
STUDIA UNIV. "BABES-BOLYA", INFORMATICA, Volume XLI, Number 2, 1997

REASONING WITH FRAME-BASED AND OBJECT-ORIENTED

KNOWLEDGE

D. TATAR AND A. DUMITRESCu

Abstract. In this study, some possibilities to deal with incomplete informa-
tion are investigated, using the connection between frame-based systems and

object-oriented systems, made via F-logic formalisme developed in [10].
We present here a proof theory that is used for obtaining, as a deductive

process, new infornmation starting with a minimal, incomplete information.

1. Logical object-oriented language
1.1. Introduction. The frame based-systems deal with well-known or well-defined
hierarchies of frames. The aim of this approach is to look at the possibility of rea-
soning about the hierarchical structure of a frame based system, while dynamically
building it from incomplete bits of information. We will assume that at the begin-
ning the hierarchy (or the set of frames) is incompletely known or, in the happiest

case, a minimal structure is given.
It is knowed that "the object-oriented" approach of a database programming

language is a term not entirely formalised from mathematical point of view. In [10]
the authors give a novel formalism, F-logic, which "'stands in the same relationship
to the object-oriented paradigm, as classical predicate calculus stands to relational
programming". This formalism has an important application in the area of frame-
based languages in AI, where the notion as frames, slots and facets are viewed as
objects and attributes. In first section we present F-logic formalisme developed
in |10 and we present a proof theory that is used for obtaining a frame from

information about it as a deductive process in this theory .
The second section presents the frane-based knowledge representation, stress-

Ing the types of incomplete information a frame structure can deal with (6. Some
sets of structural relations between the elements of a domain of expertise will be

Received by the editors: October 1, 1997.

1991 Mathematics Subject Classification. 68T30, 68T35.
1991 CR Categories and Descriptors. H.2.3 Database Management): Languages

ata description languages; I.2.3 [Artificial Intelligencel: Deduction and Theorem Proving

Deduction (e.g., natural, rule- based).

13

D. TATAR AND A. DUMITRESCU

used as initial formulas in the proof theory in first section. Each relation ren

sents a different, limited view of the domain to be represcnted. Through a pro
of relations' composition, new or hidden knowledge about the domain can ho

repre

vealed and an cquivalent frame structure can be built, as a new theorem obtain.
ined

in F-logic.
In the third section we present an example of this idea.

1.2. Basic concepts in F-logic. As object-oriented approach seeks to grou
data around objects, in F-logic is used a concept that is called logical obiect

identity (loid). Also, F-logic allows grouping of the data around properties, as

relational database languages. Thus, F-logic is a multiparadigm language which
proves that relational and object-oriented paradigm can be reconciliated [11], 141.

S]. [13). The alphabet A of a logic language consists of

roup

in

A = FUVU AurU Op

where:

.F is the set of function symbols (object constructors). As usually, each

function symbols has a fixed arity. The symbols of arity 0 are called con-

stants.
V is the set of variables.

Aur is the set of auxiliary symbols, such as:(,), [L],>,+,,>,
Op is the set of usual logical conectives and quantifiers :A, V,-,>, V,3

A term (or id-term) is a usual first-order term composed of function symbols

and variables.

A ground (variable-free) id-term is denoted logical object id or loid.
In the bellow definition we nade some simplification from the original [10),

by considering Q an id-term, and not a method with arguments (or, equivalentely,

we will consider only nethod with 0 arguments). For our aims, this simplification
is not restrictive.

Definition 1.1. A molecular formula is one of the following
.an is-a assertion of the form:

O :: C,

with the meaning: lhe id-term (that denotes an object) O is a non subclass of class represented by the class C, or

O:S

with the meaning: the id-term O is a member of the class .
.Odata express11on, , data expression, where data express1O *

a noninherilable scalar epression:
QT

14

REASONING WITH FRAME-BASED AND OBJ ECT.ORIENTED KNOWLEDGE

that means that the id-term or the attribute Q takes the value T, where
T is a loid or a molecular formula.
a noninheritable set-valued expression:

Q {S1, ,Sn}
that means that the id-term or the attribute Q takes the value from the
set of loid's or molecular formulas S1, , S
an inheritable scalar erpression:

Q0T
that means that the id-term or the attribute Q takes the value T, as
above, and this value can be inherited by the subclass and individual
members of the object Q, when it plays the role of a class.
an inheritable set-valued expression:

Qo {S1, ,S,}
that means that the id-term or the attribute Q takes the value from the
set of loid's or molecular formulas S1, ,Sn. and this values can be

inherited by the subclass and individual members of the object Q, when
it plays the role of a class.

Olsignature expression,, signature expression), where signature expres-
sion is:

a scalar signature crpression: Q> (A1, , A,), that means that the
id-term or the attribute Q must be of types that simultaneously belong

to classes A1, ,A.
a set-valued signature erpression: >> (B1, , B,) that means
that each element of the set of id-terms or the attributes Q must be of

types that simultancously belong to classes Bi, , B,

Informaly, a molecular F-formula asserts that the object denoted by O has

properties specified by the data expression inside the brackets "P and "P or has
type constraints specified by the signature expression inside the brackets " and

"P.
Now we can define the formulas in F-logic, the -formulas, which are buit by

means of logical conectives and quantifiers as in definition:

Definition 1.2.
A molecular formula is a F-formula.
and are F-formulas, then p A v, p V v,p -,p are F-formulas.

If X,Y are variables, then (VX)p, (3X)p are formulas.

.3. A proof system. This section describes a proof theory for the F-formulas.

The deductive rules arc separated in two classes: the general and the local deduc-
Uve rules. The general rules expres some properties of the "operations" , >

15

D. TATAR AND A. DUMITRESCUJ

,, ,:. The local deductive rules correspond to some struct1lTal -.

sible between the objects (frames, slots, lacets) of a frame-based ad ion pos-
tem. Some

of these relations will be presented in the next section (6]. The laruo. ne

inference rules in our proof theory stems iron the rich semantics of ans number o
logical

In F-logic much of the theory of unitiers carries over fromn the clasical .

set

system that attempts capture the object-oriented paradigm.

calculus [10]. Thus, a substitution is a mappinga: V-T, where T ate

ings
of id-terms of a language L. As in classical logic, substitutions extend to man

L L as follows:

o(ft1, tn)) =,f(o(t1),* , o{tn)
A substitution can be further extended to a mapping from F-formulas t

F-formulas by distributing a through formulas components:
to

o(Q: P)= o(P) : o(Q), o(Q: P) = o(P) :: o()
o(O[QT)) = o(0)o(Q)> o(T))

Definition 1.3. Let Ti and T2 be a pair of id-terms oT of is-a F-formulas. A
substitution o is a unifier of T1 and T2 if o(Ti) o(T2).

In [10] is defined also the unification for tuples of id-terms
Definition 1.4. The tuples < Pi,*:: , Pn> and < Q1,. , Qn > are unifiable if there is a substitution o such that o(Pi) = o(Q:), for i = 1, . . ; n.

The mgu unifier is defined as usually.
The following rules are obtained from the properties of F-formulas and are

accordingly with the deductive rule for resolution in [10). The first rules capture the semantics of the subclass-relationship and 1ts i teraction with class membership and we will call them is-a rules.
I1: P::Q.Q:: P"E o(P = Q), ifa = mgu(< P,Q>, < P',Q' >) I2: P:: Q, :: RE o(P :: R), if o = mgu(Q,Q'). 13: P:Q,Q:: REo(P: R) if o = mgu(Q,Q). Type-inference rules
T1: OQ T},O1 :: 02 F o(01[Q T]), if o = mgu(0,02). * inheritance)
T2: O1Q {S1,. ,S}],01 :: 02 F o(01Q > {S1, 3n} Tgu(O,02). (similarly to 1 for set valued methods) T3: OQ T},Q1 :: Q2 o(OQ1 > T]) if o = mgu restriction)
T4: O1Q {S1,.,S,,)1, Q1 : Q2 F o(OIQ1 > {S1,*Dn)l mgu(Q,22). (similarly to 3 for set valued methods)
T5: a.01Q>T},T1 : T2H o(OQ »T2\), if o = mgu(T,i }

type

Sn}]), ifo =

2). (unput

]), if o
=

16

REASONING WITH FRAME-BASED AND OBJECT-ORIEN'TED KNOWLEDGE

b.O[Q T],01Q1 Ti] E o(0|Q => O1[Q1 > T]}) if a mgu(T,O1). (output restrictions)

Union rules

R1: OQ>T:Q1 T], O[Q= T2]EO[Q>{T1.T2};Q1>T) R2: OQ T), O1|Q1> Ti], 0 :: 01 F OQ >T;Q1T] This rules are
doubled for the * replacing>.

Modus-ponens rule (as in first-order logic) MP U, U -> VEV
Theorems in proposition and predicata calculus

Definition 1.5. (Deduction from a set of F-formuas). Given a set of S of F-
formulas, a deduction of a F-formula U from Sis a finite sequence of F-formulas U1,,Un such that Un = U , and for i = 1,.. ,n ,U; is either:

-a member of S.
-is a theorem as above.
is derived from some Uk and Uj, k,j <i, using one of the is-a rule, type

inference rule, union rules or modus-ponens.

Remark 1.6. The only restriction in a deduction is that firstly are applied the
rules for inheritable data and scalar expressions, and then the rules for noninher
itable data and scalar ezpressions.

The process of signature accumulation by an object can be now simulated by
a deduction from a set of F-formulas. Let us illustrate the example from [10].

Example 1.7. The set S of F-formulas are:

empl: person, assistant :: studentt, assistant :: empl

person name> stringj
student drinks beer; drives => bargain]

emplsalary integer; drives=> car]
assistant[drives > oldThing]

17

D. TATAR AND A.
DUMITRESCU

The sigmature
accumulatcd by

ass1stant from all sourses will

a
deduction fromS as follows:

tained by
U1:empl :: pers0n

U2 person|name string

U3: emp![name => stringj; U1, U2Fr, U3

U4 assistant :: empl

Us: assistant|nane > string); U3, U,F7, U5

U6: assistant |drives > oldThing]

U7:
student[drinksbeer; drives => bargain|

assistant:: student
U8

Ug: assistant[drinks => beer; drives bargain,, U7, Usr, U

U10: assistant [drinks => beer; drives > (bargain, ol dThing)}, , Us, Uat ps..

U1 empl[salary integer; drives car
U12:assistant|drinks => beer;

drives (bargain, oldThing, car)), salary >integer), U10, UiuFr2U12

1

The formula U12 represents the final signature accumulated by the object assistant.

2. Knowledge representation by frames

2.1. Introduction. Frames are structures that represent a chunk of knowledge

about a small domain of the world. They are rather like a stereotype of a situation

or thing. Frames therefore set up the expected items in a given situation although

these may easily be modified.
A frame consists of attributes (slots) each of them describing a s pecific aspec

of the concept it represents. The attributes have to reflect the important features o

the represented concept, according to the chosen point of view. They can be snart

by dierent irames or they can refer to other frames, thus giving the pOss

represent different visions of the same object. Each attribute is descri0

facets that specify the nature of the attribute and the behaviour associa
The descriptions in a frame, also called slots, generally consist o

a slot-nane, which specifies an attribute, and a slot-filler, which qua
attribute.

ility

to it.
parts:

thal

Therefore the structure of a frarneis
<frame: (slot 1 (facet 1 value 1)

(facet n value n))

(slot q (facet 1 value 1)

(facet m value m))>
18

REASONING WITH FRAME-BASED AND OBJECT-ORIENTED KNOWLEDG

where each attribute is described by facets that specify the nature of the attribuIte

and the behaviour associated to it.
The classical facets values.

Boolean and string values) or complex. The latter ones usually represent pointers
towards other frames. They give the type of attribute and their value represent
the name of another concept defined in the frame hierarchy. The type facet allows
the system to verify the coherence of a complex value that is to be assigned to
an attribute with the attribute itself. The value assigned to an attribute has to

be of a type that has as father a concept hierarchically equal or inferior to the

attribute's type.

The values can be simple (the integer, real,

2.2. Reasoning with frames. Frames form a hierarchy such that each level
of frames is more specialised than the previous level of frames. They foliow an

inheritance hierarchy such that default values of a class frame are propagated
across the class/subclass and class/me nber hierarchy. Obviously this is very

suited to object oriented programming. In the frame representation the prototype
of a situation is memorised as a unit of knowledge. The particular situations
related to that prototype are memo rised in form of knowledge units linked to

it. This latter units contain only the information which is different from the one
contained in the prototype. The reasoning is based on re-mermorisation: being
given a network of units represcnting a domain of application, it is requested to
find the unit that can be used as prototype to describe the current situation.

So the basic idea is to seek (according to some heuristics specific to each
domain) the objects that fit the current situation and then, if needed, to classify
the found objects according to their degree of appropriateness with the current

situation.
There are two main styles of reasoning with frames: first, as described above,

the matcher must decide in a given situation which of the many frames it is the
best match. This requires the matcher to be able to receive information about the
existing si tuation and perform a best match type search on all the franes it has
in its knowledge base.

Problems obviously occur when a default value has been overridden in a frame,
because the matcher will have problems in recognising that, although the default
value was overridden, the given frame fits in the closest way to the same frame as
if the de fault value wouldn't have been overridden. So the reasoner needs to go up

the frame hierarchy checking each slot starting from the slots directly associated
with that frane, once these are exhausted it goes up the tree getting values from
ts parents' slots. This is the inheritance mechanism which is the second main

reasoning style.
An instance of a frame possesses only its particular properties, the general

properties being inherited in a dynamic way. Ignoring the exact value of one or
more of these properties doesn't prevent the definition of an instance that can

19

D. TATAR AND A. DUMITRESCU

he completed later. All the modihcation at a certain level of he hierarchy propagated without any other treatment to all the descendants of that
ate object. An informant can state:

) an object belongs to a class/ this object inherits from the.

asses

from those classes
ii) an object might belong/1nherit from one of these ciasses

iv nothing is known about the class to which an object belongs

ii) an object does not belong to a certain class / this object does not inherit

It is possible to have an incomplete mechanism tor the control of reas

there
the order of the events could be incompletely specified. One mnay know that

ibutes
is a certain order given by the "pre required and the "post required" atts

but some of these attributes might miss and/or the order might not be precise. In conclusion, frames store information in much larger chunks than othe

methods of representation and tend to focus more on the relevant issues. Havin
the idea of default-values is a very powerful one as it saves the same information
having to be continually entered and enables the system to make assumptions
if no specific data is given. This can be totally valid in many scenarios and any
deviations from the norm can be easily fitted into the model by changing the value
from the default to the actual. Another important idea introduced is that of having
procedures attached to frames. These allow the system to deal with situations as
they arise in a far more flexible fashion than a simply 'static' information based

system such as semantic nets. Also with frames, the hierarchy is generally qute
simple for humans to follow and as such it is a less onerous task for the designer
to enter all the initial frames. It is quite possible for experts in various domains to

present their knowledge to a frame based system without a great deal of difhcul To resume, the frame representation allows i) to consider the same event folo different perspectives ii) to describe an object in different ways, according
he

inheritance that is highlighted ii) to consider only a part of the informato tha
represents a particular vision upon an object and use that part in reason"t

iv) to

describe the objects by comparing them with the prototypes (parents, an stors
allowing some information to miss in the description of a certain ob)eu

2.3. Structural relations. To build a system of frames mign
a complex task, requiring a high degree of expertise. A ation
building the system is to describe the domain of expertise by reia
elements which give, individually, a very partial knowle dge, but * ons between

following relations will concern the slots, the declarative featurcan
1s

meant.

Mainly,

te

might be, sometime

might lead to the desired frame system. In what follows, by a feature of a frame a slot or a facet is

assembling

the

Let S be a frame system representing a certain domal
hierarchy of frames or a set of frames.

values

heir

n. S can
be

zther

a

20

REASONING WITH FRAME-BASED AND OBJECT-ORIENTED KNOWLEDGE

Let St(F) denote the structure of a frame F, that is the set of its slots, with
the relations between them. St(F) = Pu(F) + Pr(F), where Pr{F) is the set of

slots private to the frame F, that is the slots which cannot be inherited by other

frames and Pu(P) is the set of public slots of F, that is the set of characteristics

which F can transmit to other frames. The structure of a slot will be referred in
a similar way: sl(slot) = pu(slot) + pr(slot).

Most of the relations defined here can be used not only to describe the prop-
erties of the slots of a frame, but also to describe the properties of the facets and,

also, slots' and facets' properties related to a certain value of anot her slot or facet.
It means that these relations can be used at 3 levels: (1) values of slots or of facets,

(2) facets and (3) slots.

1.1alike(F1.f1,.., Frn.fn)
Two features f and g of two frames Fi and Pj are called alike features iff they are
entirely the same, with the single possible exception of their names. This property
will be denoted by the relation Fi.f alike Fig or by alike(Fi.f, Fj9).

Example 2.1. Let us take the slots angle and length of two frames called triangle

and segment.

Both the slots length and angle can have the following identical structure

value: type: real default: 0 domain: 0, infinite property: additivity

Such a representation of the two slots is sufficient for many purposes. The

identity of structure can be expressed as the relation

trianglc.anglc alike segmcnt.length. The relation alike introduces in a set

of formulas the following implication:

U10; alike(U.X, V.Y) (U[S > X.Z]-> V[S' > Y.2)

1.2.similar(F1.f1,., Fn.fn)

Two features f1 and f2 of two frames, F1 and F2 are called similar if they have the

same public facets. This can be written as pu(F1.fl1) = pu(F2.f2) and the relation

will be expressed as follows: F1.f1 similar F2.f2 or similar{F1.f1, F2.f2).

In the upper example, let the slot length to have the same structure and

change the structure of angle to angle value

type: real

default: 0
domain: (o, infinite)

property: additivity
1.3.unlike(F1.f1,..., Fn.fn) (F1.funlikeF2.g)

The feature F1.f of a frame F1 is unlike the feature F2.g of a frame F2 iff none

of their characteristics are the same.

21

D. TATAR
AND A

DUMITRESCU

Is the
This relat ion can be expressed as sl(1J)

intersected with sl(E9.

empty sct.

Example. The slot cartesian belonging to a Irane coordinate and defn.

coordinate cpoint is a location cangle 1s an angle cartesian type Boolean

true has no common facet with and it 1s entirely difterent of the slot angl.

in the upper example. We write this as
coordinate.cartesian unlike trianel "

or unlike(coordinate.cartesian, triangle.angle).

ult
given

gle

1.4.rare: rare(S, F1,..., Fn, mar)

A rare feature of a set of frame is a feature that does almost never occur in the

frames of that set.

the

For example, in the above hierarchy, the slot area is a rare feature in the set

of frames that form the hierarchy, since it appears only in the frame circle. This

can be written rare(area, segment, line, angle, circle)

1.5.comnon(f, F1, ..., Fn, min)

A feature f is called common to a set of frames is it appears in the sttructure of

the most of the frames of that set.

For instance, the slot sort-of, which appears in most of the frames of the

upper hierarchy can be regarded as a common feature. Like in the case of the rare

feature, a numeric variable can state the minimum number of occurrences ot the

feature in the frames of the set: there is an m >= min such that there is a subset

il, im of 1,., n for which f belongs to St(Fij) for every j=1,.m.

1.6.nust(f1,..., fm, F1,., Fn)
The occurence of a public feature common to a set of frames can be stated Dy
must relation: must(feature, setofframes). The relation must(f, F1,.., Fn) can

be expressed as for every i from 1,..., n f belongs to Pu(Fi).

1.7.should(f1,.., fm, F1,., Fn)
The relation should states that the occurrence of a feature in the frame's stru

ture is sufficient to characterize that frame, meaning that the feature is a priva

characteristic of the frames belonging to that set. That is: for every 1 irom
f belongs to Pu(Fi).

1vate

3. Exanple

et us consider the following example of frame given by sorme informa
concept type(segment. angle, slot)
alike(segment.length,?.angle) facet(lenght,name , L)
facet (lenght,type,real)
facet (1enght,default value,0)
facet (length, property, aditivity)

22

REASONING WITH FRAME-BASED AND OB.JECT-ORIENTED KNOWLEDGE

Altough incomplete,this single frame provides a big amount of information
about the describcd concept. The final frame can be represented as the following:

segment

length
name L

type real
default value 0

property additivity
angle

type real
default value 0o

property additivity
As a molecular F-formula, this frame can be described as:

segment[slot1 > length{name > L, type+ real, property > additivity,
defaultvalue > 0,

slot2 > angle[type real, property + additivity, de faultval ue > 0}]
This F-formula can be obtained by a deduction from the set S of formulas

corresponding to above informations:

U1 segnent[slot1 angle]

U2: slot2: segment
Us: segment[slot2 > lenght]

U: alike(segment.lenght, X.angle)
Us: lenght[type > real

Us: lenght[defaultvalue >0
U: lenght[property - additivity

The new formulas obtained by deduction are:

:segment[slot2 > lenght[type -> real]Us, Usr,sUs

Finaly,
Ug segment[slot2 => lenght[type real, de faultvalue > 0,

property additivity]

U10; alike(U.X, V.Y) - (U[S > X.2]> V[S' Y.2))
(from sernantics of relation "alike")

U1: segment [S => lenght.2]> V[S" > angle.Z]; Us, UotMPU11

U12: segnent[slot1 => angle[type + real, defaultvalue > 0, property - additivity]:

Ug,U11MPUi2
13:Segment[slot2 length|[type -> real, property additivity, defaultvalue -> 0]

23

D. TATAR AND A. DUMITRESCU

slot1angle[type > real, property> additivily, defaultvalue 0]]
where Ug, U1zt R2U13

In the previous deduction we assumed that all the data expressions and sig-
nature expressions were inheritable,without noticing that by © or ,to
simplify the notation. As we remarked, this rules are always applied firstly. If we
suppose that,in the set S exists the F-formula:

U1alength|name > L

were means now that this value of attribute name of object length is nonin-
heritable, then from Uj4 and Ui3 we obtain the final frame:

U15:segment[slot2 length{name > L, type -> real, property > additivity,
defaultvalue -> 0},

slotl > angleltype > real, property - additivity, defaultvalue -> 0]

References
[1 K.H. Blasius, H.J. Burkert, Deduction systems in Artificial Intelligence, Ellis Horwood Lid.

1989.

2S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Spriger-Verlag, 1990.
13 K.L. Clark, Predicate Logic as a computational formalism, Res. Mon. 79/59 TOC, Imperial

College, London, 1979.
43. Coheu, Consiraint logie programming languages, Comm. of the ACM, 33 (1990), pp.

52-68.

15] P. Deransart, J. Maluszynski, Relating logic prograns and attribute grammars, J. of Logic
Programming, 2 (1985), pp. 119-155.

6 A. Dumitrescu, Incomplete information in frame- based systems, Report LIA Universite de
Savoie, October, 1996. (adviser L. Siklossy)

[7 M. Fitting, First-Order Logic and Automated theorems proving, Springer-Verlag, 1990.
8) J.Jaffar,M.J.Maher:"Constraint logic programming:a survey" J. Logic programming

1994:19,20:pp503-581.
9 0 K.L.Kwast:"The incomplete database",Proceedings of IJCAI-91 .Pp 897-902. J.of Auto-

mated Reas oning, vol5, 1989, pp.167-205.

[10] M.Kifer,G.Lausen,J. Wu:"Logical Foundations of Object-Oriented and Frame-Based Lan-
guages",Journal of ACM,vol.42,no.4,July 1995,pp741-843.

[11] J.Minker: "Perspective in deductive databases" J.of Logic Programming, vol.5, 1988, Pp.33-
61.

[12] D.Tatar:"Logic grammars as formal languages",Studia Universitas"Babes-Bolyai",
1994,nr.3.

13 A.Thaysefed): "From standard logic to logic programming" 1988,John Wiley ,Sons.
[14] M.H.van Emden, R.A.Kowalski: "The semantics of predicate logic", Journal oj ACM,

oct.1976, pp.733-742.

BABES-BOLYAI UNIVERSITY, FacULTY OF MATHEMATIcs AND INFORMATICS, RO 3400 CLUJ-NAPOCA, STR. KoG�LNICEANu 1, RoMANIA E-mail addres s: dtatar@cs.ubbcluj.ro
LABORATOIRE D'INTELLIGENCE ARTIFICIBLLE, UNIVERsITE DE SAVOIE, FRANGE E-mail address: ad ina@univ-sovoie .fr

24

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

