STUDIA UNIV. “BABES-BOLYAT" INFORMATICA, Volume XLIT, Number 2, 1997

Loop Scheduling Optimality for Parallel Execution
ALEXANDRU VANCEA

Abstract. Parallelizing compilers have the task to cxploit the inherent par-
allelism from the sequential programs having as the ultimate goal their effi-
cient execution by means of building a time optimal schedule. These tools
concentrate on the parallelism available in loops, while a program is spending
there most of its execution time. Besides particular techniques for achieving
optimal execution for specific loops, one question arise naturally: given an
arbitrary loop and a machine model which assumes sufficient but finite re-
sources, is it always possible to build a time optimal schedule? This paper
defines the notion of time optimality and proves that in the general case,
no loop time optimal schedule can be built, because there are loops which
require infinite resources for accepting time optimal schedules.

1. Introduction

Parallelizing compilers try to efficiently exploit the parallelism available in
a given program, particularly parallelism that is too low-level or irregular to
be expressed by common coding. Fine grain (instruction level) parallelization,
called compaction, captures irregular parallelism inside a loop body by concur-
rently executing several operations of the same iteration. Coarser methods, such
as doacross [Cytron86) allow the extraction of much more parallelism by concur-
rently executing statements or operations belonging to distinct iterations.

Much attention has been devoted to the parallelization of doacross loops
[Padua86, Munshi87, Su91]. A doacross loop expresses some recurence, preventing
the iterations of the loop from executing independently.

A polynomial time algorithm, named list scheduling [Adam74] is usually ap-
plied for obtaining a time optimal solution for acyclic straight line programs in
the case of unlimited resources. Scheduling with resource constraints is known to
be NP-hard [Garey79).

Received by the editors: February 7, 1998.

1991 Mathematics Subject Classification. 68N15. . . ‘

1991 CR Categories and Descriptors. D.1.3 ‘[Progran.lmmg Techmques]: Concurrent
l’rogramming — parallel prograrmming; D.2.8 [Software Engxne’er¥ng].: Metrlcs‘— performance
casures; D.3.4 [Programming Languages): Processors - optimization, compilers.

25

ALEXANDRU VANCEA

Parallelizing compilers transform the programs into their parallel versjon

o T a e nees. Naturally, this transformat;
taking into account the existing data dependences. N Y, Mabiong

must assure that the semantics are the same.

Definition 1.1. Two program codes are said to be semantic equivalent if one of
them can be obtamned from the other by applying a sequence of dala dependence

preserving transformations.

A survey of the most widely used such transformations can be found iy
[Paduas6]. .

Aiken and Nicolau [AN88] studied optimal loop parallelization, yielding an
optimal greedy scheduling algorithm which detects a loop pattern. Their major
restriction is that the loop body should contain no if statements, but only straight
line code. Their research ends by stating that "1t is an open problem whether the
optimality results of this paper can be extended to loops with arbitrary flow of
control”. We will show in this paper by a simple analysis of a counter example,
that in the general case (understood as using any kind of control flow statements),
finding a time optimal schedule for a semantic equivalent code is not possible.

The vast majority of studies upon optimality assume that the machine model
has sufficient but limited resources, meaning that the architecture can run any
program for which the number of resources needed is bounded by some arbitrary
integer. We will denote it further as R and we make some standard assump-
tions about the loops to be scheduled: for simplicity, we assume, without loss of
generality, that any operation takes one machine cycle.

Informally, through optimal parallelization of a program code, we understand
obtaining a semantically equivalent (SE) version of it which manages at every
moment t to schgdule in pareltllel the execution of all its independent operations.
That’s ?avhy_ we will cha:racte?xze sgch a program code as time optimal. Thus, the
parallelization process is optimal if we obtain a SE time optimal program code.

Formally, we give below three alternative definitions of this concept.

Definition 1.2. A program code P is saj .
, aid to b ; f a the
following statements is true: ¢ time optimal if any of

a): for every operation w
: erecuted at mome - ’
g , ntt, t ; -pender
chain of length t which ends at - | there exists @ dor
’

b): every execution F of P is runn
5)
to the P’s data dependences-
-

c): the length of an '
_ Y execut interpre ' | v
the tonglh of won E (interpreted as an erecution path n the

grapl) s y
chain from jrapic of P) is the length of the longest data dependent

ing in the shortest possible time with 7‘69”"‘{

26

LOOP SCHEDULING O

F'MALITY FOR PARALLREIL EXECUTION
fori:=1to N do '

begin
if (z > y) then
begin
St = f(-r))
Ss T = g(2);
end
else
Sy : T = h(z);
Sat yi=E(z);
end

FIGURE 1. A sequential loop

2. Forward execution

When considering if control statements, static scheduling alone cannot assure
processors workload balance, due to possible strongly different execution times
required by the different branches of such a decision structure. In general, these
tests can not be evaluated at compile time, so a scheduler has no information on
which can decide a proper load balance for obtaining a reasonable efficiency.

That is why in branch intensive programs time optimality cannot be achieved
without forward ezecution of branches, that is executing everything it can be
executed (as the time optimality definition requires) on every branch in advance,
independently of the results of decision testing. This assures that no processor
will be idle and that after evaluating the decision the results will already be there,
computed, thus contributing to a significant speedup.

We can define forward execution as follows:

Definition 2.1. Let S be a statement which is control dependent on a decision
test T in a program code. During the execution of the program code, S is said to
be forward executed of it will be scheduled before or concurrent with T

This means that the system will do useless work for obtaining better results.
Thus, there will be execution histories for which S will execute but its result will
not contribute to the program’s final output in any way. |

We illustrate below the potential benefits of applying forward execution for a
loop’s statements. Let’s consider the following loop: ' |

The sequential execution of the loop requires 4 N machine cycles‘for the NV it-
erations (remember that we assumed for simplicit‘y that every sequential statement
- Or execution step - takes one cycle). With forward execu@on Z.N + 3 cycles are
needed (evident from table 1, where we reduced _thc? 4 steps lterauon. to a comp;act
2 steps iteration), so for large N the method will improve the runtime execution

27

ALEXANDRU VANCEA

Scheduled operations O
b— -
Time step True bfaﬁrr_/ False branch
! fest(x>p), TN xx:=hix),]
2 | meed L (¢
3 N y = Bxg), 2= J(x0) ————
[. xg =h(x
46 2%k ,m L
57 ., 2k+] |y =Efxg) 2 .= f{xr) z = f{xF) 7
| One loop iteration on loop body execution
| the True branch paitem
T (one iteration
. takes 2 time steps)
L

TaBLE 1. Time optimal schedule with forward execution for the

loop from figure 1.

the operations scheduled in a time step are executed -

by a factor of 2. Obviously,

in parallel.
Let’s notice that, by forward execution, we compute z = f(zp) 0 advance

on the false branch (even if maybe the next iteration won’t take the true branch
path so no z value will be needed) and together with the test evaluation we also
compute in advance T := g(z). However, if the test output is false we do not need
this values at all. So, time optimality 1s achieved by adding an extra resources
cost.

Ideally, making abstraction of the real execution conditions, which may vary
a lot from case to case, the amount of loop parallelism which can be exploited 15
limited only by the data dependences between the loop’s statements or iterations
(this forms the so called inherent parallelism). Hardware resource constraints,
such as processors and memory, may be eliminated, at least in theory, because we
always may add extra components. That is why the most widespread execution
models assumes as we mentioned finite but unlimited resources.

3. Time optimality for loops with conditional statements

.Vv.e aPprf)a.ched forward execution in section 2 because it is evident that for
obtaining a time optimal schedule we have to apply it. Anyway, we will show that
f}‘le.re are cases when a time optimal schedule cannot be built wi’t,h finite resources:
li his (}:1an happen because of the conditionals which are part of a loop, when 01¢
Tr}?:nc iiacna:rﬁze?lt tlTe forward .execution of some activities of the other branc®
forces, at séme . © L@sc that time optimal scheduling (based on its definitio”
moment ¢ the parallel execution of much more statements than the

28

LOOP SCHEDULING OPTIMALITY FOR PARALLEL EXECUTION

resources can afford so we will conclude that no time optimal schedule can be built
for general conditional loops. Intuitively, we observe that conditionals combined
with data dependence restrictions prevent the load balancing of the activities which
have to be scheduled in parallel, by means of forward execution and obbeying the
definition of time optimality. This makes the finite but unlimited R resources of
our machine model to be insufficient for building a time optimal schedule in the
general case. This is because the number of resources needed becomes a function
of time 7, an unbounded value, even if we accept that any program run on our
machine model will eventually finish its execution. So, general practical optimal
scheduling 1s an intractable problem.

We will ellaborate more formally on-this intuitive observations in the following,
taking a suitable example to illustrate our point of view.

Theorem 3.1. A general control flow loop has no time optimal schedule

Proof. Let’s notice that if we find only one loop and only one particular
execution history for which no time optimal schedule can be built then our result
holds. So, we can consider for example the following program code:
1:=0;z:=¢;

fori:=1to N do

begin
if (z > y) then
Sy z:= fi(z)
else
Sy z:= h(z)
Ss: y:= E(z,z2)
end;

which has the dependences Sy — S (loop carried self dependence), Sy — S,
Sz = 83,81 — S3, S3 > T and S; = T where T is the loop’s test.

We refer further to a particular execution history, namely the one that takes
the false branch for the first nl iterations and the true branch for the remaining
n2 ones, with n2 = nl. So, N = nl + n2. Taking into account the dependences
and considering that the R resources of our machine model do not add any other
execution restrictions, any time optimal execution of our program code will need
nl +3 machine cycles (remember that we assume that every execution step re-
quires exactly one machine cycle and that the definition of a time optimal schedule
requires that any operation takes place as soon as the inputs are available, with
no resource constraints). This becomes evident looking at table 2 where we show
which operations are executing at each time step. It is easy to see the pattern for
the first n1 iterations: for each p, 2 < p < nl, iteration p executes the statement
Zp = h(z,._,) at cycle p and the statement y, := E(zp, z) together with the test
(z > Yp—1) at cycle p + 1.

29

ALEXANDRU VANCEA
We must notice that o {he meantime no statement I8 avalla‘ble for thfc forwarq
/ ue branch, due to the fact that the first execution o S must
«d by the sell dependent statement Sy after the
This value will not change further at all (we
go on the true branch). So, we have noy

ossible in theory that)|

available all the functions ' ' L e a
ts to 2 to be made sin'mlt;am‘,ously (in the same machine cycle). Thig

lv scalar expansion [Bacon()/l] for being able to retain every ,
) (romember that we have finite but sufficient resources).

So. for a time optimal oxecution we must have aF the time step nl + 1, n2 49
operations: the n2 assignments to z’s together with the last test of the first ni
1terations (£ > ynl_l) and the assignment Ynl ‘= E(il?m, Z)- After we have all the

- values, the same reasons force us to compute all the data dependent y values

of S5 in the next time step. We can do this applying agan scalar expansion for

the y values and knowing that we have enough resources for this. So, for a time
optimal execution we must have at the time step n1+2, n2+1 operations: the n2
assignments to y’s and the evaluation of the test (z > Yn1)- After that, the only
remaining operations are the n2 tests (zp > Yn1+p) which all can be evaluated in
the time step nl + 3, because the values being compared are now all available.

So, our analysis reveals that any time optimal execution of the above program
code will need n1 + 3 machine cycles. Also, we need

n2 + 2 resources in the nl + 1 time step

n2 + 1 resources in the nl + 2 time step

n2 resources in the nl 4 3 time step

The problem in this case is that the number of resources needed at a time step
is a function of that time step (Resources(nl +1) = n2+2=N —nl + 2). But if
we have N >> R with nl, n2 >> R also, this means that even with the finite
but sujﬁcient resources that we considered in our machine model (the largest
S Vo i o il o) e o b
ezecution. So, no Opt(;r::l ;:h";dilihe 'Tiq’u:red OPeTatz?nS for o Op't”"‘:;
orogtam code. exists for the execution of the considere

We conclude then, that in the general case, no time optiral schedule is guar

anteed to be found for a gi T . :
unlimited). O given program considering finite resources (althous!

execution on the tr '
wait on the final value of @ 188U¢
nl iterations on {he false branch.

at the next n2 iterations all will

said th !
fi and the value ¢, making p

the assignmen
can be done 1f we app
in a separate memory cell

4. Conclusions and future work

We showed in section 3 that a time
resources for a loop with ge I

problem posed in [AN 88].
that has no optimal sche
proving that no optima)

optimal schedule cannot be built with finite
\f;\frfu control flow. So, we addressed and solved the ope!
dulz l'nformally'characterized one kind of conditional 100P
* and explained why it is so. This was sufficient for

schedule exist :
s . - .
- for a conditional loop in the general cas®

Loor SCHEDULING OPTIMALITY FOR PARALLEL EXECUTION

Time Scheduled speratlons
Step
] zZ2¥o xp:=hixg
.~ ‘\‘_ﬁ‘*;ﬁ_“h,
2 Yi:= By, z) x3:= hixy)]
> - s =R ——— T
S Z>y; F2 = EBixa x) x3:= hixy]
¢) ra = B(x3 | xq:=h(xy]
1 n2
fg‘ e .
ﬁ nl -1l Z2Vata | a2 = Bz z) ' Xull = g
| owi Z>pyiz Fui-i = By, z) Xar := hixy-g); terationi=nl
nl+1 Z > part Yur = E(ow,) 215 i nu), 22: %), . Tz = fazfing)
nl+2 Z>Yus a1 1= Efxy, z;) v Paivnz 7= Efxng, Zyg)
nl+3 Z > Fui+i Z2 > Yyi+z - .. o Zn2 P Yul+ad

TABLE 2. Time optimal schedule for the above loop.

This implies that no optimal schedule exists for a loop in the general case. A
thorough analysis of loop features which determine the conditions under optimal
schedules exists is what we intend to do further.

References

[Adam74] T. Adam, K. Chandy and J.Dickson, A comparison of list schedules for parallel
processing systems, Comm. of the ACM, 17, 1974, Pp- 685-696. ’

[Bacon94] D. Bacon, S. Graham and O. Sharp, Compiler Transformations for High-
Performance Computingy ACM Computing Surveys, vol.26, no.4, December 1994,
pp. 345-420. o .

[AN88] A. Aiken and A. Nicolau, Optimal loop parallelization Proceedings of the 1988 SIG-
PLAN Conference on Programming Language Design and Implementation, Atlanta,
Georgia, June 1988, pp. 221-235. o ' _

[Cytr0n86] R. Cytron, Doacross: Beyond vectorization for r.nultlprocessora Pro.ceeo;l.mgs of the
1985 International Conference on Parallel Processing, Penn State University, August

1986, pp.836-844. . . .
) , - the th
[Garcy79] M. Garey and D. Johnson, Computers and Intractability - A guide to the theory of

) 979.
NP-completeness Freeman, New York, 1 ' -
[Munshi87] A. Munshi and B. Simmons, Scheduling sequential loops on parallel processors, Tech-

nical Report 5546, IBM, 1987.
31

ALEXANDRU VANCEA

[Padua86] D.Paduaand M. Wolfe, Advanced compiler optimizations for supercomputers
of ACM, 29, 1986, pp. 1184-1201.

[Su91] H.M. Su and P.C Yew, Efficient Doacross Ezecution on Distributed Sh“rEd‘MEmofy
Multiprocessors, in Proceedings of the ACM Conference on Supercomputing, Noven,.
ber 18-22, 1991, Albuquerque, New Mexico, pp. 842-853.

Comm,

“BABPS-BoLYAI” UNIVERSITY, FACULTY OF MATHEMATICS AND INFORMATICS, RO-34¢
Crui-Naroca, ROMANIA

E-mail address: vancea@cs. ubbcluj.ro

32

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

