \wedge \gamma_t$, and $\alpha_i = \alpha_{i,1} \vee ... \vee \alpha_{i,m_i} \beta_j = \beta_{j,1} \vee ... \vee \beta_{j,n_j} \gamma_k = \gamma_{k,1} \vee ... \vee \gamma_{k,p_k}$ Then

(i) $\alpha_{i,l} \leq \beta_{j,q}$ for all $i \in \{1, ..., r\}, l \in \{1, ..., m_i\}, j \in \{1, ..., s\}, q \in \{1, ..., n_j\}.$ (ii) if $\gamma_{k,l} \notin \{\beta_{1,1}, \dots \beta_{s,n_s}\}$ let $\neg \gamma_{k,l} \ll \beta_{j,q}$.

(iii) if $l \neq k$ let $\neg \beta_{j,l} \leq \beta_{j,k}$.

(3) Let L,L',L'' be literals, the the expected transitivity relationships hold for \ll and ≪:

(i) if $L \leq L'$ and $L' \leq L^{"}$ then $L \leq L^{"}$.

(ii) if $L \ll L'$ and $L' \ll L^{"}$ then $L \ll L^{"}$.

(iii) if $L \ll L'$ and $L' \ll L^{"}$ or $L \ll L'$ and $L' \ll L^{"}$ then $L \ll L^{"}$.

Definition 2.4. A semi-normal default theory is said to be ordered if and only if there is no literal L, such that $L \ll L$.

Theorem 2.5. An ordered semi-normal default theory has at least one extension.

Definition 2.6. A graph of a propositional semi-normal default theory Δ = (D,W), G = (E,A) is a directed graph with defaults as nodes and whose set of arcs are partitioned into arcs of weight 0 and arcs of weight 1.

- There is an arc $(d_1, d_2) \in A$ of weight 0 if there is a literal $l \in CONS(d_1)$ such that $l \in JUST(d_2)$.

- There is an arc $(d_1, d_2) \in A$ of weight 1 if there is a literal $\neg l \in CONS(d_1)$ such that $\neg l \in JUST(d_2) \cup PRE(d_2) \cup CONS(d_2).$

- There is an arc $(d_1, d_2) \in A$ of weight 0 if there is a literal $l \in CONS(d_1)$ such that $\neg l, e \in \omega JUST(d_2) \cup PRE(d_2) \cup CONS(d_2)$.

An even propositional semi-normal default theory, is a default theory with a graph that contains only cycles of even weight.

Theorem 2.7. Every even propositional semi-normal default theory has an extension.

Theorem 2.8. If (D, W) is an even default theory, then (D', W'), where $D' \subset D$, and $W' \subset W$, is also an even default theory.

The theorem2 and theorem3 provide a sufficient condition for the existance of an extension of a semi-normal default theories. These conditions are not necessary, that is exist semi-normal theories which are neither even, nor ordered, but have extensions.

Example 2.9. Let $\Delta = (D = \{d_1, d_2, d_3\}, \emptyset)$ be a semi-normal default theory, where $d_1 = \frac{p \wedge \neg q}{\neg q}, d_2 = \frac{:q \wedge \neg r}{\neg r}, d_3 = \frac{:r \wedge \neg p}{\neg p}$.

This theory has no extension, is not ordered because $\neg p \ll \neg q \ll \neg r \ll \neg p$,

thus $\neg p \ll \neg p$, and is even. **Example 2.10.** The semi-normal default theory $\Delta' = (D, \{p\})$ is also an even theory, is not ordered, but has an extension $E = Th(\{p, \neg q\})$.

MIHAIELA LUPEA

3. The semantic tableaux for first order logic

The semantic tableaux is a refutation proof method which try to construct all the models of a formula, and therefore is well adapted for producing extensions of default theories. In [3] is introduced and we present here, a new conception of semantic tableaux as a proof method for first order logic.

Definition 3.1. We denote TP the tableaux prover which is defined recursively as a mapping between sets of formulae and sets of literals as follows: $TP(M) = TP(M' \cup \{p\})$ if $\neg \neg p \in M$ and $M' = M \setminus \{\neg \neg p\}$ $TP(M) = TP(M' \cup \{p\} \cup \{q\})$ if $p \land q \in M$ and $M' = M \setminus \{p \land q\}$ $TP(M) = TP(M' \cup \{p\}) \cup TP(M' \cup \{q\})$, if $p \lor q \in M$ and $M' = M \setminus \{p \lor q\}$ $TP(M) = TP(M \cup \{A[c]\})$, if $(\exists x)A(x) \in M$, where c is a new parameter $TP(M) = TP((M \cup \{A[c]\}))$, if $(\forall x)A(x) \in M$, where c is a any parameter $TP(M) = \{M\}$, if M is a set of literals.

Definition 3.2. A set of literals is closed if it contains two opposite literals. A set of sets of literals is closed if each of its elements is closed

The following theorem asserts the completeness of this proof method.

Theorem 3.3. F is a theorem if and only if $TP(\{\neg F\})$ is closed.

Remark:

For a formula F, TP(F) corresponds to the disjunctive normal form of F, each disjunct represents a set of models of the formula. The disjunctive normal form of a formula F obtained from TP(F) is denoted $\phi(TP(\{F\}))$. The TP has also many interesting properties concerning manipulation of formulas and sets of formulas.

 $\Gamma \otimes \Gamma' = \{ X \cup Y | X \in \Gamma \text{ and } Y \in \Gamma' \}$

Theorem 3.4. Let Γ be a finite set of formulas and F a formula. $F \in Th(\Gamma)$ if and only if $TP(\Gamma) \otimes TP(\{\neg F\})$ is closed.

Definition 3.5. A tableau is a subtableau of a tableau T', noted $T \prec T'$ if and only if every set of T' contains a set of T.

Definition 3.6. An opening O of $T \otimes T'$ is called opening of $T \otimes T'$ in T' if $O = T \otimes T$ " and $T'' \prec T$.

We can obtain a minimal form of TP(M) eliminating closed sets and sets which contain other sets in TP(M). This minimal form is denoted $TS(M) = TP(M) \setminus \{X | X \in TP(M), X \text{ is closed, or } Y \in TP(M) \text{ such that } Y \subset X, Y \neq X\}.$ We have $\phi(TS(M)) \Leftrightarrow \phi(TP(M))$.

3.1. Semantic tableaux for default logic.

SEMANTIC TABLEAUX FOR SEMI-NORMAL DEFAULTS THEORIES

Definition 3.7. Let D be a set of defaults, D' and D''' two subsets of D, we have $D'' \prec_{\Delta} D''$ if and only if $D' = \{d \in D | d \notin D'', and PRE(\{d\} \in Th(W \cup CONS(D''))\} \cup D''$.

The smallest class of defaults with respect to \prec_{Δ} is \emptyset .

Definition 3.8. Any sequence of subsets of D with respect to \prec_{Δ} is called a grounding sequence of D. Any grounding sequence of D from \emptyset is called a root of D.

Definition 3.9. Let $\Delta = (W, D)$ be a default theory. D is grounded in W if and only if $D = R_{\Delta}(\emptyset, D)$, where

 $R_{\Delta}(D',D) = \{ d \in D \setminus D' | \exists D_1, ..., D_n \text{ such that } D' \prec_{\Delta} D_1, ..., D_n \prec_{\Delta} D \}.$

Theorem 3.10. The set of generating defaults $GD(E, \Delta)$ of an extension E of a default theory $\Delta = (W, D)$ is grounded in W.

The following theorem gives a necessary and sufficient existence criterion for extensions of a semi-normal default theory.

Theorem 3.11. A semi-normal default theory $\Delta = (D, W)$ has an extension E, if and only if exists $D' \subseteq D$, D' grounded in W and $E = Th(W \cup CONS(D'))$ and $\forall d \in D, d = \frac{\alpha:\beta \wedge \gamma}{\beta}$ (i) and (ii) hold: (i) if $d \in D'$ then $\alpha \in E, \neg \beta \notin E, \neg \gamma \notin E$. (ii) if $d \notin D'$ then $\alpha \notin E$ or $\neg \beta \in E$ or $\neg \gamma \in E$.

Remark:

- Condition (i) is equivalent to $TP(W) \otimes TP(CONS(D')) \otimes TP(\{\neg \alpha\})$ closed $,TP(W) \otimes TP(CONS(D')) \otimes TP(\{\beta\})$ open and $TP(W) \otimes TP(CONS(D')) \otimes TP(\{\gamma\})$ open.

- Condition (ii) is equivalent to $TP(W) \otimes TP(CONS(D')) \otimes TP(\{\neg \alpha\})$ open, or $TP(W) \otimes TP(CONS(D')) \otimes TP(\{\beta\})$ closed, or $TP(W) \otimes TP(CONS(D')) \otimes TP(\{\gamma\})$ closed.

The algorithm for constructing extensions for a semi-normal default theory is:

(1) We construct the maximal consistent subsets of $W \cup CONS(D)$ which contain D. These sets can be obtain opening the semantic tableau $TP(W) \otimes TP(CONS(D))$, by eliminating some literals of defaults. A such set D_i corresponds to an opening of semantic tableau.

(2) We must verify the justifications for every $Th(W \cup CONS(D_i))$. This is equivalent with the second part of condition (i) and (ii)

(3) For thoses sets D_i which are obtained from (2) we must verify the preconditions for all defaults in D_i .

The sets obtained from (3) are the generating sets for the extensions of the seminormal default theory.

Example 3.12. Let $\Delta = (D = \{d_1, d_2, d_3\}, \emptyset)$ be a semi-normal default theory, where $d_1 = \frac{p \wedge \neg q}{p}$, $d_2 = \frac{q \wedge \neg s}{q}$, $d_3 = \frac{\neg p \wedge (r \rightarrow s)}{r \rightarrow s}$.

1

MIHAIELA LUPEA

 $TP(CONS(D)) = TP(\{\{p, q, \neg r \lor s\}\} = \{\{p, q, \neg r\}, \{p, q, s\}\} \text{ which is open, there}$ fore may be one extension for this theory.

The preconditions are trivial satisfied. We must verify the justification condition for every default:

- for d_1 : $TP(CONS(D)) \otimes TP(\{\neg q\}) = \{\{p, q, \neg r, \neg q\}, \{p, q, s, \neg q\}\}$ is closed. therefore d_1 is not a generating default.

- for d_2 : $TP(CONS(D)) \otimes TP(\{\neg s\}) = \{\{p, q, \neg r, \neg s\}, \{p, q, s, \neg s\}\}$ is open, therefore d_2 is a generating default for the extension.

- for d_3 : $TP(CONS(D)) \otimes TP(\{\neg p\})$ is open, therefore d_3 is a generating default. The extension for the semi-normal default theory is $Th(\{q, r \rightarrow s\})$.

Remark: If $W = \{r\}$ then the theory above has no extension.

The algorithm for computing extensions for semi-normal default is very efficient and can be implement very easy.

References

- [1] D.W. Etherington, Formalizing Nonmonotonic Reasoning Systems, Artificial Intelligence, 31, 1987, pp 41-54.
- [2] R. Reiter, A Logic for Default Reasoning, Artificial Intelligence 13 (1980), pp. 81-132.
- [3] V.Risch, C.B. Schwind, Tableau-Based Characterization and Theorem Proving for Default Logic, Journal of Automated Reasoning 13 (1994), pp. 75-82.
- [4] D. Tatar, M. Lupea A Note on Non-Monotonic Logics, Studia Univ. Babes-Bolyai, Mathematica, XXXVIII, 3, 1993, pp. 109-115.

BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND INFORMATICS,

RO 3400 Cluj-Napoca, str. Kogălniceanu 1, Romania E-mail address: lupea@cs.ubbcluj.ro