
STUDIA UNIV. "BABE^-BOLYA", INFORMATICA, Volume XLI1, Number 2, 1997

Loop Scheduling Optimality for Parallel Execution

ALEXANDRU VANCEA

Abstract. Parallelizing compilers have the task to exploit the inherent par- allelism from the sequential programs having as the ultimate goal their effi- cient execution by means of building a time optimal schedule. These tools concentrate on the parallelism available in loops, while a progran is spending there most of its execution time. Besides particular techniques for achieving optimal execution for specific loops, one question arise naturally: given an arbitrary loop and a machine model which assumes sufficient but finite re-
sources, is it always possible to build a time optimal schedule? This paper defines the notion of time optimality and proves that in the general case, no loop time optimal schedule can be built, because there are loops which require infinite resources for accepting time optimal schedules.

1. Introduction

Parallelizing compilers try to efficiently exploit the parallelism available in
a given program, particularly parallelism that is too low-level or irregular to be expressed by common coding. Fine grain (instruction level) parallelization, called compaction, captures irregular parallelism inside a loop body by concur rently executing several operations of the same iteration. Coarser methods, such
as doacross [Cytron86] allow the extraction of much more parallelism by concur
rently executing statements or operations belonging to distinct iterations.

Much attention has been devoted to the parallelization of doacross loops Padua86, Munshi87, Su91]. A doacross loop expresses some recurence, preventing the iterations of the loop from executing independently.
A polynomial time algorithm, named list scheduling [Adam74 is usually ap- plied for obtaining a time optimal solution for acyclic straight line programs in

the case of unlimited resources. Scheduling with resource constraints is known to
be NP-hard [Garey79.

Received by the editors: February 7, 1998.

1991 Mathematics Subject Classification. 68N15.
1991 CR Categories and Descriptors. D.1.3 [Programming Techniques]: Concurrent

Programming parallel progrumming; D.2.8 [Software Engineering]: Metrics performance
easures, D.3.4 [Programming Languages]: Processors- optimization, compilers.

5

ALEXANDRU VANCEA

Parallclizing compilers transform the prograrns into their parallel vorsin

taking into account the cxisting data dependences. Nat urally, this transformatin

ust assure that the sennantics are the same.

Definition 1.1. Two program codes are sad to be scmantic equivalent if one of

thcm can be obtained from the other by applying a sequence of dala dependence

peservng transformations

A survey of the most widely used such transformations can be found in

P'aduas6
Aiken and Nicolau [AN88] studied optimal loop parallelization, yielding an

optimal greedy scheduling algorithm which detects a loop pattern. Their major
restriction is that the loop body should contain no if statements, but only straight

line code. Their research ends by stating that "it is an open problem whether the

optimality results of this paper can be extended to loops with arbitrary fow of

control. We will show in this paper by a simple analysis ol a colunter example,

that in the general case (understood as using any kind of control flow statements),

finding a time optimal schedule for a semantic equivalent code is not possible.
The vast majority of studies upon optimality assume that the machine nodel

has sufficient but limited resources, meaning that the architecture can run any

program for which the number of resources needed is bounded by some arbitrary

integer.
tions about the loops to be scheduled: for sinmplicity, we assume, without loss of

generality, that any operation takes one machine cycle.
Informally, through optimal parallelization of a program code, we understand

obtaining a semantically equivalent (SE) version of it which manages at every
moment t to schedule in parallel the execution of all its independent operations.

That's why we will characterize such a program code as time optimal. Thus, tne

parallelization process is optimal if we obtain a SE time optimal program code.
Formally, we give below three alternative definitions of this concept.

We will denote it further as R and we make some standard assump

Definition 1.2. A program code P is said to be time optimal if any oJ u
following statements is true:

a): for every operation w erecuted at moment t, there erists a depend chain of length t which ends at w;
b): everY eTeCution E of P is running in the shortest possible time wath reg to the Ps data dependenices,
: the length of any erecution E (interpreted as an ere data dependence graph of P) is the length of the longest data deperiu chain from P.

nce

the recution path in
ce

26

LOOP SCHEDULING OPTIMALITY FOR PARALLEL EXECUTION for i= 1 to N dlo

begin
if (r > y) then

begin
f(r);
g()

S
S2

end

else

r= h(r);
yE(r);

S3
S4

end

FIGURE1. A sequential loop

2. Forward execution

When considering if control statements, static scheduling alone cannot assure processors workload balance, due to possible strongly different execution times required by the different branches of such a decision structure. In general, these tests can not be evaluated at compile time, so a scheduler has no information on which can decide a proper load balance for obtaining a reasonable efficiency. That is why in branch intensive programs time optimality cannot be achieved without forward execution of branches, that is executing everything it can be executed (as the time optimnality definition requires) on every branch in advance, independently of the results of decision testing. This assures that no processor will be idle and that after evaluating the decision the results will already be there, computed, thus contributing to a significant speedup.
We can define forward execution as follows:

Definition 2.1. Let S be a statement which is control dependent on a decision
test T in a program code. During the execution of the program code, S is said to
be forward ezecuted if it will be scheduled before or concurrent with T.

This means that the system will do useless work for obtaining better results.
Thus, there will be execution histories for which S will execute but its result will
not contribute to the program's final output in any way.

We illustrate below the potential benefits of applying forward execution for a

loop's statements. Let's consider the following loop:
The sequential execution of the loop requires 4N machine cycles for the N it-

rations (remember that we assumed for simplicity that every sequential statement
or execution step - takes one cycle). With forward execution 2N +3 cycles are

needed (evident from table 1, where we reduced the 4 steps iteration to a compact
steps iteration), so for large N the method will improve the runtime execution

27

ALEXANDRU VANCEA

Scheduled operatio ns

Time steP True branch
False branch

Iyht);

E{F testry z

y= Etz);z=ftp
Xr82 Test2)

B(r): z=ftr7
One loop iteration on
the True branch

462k z:=f{}
loop body exe cution

patterm
(one iteration

takes 2 time steps)

5,7,, 2k+] One loop iteration

on the False branchh

TABLE 1. Time optimal schedule with forward execution for the

loop from figure 1.

by a factor of 2. Obviously, the operations scheduled in a time step are executed

in parallel.
Let's notice that, by forward execution, we compute z := f(TF) in advance

on the false branch (even if maybe the next iteration won't take the true branch

path so no z value will be needed) and together with the test evaluation we also

compute in advance wT := g(z). However, if the test output is false we do not need

this values at all. So, time optimality is achieved by adding an extra resources

cOst.

Ideally, making abstraction of the real execution conditions, which may vary

a lot from case to case, the amount of loop parallelism which can be exploited is

limited only by the data dependences between the loop's statements or iterations

(this forms the so called inherent parallelism). Hardware resource constrainis,

such as processors and menory, may be eliminated, at least in theory, because we

always may add extra components. That is why the most widespread execution

models assumes as we mentioned finite but unlimited resources.

3. Time optimality for loops with conditional statements

We approached forward execution in section 2 because it is evident tna
or

obtaining a time optimal schedule we have to apply it. Anyway, we will show
that

there are cases when a time optimal schedule cannot be built with finite resouro

This can happen because of the conditionals which are part of a loop, wne

ces.

P, when one

branch can prevent the forward execution of some activities of the other Dn
ch.

Then, it can be the case that time optimal scheduling (based on its definit
forces at some moment t the parallel execution of much more staterments thau

28

nTEA FAC ONIVA

LOOP SCHEDULING OP'TIMALITY FOR PARALLEL EXECUTION

resources can aftord so we will conclude that no time optimal schedule can be built

for general conditional loops. Intuitively, we observe that conditionals combined
with data dependence restrictions prevent the load balancing of the activities which
have to be scheduled in parallel, by means of forward execution and obbeying the
definition of time optimality. This makes the finite but unlimited R resources of
our machine model to be insufticient for building a time optimal schedule in the
general case. This 1s because the number of resourccs needed becomes a function
of time t, an unbounded value, even if we accept that any program run on our

machine model will eventually finish its execution. So, general practical optimal scheduling is an iniractable problem.
We will ellaborate more formally on-this intuitive observations in the following, taking a suitable example to illustrate our point of view.

Theorem 3.1. A general control flow loop has no time optimal schedule

Proof. Let's notice that if we find only one loop and only one particular
execution history for which no time optimal schedule can be built then our result
holds. So, we can consider for example the following program code:

i := 0; z := c;

for i = 1 to N do

begin
if (z > y) then

= f(7) S1
else

Sa =h(c)
y E(z,) S3

end;
which has the dependences S2 + S2 (loop carried self dependence), S2 > S1,
Sa Sa, S1 S3, Ss >T and Si ->T where T is the loop's test.

We refer further to a particular execution history, namely the one that takes
the false branch for the first nl iterations and the true branch for the remaining
n2 ones, with n2 = nl. So, N = nl + n2. Taking into account the dependences
and considering that the R resources of our machine model do not add any other

execution restrictions, any time optimal execution of our program code will need
Tnl+3 machine cycles (remember that we assune that every execution step re
quires exactly one machine cycle and that the definition of a time optimal schedule
requires that any operation takes place as soon as the inputs are available, with
no Tesource constraints). This becomes evident looking at table 2 where we show
which operations are executing at each time step. It is easy to see the pattern for
thefirst nal iterations: for each p, 2 <pg nl, iteration p executes the statement
php--1) at cycle p and the statement p = E(zp, z) together with the test

zp-1) at cycle p+1.
29

ALEXANDRU VANCEA

rd
We must notice that in the meantime no

statement is available for the forwa.i

execution on the true branch, due to the fact that the first execution of S mnet

the
wait on the final value of r issued by the self dependent statement S2 afteer t

we

nl iterations on the false branch. This value will not change further at al (

said that the next n2 iterations all will go on the true branch). So, we have no

available all the functions f and the value a, making possible in theory that all

ow

the assignments to z to be made simultancously (in the sane machine cycle). This

can be done if we apply scalar expansion |Bacon94] for being able to retain every

in a separate memory cell (remember that we have finite but sufficient resources

So, for a time optimal execution we must have at the time step ni +1, n2 +2

operations: the n2 assignments to z's together with the last test of the first n1

iterations (: > yh1-1) and the assignment yn1 := E(ra1, 2). After we have all the

2 values, the same reasons force us to compute all the data dependent y values

of S3 in the next time step. We can do this applying again scalar expansion for

the y values and knowing that we have enough resources for this. So, for a time

optimal execution we must have at the time step nl+2, n2+1 operations: the n2

assignments to y's and the evaluation of the test (z> Yn1). After that, the only

remaining operations are the n2 tests (z, > Yn1+p which all can be evaluated in

the time step nl + 3, because the values being compared are now all available.

So, our analysis reveals that any time optimal execution of the above program

S)

code will need nl + 3 machine cycles. Also, we need

n2+2 resources in the nl+ 1 time step

n2+1 resources in the nl +2 time step
n2 resources in the nl + 3 time step
The problem in this case is that the number of resources needed at a time step

is a function of that time step (Resources(nl +1) = n2 +2 N - nl + 2). But if

we have N >> R with nl, n2 >> R also, this means that even with the fin1te
but sufficient resources that we considered in our machine model (the largest
assumption we can nade anyway for practical purposes) we have not enougn
TESOurces available to schedule the required operations for an opt1m4
ezecution. So, no optirnal schedule exists for the execution of the considere
program code.

We conclude then, that in the general case, no time optimal schedule is gua
anteed to be found for a given program considering finite resources (altnou unlimited). O

ough

4. Conclusions and future work
We showed in section 3 that a time optimal schedule cannot be built with finite

resources for a loop with general control flow. So, we addressed and solved the ope problem posed in |AN88]. We informally characterized one kind of conditonar that has no optimal schedule and explained why it is so. This was suficien proving that no opt1imal schedule exists for a conditional loop in the general

for

case.

30

LOOP SCHEDULING OPTIMALITY FOR PARALLEL EXECUTION
Time
step Schedule d operatlo ns

z2

zai-3s Prl-2 £{7-2)

z>al-2 ri-B7nls,) at (ai-t); teration i ni

2+ zal-i
n +2 z>yal .Fnl+x2E{ni, Z2)

ni+3 z>yul+} Z2 Yal+2

TaBLE 2. Time optimal schedule for the above loop.

This implies that no optimal schedule exists for a loop in the general case.
thorough analysis of loop features which determine the conditions under optimal
schedules exists is what we intend to do further.

A

References
Adam74) T. Adam, K. Chandy and J.Dickson, A comparison of list schedules for paralle!

processing systems, Comn. of the ACM, 17, 1974, pp. 685-696.
Bacon94 D. Bacon, S. Graham and O. Sharp, Compiler Transformations for High-

Performance Computing, ACM Computing Surveys, vol.26, no.4, December 1994,
Pp. 345-420.

A. Aiken and A. Nicolau, Optimal loop parallelization Proceedings of the 1988 SIG
PLAN Conference on Programming Language Design and Implementation, Atlanta,

Georgia, June 1988, pp. 221-235.

[AN88]

ICytron86] R. Cytron, Doacross: Beyond vectorization for multiprocessors Proceedings of the
1985 International Conference on Parallel Processing, Penn State University, August

1986, pp.836-844.
Garey79) M. Garey and D. Johnson, Computers and Intractability - A guide to the theory of

NP-complebeness Freeman, New York, 1979.
(Munshis7] A. Munshi and B. Simmons, Scheduling sequential loops on parallel process07s, Tech-

nical Report 5546, IBM, 1987.

31

ALEXANDRU VANCEA

[Padua86] D. Padua and M. Wolfe, A dvanced compiler optimizatio715 for supercomputers Com
of ACM, 29, 1986, pp. 1184-1201.
H.M. Su and P.C Yew, Efficient Doacross Erecution on Distributed Shared-Memat
Multiprocessors, in Proceedings of the ACM Conference on Supercomputing, Novem
ber 18-22, 1991, Albuquerque, New Mexico, pp. 842-853.

Su91]

em-

"BABES-BoLYA1" UNIVeRSlTY, FacULTY OF MATHEMATICS AND INFORMATICS, RO-3400 CLUJ-NAPOCA, RoMANIA
E-mail address: vancea@cs.ubbcluj.ro

32

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

