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Loop Scheduling Optimality for Parallel Execution 

ALEXANDRU VANCEA 

Abstract. Parallelizing compilers have the task to exploit the inherent par- allelism from the sequential programs having as the ultimate goal their effi- cient execution by means of building a time optimal schedule. These tools concentrate on the parallelism available in loops, while a progran is spending there most of its execution time. Besides particular techniques for achieving optimal execution for specific loops, one question arise naturally: given an arbitrary loop and a machine model which assumes sufficient but finite re- 
sources, is it always possible to build a time optimal schedule? This paper defines the notion of time optimality and proves that in the general case, no loop time optimal schedule can be built, because there are loops which require infinite resources for accepting time optimal schedules. 

1. Introduction 

Parallelizing compilers try to efficiently exploit the parallelism available in 
a given program, particularly parallelism that is too low-level or irregular to be expressed by common coding. Fine grain (instruction level) parallelization, called compaction, captures irregular parallelism inside a loop body by concur rently executing several operations of the same iteration. Coarser methods, such 
as doacross [Cytron86] allow the extraction of much more parallelism by concur 
rently executing statements or operations belonging to distinct iterations.

Much attention has been devoted to the parallelization of doacross loops Padua86, Munshi87, Su91]. A doacross loop expresses some recurence, preventing the iterations of the loop from executing independently.
A polynomial time algorithm, named list scheduling [Adam74 is usually ap- plied for obtaining a time optimal solution for acyclic straight line programs in 

the case of unlimited resources. Scheduling with resource constraints is known to 
be NP-hard [Garey79. 
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Parallclizing compilers transform the prograrns into their parallel vorsin 

taking into account the cxisting data dependences. Nat urally, this transformatin 

ust assure that the sennantics are the same. 

Definition 1.1. Two program codes are sad to be scmantic equivalent if one of 

thcm can be obtained from the other by applying a sequence of dala dependence 

peservng transformations 

A survey of the most widely used such transformations can be found in 

P'aduas6 
Aiken and Nicolau [AN88] studied optimal loop parallelization, yielding an 

optimal greedy scheduling algorithm which detects a loop pattern. Their major 
restriction is that the loop body should contain no if statements, but only straight 

line code. Their research ends by stating that "it is an open problem whether the 

optimality results of this paper can be extended to loops with arbitrary fow of 

control. We will show in this paper by a simple analysis ol a colunter example, 

that in the general case (understood as using any kind of control flow statements), 

finding a time optimal schedule for a semantic equivalent code is not possible. 
The vast majority of studies upon optimality assume that the machine nodel 

has sufficient but limited resources, meaning that the architecture can run any

program for which the number of resources needed is bounded by some arbitrary

integer. 
tions about the loops to be scheduled: for sinmplicity, we assume, without loss of 

generality, that any operation takes one machine cycle. 
Informally, through optimal parallelization of a program code, we understand 

obtaining a semantically equivalent (SE) version of it which manages at every 
moment t to schedule in parallel the execution of all its independent operations. 

That's why we will characterize such a program code as time optimal. Thus, tne 

parallelization process is optimal if we obtain a SE time optimal program code. 
Formally, we give below three alternative definitions of this concept. 

We will denote it further as R and we make some standard assump 

Definition 1.2. A program code P is said to be time optimal if any oJ u 
following statements is true: 

a): for every operation w erecuted at moment t, there erists a depend chain of length t which ends at w; 
b): everY eTeCution E of P is running in the shortest possible time wath reg to the Ps data dependenices,
: the length of any erecution E (interpreted as an ere data dependence graph of P) is the length of the longest data deperiu chain from P. 

nce 

the recution path in 
ce 
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LOOP SCHEDULING OPTIMALITY FOR PARALLEL EXECUTION for i= 1 to N dlo 

begin 
if (r > y) then 

begin 
f(r); 
g() 

S 
S2 

end 

else 

r= h(r); 
yE(r); 

S3 
S4 

end 

FIGURE1. A sequential loop 

2. Forward execution 

When considering if control statements, static scheduling alone cannot assure processors workload balance, due to possible strongly different execution times required by the different branches of such a decision structure. In general, these tests can not be evaluated at compile time, so a scheduler has no information on which can decide a proper load balance for obtaining a reasonable efficiency. That is why in branch intensive programs time optimality cannot be achieved without forward execution of branches, that is executing everything it can be executed (as the time optimnality definition requires) on every branch in advance, independently of the results of decision testing. This assures that no processor will be idle and that after evaluating the decision the results will already be there, computed, thus contributing to a significant speedup. 
We can define forward execution as follows:

Definition 2.1. Let S be a statement which is control dependent on a decision
test T in a program code. During the execution of the program code, S is said to 
be forward ezecuted if it will be scheduled before or concurrent with T. 

This means that the system will do useless work for obtaining better results. 
Thus, there will be execution histories for which S will execute but its result will 
not contribute to the program's final output in any way. 

We illustrate below the potential benefits of applying forward execution for a 

loop's statements. Let's consider the following loop: 
The sequential execution of the loop requires 4N machine cycles for the N it- 

rations (remember that we assumed for simplicity that every sequential statement 
or execution step - takes one cycle). With forward execution 2N +3 cycles are 

needed (evident from table 1, where we reduced the 4 steps iteration to a compact 
steps iteration), so for large N the method will improve the runtime execution 
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Scheduled operatio ns 

Time steP True branch 
False branch 

Iyht); 

E{F testry z 

y= Etz);z=ftp 
Xr82 Test2) 

B(r): z=ftr7 
One loop iteration on 
the True branch 

462k z:=f{} 
loop body exe cution 

patterm 
(one iteration 

takes 2 time steps) 

5,7,, 2k+] One loop iteration 

on the False branchh 

TABLE 1. Time optimal schedule with forward execution for the 

loop from figure 1. 

by a factor of 2. Obviously, the operations scheduled in a time step are executed 

in parallel. 
Let's notice that, by forward execution, we compute z := f(TF) in advance 

on the false branch (even if maybe the next iteration won't take the true branch 

path so no z value will be needed) and together with the test evaluation we also 

compute in advance wT := g(z). However, if the test output is false we do not need 

this values at all. So, time optimality is achieved by adding an extra resources 

cOst. 

Ideally, making abstraction of the real execution conditions, which may vary 

a lot from case to case, the amount of loop parallelism which can be exploited is 

limited only by the data dependences between the loop's statements or iterations 

(this forms the so called inherent parallelism). Hardware resource constrainis, 

such as processors and menory, may be eliminated, at least in theory, because we 

always may add extra components. That is why the most widespread execution 

models assumes as we mentioned finite but unlimited resources. 

3. Time optimality for loops with conditional statements 

We approached forward execution in section 2 because it is evident tna 
or 

obtaining a time optimal schedule we have to apply it. Anyway, we will show 
that 

there are cases when a time optimal schedule cannot be built with finite resouro 

This can happen because of the conditionals which are part of a loop, wne 

ces. 

P, when one 

branch can prevent the forward execution of some activities of the other Dn 
ch. 

Then, it can be the case that time optimal scheduling (based on its definit 
forces at some moment t the parallel execution of much more staterments thau 
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LOOP SCHEDULING OP'TIMALITY FOR PARALLEL EXECUTION 

resources can aftord so we will conclude that no time optimal schedule can be built 

for general conditional loops. Intuitively, we observe that conditionals combined 
with data dependence restrictions prevent the load balancing of the activities which 
have to be scheduled in parallel, by means of forward execution and obbeying the 
definition of time optimality. This makes the finite but unlimited R resources of 
our machine model to be insufticient for building a time optimal schedule in the 
general case. This 1s because the number of resourccs needed becomes a function 
of time t, an unbounded value, even if we accept that any program run on our 

machine model will eventually finish its execution. So, general practical optimal scheduling is an iniractable problem. 
We will ellaborate more formally on-this intuitive observations in the following, taking a suitable example to illustrate our point of view. 

Theorem 3.1. A general control flow loop has no time optimal schedule 

Proof. Let's notice that if we find only one loop and only one particular 
execution history for which no time optimal schedule can be built then our result 
holds. So, we can consider for example the following program code: 

i := 0; z := c; 

for i = 1 to N do 

begin 
if (z > y) then 

= f(7) S1 
else 

Sa =h(c) 
y E(z,) S3 

end; 
which has the dependences S2 + S2 (loop carried self dependence), S2 > S1, 
Sa Sa, S1 S3, Ss >T and Si ->T where T is the loop's test. 

We refer further to a particular execution history, namely the one that takes 
the false branch for the first nl iterations and the true branch for the remaining 
n2 ones, with n2 = nl. So, N = nl + n2. Taking into account the dependences 
and considering that the R resources of our machine model do not add any other 

execution restrictions, any time optimal execution of our program code will need 
Tnl+3 machine cycles (remember that we assune that every execution step re 
quires exactly one machine cycle and that the definition of a time optimal schedule 
requires that any operation takes place as soon as the inputs are available, with 
no Tesource constraints). This becomes evident looking at table 2 where we show 
which operations are executing at each time step. It is easy to see the pattern for 
thefirst nal iterations: for each p, 2 <pg nl, iteration p executes the statement 
php--1) at cycle p and the statement p = E(zp, z) together with the test 

zp-1) at cycle p+1. 
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rd 
We must notice that in the meantime no 

statement is available for the forwa.i 

execution on the true branch, due to the fact that the first execution of S mnet 

the 
wait on the final value of r issued by the self dependent statement S2 afteer t 

we 

nl iterations on the false branch. This value will not change further at al ( 

said that the next n2 iterations all will go on the true branch). So, we have no 

available all the functions f and the value a, making possible in theory that all 

ow 

the assignments to z to be made simultancously (in the sane machine cycle). This 

can be done if we apply scalar expansion |Bacon94] for being able to retain every 

in a separate memory cell (remember that we have finite but sufficient resources 

So, for a time optimal execution we must have at the time step ni +1, n2 +2 

operations: the n2 assignments to z's together with the last test of the first n1 

iterations (: > yh1-1) and the assignment yn1 := E(ra1, 2). After we have all the 

2 values, the same reasons force us to compute all the data dependent y values 

of S3 in the next time step. We can do this applying again scalar expansion for 

the y values and knowing that we have enough resources for this. So, for a time 

optimal execution we must have at the time step nl+2, n2+1 operations: the n2 

assignments to y's and the evaluation of the test (z> Yn1). After that, the only 

remaining operations are the n2 tests (z, > Yn1+p which all can be evaluated in 

the time step nl + 3, because the values being compared are now all available. 

So, our analysis reveals that any time optimal execution of the above program 

S) 

code will need nl + 3 machine cycles. Also, we need 

n2+2 resources in the nl+ 1 time step 

n2+1 resources in the nl +2 time step 
n2 resources in the nl + 3 time step 
The problem in this case is that the number of resources needed at a time step 

is a function of that time step (Resources(nl +1) = n2 +2 N - nl + 2). But if 

we have N >> R with nl, n2 >> R also, this means that even with the fin1te 
but sufficient resources that we considered in our machine model (the largest 
assumption we can nade anyway for practical purposes) we have not enougn 
TESOurces available to schedule the required operations for an opt1m4 
ezecution. So, no optirnal schedule exists for the execution of the considere 
program code. 

We conclude then, that in the general case, no time optimal schedule is gua 
anteed to be found for a given program considering finite resources (altnou unlimited). O 

ough 

4. Conclusions and future work 
We showed in section 3 that a time optimal schedule cannot be built with finite 

resources for a loop with general control flow. So, we addressed and solved the ope problem posed in |AN88]. We informally characterized one kind of conditonar that has no optimal schedule and explained why it is so. This was suficien proving that no opt1imal schedule exists for a conditional loop in the general 

for 

case. 
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LOOP SCHEDULING OPTIMALITY FOR PARALLEL EXECUTION 
Time 
step Schedule d operatlo ns 

z2 

zai-3s Prl-2 £{7-2 ) 

z>al-2 ri-B7nls, ) at (ai-t); teration i ni 

2+ zal-i 
n +2 z>yal .Fnl+x2E{ni, Z2) 

ni+3 z>yul+} Z2 Yal+2 

TaBLE 2. Time optimal schedule for the above loop. 

This implies that no optimal schedule exists for a loop in the general case. 
thorough analysis of loop features which determine the conditions under optimal 
schedules exists is what we intend to do further. 

A 
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