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Discrete Event Dynamic Systems Modeling 

ALEXANDRU CICORTAS 

Abstract. Specific tools can model dynamical systems. "The formalisms de- 
veloped allow to model a wide area of systems. The discrete event systems used frequently in modeling of manufacturing, communication networks, can 
also be formalized. Is developed a particular formalism starting from general dynamical systems, the Atomic Discrete EVent (ADEV), which is illustrated 
with an example, the system assembly using Virtual Assembly Cell. 

1. Review of General Dynamical Systems 
Discrete event modeling can be used in representation of dynamical systems 

which has piecewise constant input and output segments. This class is called by 
Zeigler [13) as DEVS representable. In particular, Differential Equation Specified 
Systems (DESS) are usually used to represent the system under control in hybrid 
systems and are controlled by high-level, symbolic, event-driven control schemes. 
Closure under coupling is a desirable property for subclasses of dynamical systems 
since it guarantees that coupling of class instance results in a system in the same 

class. The class of DEVS representable dynamical systems is closed under coupling. 
This justifies hierarchical, modular construction of both DEVS models and the 

(continuous or discrete) counterpart systems they represent. The combination of 
DEV and DESS allow to model and simulate the discrete and continuous systems. 
It provide a means of specifying systems with interacting continuous and discrete 

trajectories. The formalism is fully expressive of hybrid systems in that it is shown 
to be closed under coupling. 

The followings are from [13]and [14]. 
Definition 1.1. A general dynamical system i 

DS = (T, X, Y, 9,9, A, A). 
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Where 
Tis the time base; 

X is the set of input values; 

. Yis the set of output values; 

is the set of admissible input segments w :<ti,t2 +X over T and 

and is closed under concatenation as well as under left segmentation 

Qis the set of states; 

A:Q x Q is the global state transition function; 

A: Q x X Y is the output function. 

The global state transition function of general dynamical system DS has the 

following properties: 
consistency: A(w, w<t,t>) =0; 
semigroup property: Vw :< t1,t2 >>X E S2,tE< t1,t2 >: A(g,w<t1,ta> 

A(A(7,wkt,t>), w<t,ta> ) 
causality: Vw,w E N if ¥t e< t1, t2 >: w(t) = ®(t) then 

A(g,,,ts>) = A(4, t1,t2 >).

Based on the causality, the semigroup property and closure of admissible segments 

under left segmentation the state trajectory resulting from every initial state q E Q 

and input segment w:< ti,t2 >¬ X E N can be defined as followws: 

STRAJa <ti,t2 >E Q 

where Vt E< t1,t2> STRAJ4,»(t) = A(7,w<t,t). The output. trajectory 
OTRAJG,w < t1,t2 >> Y is defined as follows. For every initial state q E Q. 
input segment w < t1,t2 >> X E N and te< ti,t2> 

OTRAJgu(t) = A(STRAJq,(t), w(t). 

The input/output behavior Rps of the dynamical system is given by 

Rps = {(, OTRAJqu) :u E N,g ¬Q} 
2. Discrete Event Systems 

In the following is proposed a particular formalism developed from [14]. An 
Atom of a Discrete EVent (ADEV) system can be specified with following forma 
1sm. 

Definition 2.1. 

ADEV = (Xa, Ya, Sa, 6a, Aa). 
Where 

. Xa is the set of inputs; 

.Ya is the set of outputs; 
Sa is the set of states; 
aSa Sa 1s the state transition, which refers only to internal states, 
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Aa : Sa Ya is the output function. 

The whole system is composed from atomic ADEVs that co-operate one another 

in order to improve the real system behavior and specified tirne evolution given in 
the Sa by some algorithm and the event timestamp is the instant when an event 
appears or state tmestamp is the instant when the system enters in a specified 

state. A set of ADEV specifies a Dynamical System DS in the following way: 
.the time base T is the set of real numbers R 
X = UXa U {0}, i.e., the input set of the dynamical systern is the union of 

the input sets of the ADEVSs together with the 0 specifying the non-event, 
Y = UYa U {Ø}, the output set of the dynamical system is the union of the 

output sets of the ADEVs together with the 0; 

.Q= {(s, ts(s)) : s ¬ S,ts(s) - timestamp of s} the set of states of dynani- 
cal systen consists of the states of the ADEVs paired with the timestamp 
of the state tss, which is a real number and it can be assimilated with the 

ta(s); 
the admissible input segments is the set of all ADEV-segments over X and 

T that are characterized by the fact that for any w :< t1,t2 > X EN 
there is only a finite number of event times {i, , Tn}, Ti E< t1,t2 >, 
with i # 0; 

for any ADEV input segment w :< ti, t2 > X E N and state q = (s, ts(s)) 

at time ti the global state transition function A(g,w<t1, t2 >) can be 
defined but this definition is not given now; 

.The output function A of the dynamical system is given by A(s, ts(s), z) = 

A(s). 
For the input segment w must define its position over time related to the events 
that appear before it, into it and after it. 

The property of piecewise constant of trajectories can be transformed into 

ADEV-segments. If we have a dynamicalsystem whose all input trajectories 
wEN and associated output trajectories OTRAJG, are piecewise constant, such 

system can be represented in the ADEV formalism. We give without proof the 

following theorem [(14. 
Theorem 2.2. The ADEV constructed for a dynamical system whose all trajec- 

tories are piecewise constant and the dynamical system are behaviorally equivalent, 

2.C., they have the same input/output behavior when started in the same state. 

The models constructed from components (and especially similar components,

14), can be formalized in the modified ADEV formalism as follows. 

CM=< X, Y, M, E1C, EOC, IC, SEL > 

where 

X: input events set; 
X: input events set; 
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M: ADEV component set; 

.EIC CCM.OUT x M.IN: external input coupling relation; 
. EOC C M.OUT x CM.IN: external output coupling relation; 

IC C M.IN x M.OUT: internal coupling relation: 

.SEL 2M - 1 M: tie-breaking selector. 

The CM.IN, CM.OUT, M.IN and M.OUT refer to the input queues and output 
queues of the new model constructed and of the component models respectively 
The EIC,EOC and IC specify the connection between the set of rmodels M and 
input queues and output queues X, Y. The SEL function acts as a tie-breaking 
selector. The closure under coupling of ADEV-representable systems can be stated 

as 

Theorem 2.3. A modular coupled system uhose components are ADEV-representa 
and which does not contains loops in the graph sense, is an ADEV-representable 
dynamical system. 

This theorem was given and its proof was done by Praehofer and Ziegler, for DEVS-representable dynamical systems in which differ the definitions of EIC, EOC and ID from the above definitions. 

3. Example 

Let a system, which is composed from, cells that assembles the products and their compound parts from component parts. Such cell can be defined as an ADEV and the system as previous CM. In [1] and [2J the cell was defined in a model for a distributed computer architecture and was named Virtual Assembly Cell (VAC). The ADEV can be stated for the current VAC V ACcrt as follows. .Xcrt= {rei, i e {ii,in), acjjE {i,. , im}} is the set of al: re; requirements made by other VACs to the V ACert and ac; achievements from other VACs to the VACert Yertnd;,j E {ji* Jm}, a5i, i E {i1,'** ,in}} is the set of all: nd; requirements made for the VACert to other VACs for the compo 
nent parts that are necessary for assembling its own compound part 
(as needs); 
as achievements made by the VACcrt to other VACs as response to requirements made by these VACs (as assembly result); Sert is the set of states for the V ACcrt, where the states are 
Sin initial state; 
Su Waits for achievements of component parts that are necessáry tor a 
requirement;
Sa aSsembles its own compound part, when all component parts were 

received from the appropriate VACs, this state is time consuming and 

the assembly time interval will increase the time 
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s final state, when all requirements were assenbled, 
dert(rei, aC;, tsj, tas,, v) is the state transition which applies to all events 

that appcar, whose details will be done in the following; 
Acrt(re;, ts;, ndk) is the output function 

The state transition dert (r¬j, ac;, tsj, tas;, v) has the following argunents: 
rei,i E {1,,in1s a requirement for its own compound part of the VACert made by sonme VAC; all requirements are indexed by the order of 

its arrival to the VACcrt; 
acj 3 E {J1,* Jm 1s an achievement of a needed component part sent 

by the appropriate VAC;

tsjE {i1, , jm} is the timestamp of the achievement acj; 
tas;,i E {i1, , in} is the timestamp of finishing the assembly process for 

the reii 
vis zero while Vi the re; has not received yet all the needed component 

parts and is one while 3i such as for the re; were received all the achieve- 
ments. 

Denote that the rej, ndk, ac; contains a list of needed attributes that are not 
detailed here. The state transition acts as follows: 

Ocrt (rei,,0): 
SinSu or 

Su Sw 

a requirement re; arrived from a VAC, then the appropriate list is updated 
with it and is estimated the necessary anmount for every component part: 

- updates the appropriate list of requirements with the requirement re; 

in the VACert appropriate list; 
computes the amount for every component part ndk, e {i1, , jm} 
updates the appropriate list with these needs 
pass in the state Sui 

Su Su 
Su Sa 

or 

Ocre (re, ac;, tsj, ,0): 

an achievement is just arrived and is updated the appropriate list: 
an achievement arrived and updates the appropriate list with it; 

if 3, E {i1, , jm} for the requirement re; such as for it was not re- 

ceived the achievement, then remains in the same state su, else passes 

to the state sa for the requirement rej; 

SaSw or 

dert(rei, 1): s 
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o(re,, , tasi, 0) (re;,,,, tas;, 0) o(rei,, 0) 

Sa Sw Sin 

rei, acj, tsj, ,0) (rei, acj, ts;, , 1) 

FiGURE 1. The state transition function 

for the requirement re; all the achievements arrived and the VACert is in 

the state Sa, then: 
- is computed tas; = LVT = max; (js;, LVT) + ass (re;) where LVT 

is the Local Virtual Time, ass(re;) is the time interval necessary to 

assemble the compound for the requirement re;; 
is updated the appropriate list with the assembly result for the res; 

pass in the state Su or in the state sf if there all requirements were 

assembled 
In the Figure 1 is illustrated the state transition function for the proposed model. 

Remark 3.1. The time evolution in the proposed model is supplied by ô function. At simulation beginning, the LVT = 0 for all VACs. The time in a VAC is the 
LVT, which is conputed with the formula 

tas; = LVT= mar; (isj, LVT) + ass(re;). 
The output function A(re;, tas;, ndk) has the following attributes that are 

positional. Some of them can be omitted. 

Te is the achievement of the VACert and has like destination the VAC which nade the requirement; 
tas; is the timestamp of the end of achievement for the re; requirement; nd is the requirement of the VACcrt made for the component part k whichn has like destination the VAC that assembled the required part. The A function acts as follows. 
A(rei, tas;, ) sends the achievement of the requirernent re; to the appropri ate VAC that made the request; 
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.A,, ndk) sends the rcquirement made by the VAC:rt to the appropriate 

VAC. 

The coupling is another main feature of model. Strictly looking, the coupling 
betwcen the VACs 1s given by the structure of products and cornpound parts. This 

coupling not allow the circuits in the graph sense 

4. Conclusions 

The ADEV formalism is a powerful tool in modeling of systems that have 
component parts, which have a similar behavior [4]. 

In such formalism the time advancè function is supplied by the transition 
state function due to system particularity. The coupling is a main feature of the 

system which can be exploited. The VAC model is very useful in manufacturing 
modeling, taking into account the degradable VACs [3], it is a very powerful tool. 
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