STUDIA UNIV. "“BABES-BOLYAI", INFORMATICA, Volume XLI1, Number 2, 1997

REASONING WITH FRAME-BASED AND OBJECT-ORIENTED
KNOWLEDGE

D. TATAR AND A. DUMITRESCU

Abstract. In this study, some possibilities to deal with incomplete informa-
tion are investigated, using the conncction between frame-based systems and
object-oriented systems, made via F—.logic formalisme developed in [10].

We present here a proof theory that is used for obtaining, as a deductive
process, new information starting with a minimal, incomplete information.

1. Logical object-oriented language

1.1. Introduction. The frame based-systems deal with well-known or well-defined
hierarchies of frames. The aim of this approach is to look at the possibility of rea-
soning about the hierarchical structure of a frame based system, while dynamically
building it from incomplete bits of information. We will assume that at the begin-
ning the hierarchy (or the set of frames) is incompletely known or, in the happiest
case, a minimal structure 1s given. ‘

It is knowed that “the object-oriented” approach of a database programming
language is a term not entirely formalised from mathematical point of view. In [10]
the authors give a novel formalism, F-logic, which “stands in the same relationship
to the object-oriented paradigm, as classical predicate calculus stands to relational
programming”. This formalism has an important application in the area of frame-
based languages in AI, where the notion as frames, slots and facets are viewed as
objects and attributes. In first section we present F-logic formalisme developed
in [10] and we present a proof theory that is used for obtaining a frame from
information about it as a deductive process in this theory [1].

The second section presents the frame-based knowledge representation, stress-
ing the types of incomplete information a frame structure can deal with (6]. Some
sets of structural relations between the elements of a domain of expertise will be

Received by the editors: October 1, 1997.

1991 Mathematics Subject Classification. 68T30, 68T35.
1991 CR Categories and Descriptors. H.2.3 [Database Management)]: Languages —

Data description languages; 1.2.3 [Artificial Intelligence): Deduction and Theorem Proving —
Deduction (e.g., natural, rule-based).

13

D. TATAR AND A. DUMITRESCU‘

used as initial formulas in the proof theory in first section. Each relation repre.
sents a different, limited view of the domain to be represented. Through a Process
of relations’ composition, new or hidden knowledge about the domain can he Te-
vealed and an equivalent frame structure can be built, as a new theorem obtained
in F-logic.

In the third section we present an example of this idea.

1.2. Basic concepts in F-logic. As object-oriented approach seeks to group
data around objects, in F-logic is used a concept that 1s called logical object
identity (loid). Also, F-logic allows grouping of the data around properties, as iy
relational database languages. Thus, F:logic 1s a multiparadigm language which
proves that relational and object-oriented paradigm can be reconciliated [11], 4],
8]. [13]. The alphabet A of a logic language consists of

A=FUVUAuzU Op
where:

e F is the set of function symbols (object constructors). As usually, each

function symbols has a fixed arity. The symbols of arity 0 are called con-
stants.

e V is the set of variables.
e Aur is the set of auxiliary symbols, such as:(,),[,], >, =—,=,=2=>,.
e Op is the set of usual logical conectives and quantifiers :A,V,~, —,V, 3.

A term (or id-term) is a usual first-order term composed of function symbols
and variables.

A ground (variable-free) id-term is denoted logical object id or loid.
In the bellow definition we made some simplification from the original [10),
by considering @ an id-term, and not a method with arguments (or, equivalentely,

we will consider only method with 0 arguments). For our alms, this simplification
1s not restrictive.

Definition 1.1. A molecular formula is one of the following :

e an is-a assertion of the form:
0:C,

with the meaning: the id-term (that denotes an object) O 1s a nonstrict
subclass of class represented by the class C, or

O:S

wilh the meaning: the id-term O s o member of the class S

° data expressi v dats : :
ol } ssion, - - -, data expression], where data expression 15:
a nomnheritable scalar erpression.

Q->T
14

REASONING WITH FRAME-BASED AND OBJECT-ORIENTED KNOWLEDGE
that means that the id-term or the attribute Q takes the value T, where

T 15 a loid or a molecular formula.
— a noninheritable set-valued expression:

Q—)_){Sl)"' ,Sn}

that means that the id-term or the attribute Q) takes the value from the
set of loid’s or molecular formulas Sy, -, Sn.
an inheritable scalar ezpression:

QO —-T

that means that the id-term or the attribute Q takes the value T, as
above, and this value can be inherited by the subclass and individual

members of the object), when it plays the role of a class.
an inheritable set-valued expression:

Q® - {511"')Sﬂ}

that means that the id-term or the attribute Q takes the value from the
set of loid’s or molecular formulas Sy, --- ,S,,. and this values can be

inherited by the subclass and individual members of the object Q, when
1t plays the role of a class.

e Ofsignature expression, - - - ,signature expression|, where signature expres-
sion s:

— a scalar signature expression: QQ = (Ay,--- |, A,), that means that the
id-term or the attribute Q must be of types that simultaneously belong
to classes Ay, -, Ar.

— a set-valued signature expression: Q =>= (By,---,B,) that means
that each element of the set of id-terms or the attributes Q must be of
types that simultancously belong to classes By, --- | By,.

Informaly, a molecular F-formula asserts that the object denoted by O has
properties specified by the data expression inside the brackets ”[” and ”]” or has
type constraints specified by the signature expression inside the brackets ”[* and
7)]” .

Now we can define the formulas in F-logic, the F-formulas, which are buit by
means of logical conectives and quantifiers as in definition:

Definition 1.2.

A molecular formula is a F-formula.

If ¢ and ¢ are F-formulas, then p AY, oV ¥, — Y, ~p are F-formulas.
If X,Y are variables, then (YX)p, (3X)yp are formulas.

1.3. A proof system. This section describes a proof theory for the F-formulas.
The deductive rules arc separated in two classes: t.he general and Lh‘e local deduc-
tive rules. The general rules expres some properties of the "operations” —, ——

15

D. TATAR AND A. l)UMl'l‘ILESCU‘

. " o0 some structura] rel.
The local deductive rules correspond t | relat
a0 [’
= ==,
))

acets) of a frame-based gygt ‘

the objects (frames, slots, [d'(""f’) tion (6] The I ystem Some

sible between th i1l be presented in the next sectio ' , t,' arge num,

ations w } pres - W ee ‘ ' A

of these relaltm"‘ our proof theory stems from :ihe “Cd‘ semantics of apy logic,,

‘ R ject-oriented paradigm.

. hat attempts capture the ObJ(‘F? orient A pi ff;om the clasica

B o h of the theory of unifiers carries ()ver,f vhe clasica
[n F-logic muc itution is a mapping o : V — T', where T

lculus [10]. Thus, a substitution i
catculus . Oy

l()n DOS\

b(il‘ of

pred 'lCa,t,;:

) iS thP set

in classical logic, substitutions extend t Mmapn;
of id-terms of a language L. As in classici gic, pingg
I. — L as follows: &

o(f(tr, -)tn)) :_f(o(tl)’ T)a(tﬂ))'

A substitution can be further extended to a mapping from F-formy]ag to
F-for‘mulas by distributing o through formulas components:

o(Q: P)=0(P):0(Q),0(Q :: P) =0(P) : 0(Q)
« azO[Q (—+)T]) =0(0)[0(Q) = o(T)])

Definition 1.3. Let T and Ty be a pair of id-terms or of is-a F-formulas. A
substitution o 1s a unifier of T and Ty if o(T}) = o(T2).

In [10] is defined also the unification for tuples of id-terms.

Definition 1.4. The tuples < Py,--- P, > and < Q1, -, Qn > are unifiable if
there 1s a substitution o such that o(P) =0(Q;), fori=1,--- ;n.

The mgu unifier is defined as usually.
The following rules are obtained from the properties of F-formulas and are
accordingly with the deductive rule for resolution in [10]
The first rules capture the semantics of the sub
teraction with class membership and we will ¢
I1: P Q. Q) .. p' + o(P=Q
I2: P Q,Q' = RF o(pP - R), if ¢ = mgu(Q, Q).
I13: P - Q,Q' TR O’(P : R) if o = mgu(Q’ Q’)
Type-inference rules

PR s 1,01 001 so1g o T)), if ¢ = mgu(0,02). (the ¥
mhcmance) ’ _
sz:n(')[? = {.S‘l,'....,Sn}],()l 02 F 0(01[Q = {Sy, -, §a 3D if ¢
. 9(;‘[(Q),()Z)r[.'](sumlarly to 1 for set valued methods (mput
' = ;y Q1 . y - 2).
reStTi(:tion) Q Qz - U(O[Ql = ﬂ) if 0 = mgU(Q,Qz)
T: 0 = \ ' ¥] , f o~
{rrzgu[(%)QQ;‘?;;{;]'“».‘S;.,]],C%l Q2+ o(0[Q1 = {S,, - ,Su) i
T5: a'O[Q = '1'1,71'] :dr A for set valued met‘hOds)

21 0(01Q = 7)) i g mgu(T, T1)-

class-relationship and its -
all them is-a rules.

), if o = mgu(< P,Q >, < P', Q' >).

16

INTED KNOWLEDGE

b.0[Q = T],01Q1 = T F ¢(0[Q —» 01[Q1 > T1])) if o —
mgu(T,01). (output restrictions)

REASONING WITH FRAME-BASED AND OBJECT.-ORIF

Union rules

R1: 0[Q = Ti;Q = T1,0[Q = Ty| F 0[Q = {11, 15} @1 = T
R2: 0[Q = T11,01[Q, > N"),0:01+0[Q=T,Q, = T1] This rules are
doubled for the — replacing =.

Modus-ponens rule (as in first-order logic) MP U, U — V +V
Theorems in proposition and predicata calculus

Definition 1.5. (Deduction from a set of F-formuas). Given a set of S of F-
formulas, a deduction of a F-formula U from S is a finite sequence of F-formulas
Ur,---,Un such that U, =U , and fori=1,--- ,n ,U; 1s etther:

-a member of S.

-15 a theorem as above.

-1s derwed from some Uy and U;, k,j < i , using one of the is-a rule, type
inference rule, union rules or modus-ponens.

Remark 1.6. The only restriction in a deduction is that firstly are applied the
rules for inheritable data and scalar expressions, and then the rules for noninher-
itable data and scalar expressions. '

The process of signature accumulation by an object can be now simulated by
a deduction from a set of F-formulas. Let us illustrate the example from [10].

Example 1.7. The set S of I-formulas are:

empl :: person, assistant :: student, assistant :: empl
person[name = string]
student[drinks = beer; drives = bargain]
empl[salary = integer; drives = car]
assistant[drives = oldThing]

17

.

D TATAR AND A DUMITRESCU

'u‘('nmnlat(‘,d by assistant from all sourses will be Obt'ainedb
o y

as follows:
Uy : empl 2 person
Us : pm'son[namr’ — string]
Us : empl[name = stringl; U, Ustr,Us
[, : assistant = emnpl
Us : assistant[name = string]; Us, (]4%771 Us
U assistant[drives = old1'hing] |
Uq student[drinks = beer: drives = bargain]
Ug : assistant student
Uy : assistant[drinks = beer; drives = b'argain],) Uz, Ug-1,Us
[', : assistant[drinks = beer; drives = (bargain, oldThing)], , Us, Usk g, Uy,
Uy, : empl[salary = integer; drives = car)
Uiz : assistant[drinks = beer;
drives = (bargain, oldThing, car)], salary = integer), Uro, Urn1FRr2Uns

The signature
a deduction from S

The formula Uy 2 represents the final signature accumulated by the object assistant

2. Knowledge representation by frames

9 1. Introduction. Frames are structures that represent a chunk of knowledge
about a small domain of the world. They are rather like a stereotype of a situation
or thing. Frames therefore set up the expected items in a given situation although
these may easily be modified.

A frame consists of attributes (slots) each of them describing a s pecific aspet
of the concept it represents. The attributes have to reflect the important features of
the rfepresented concept, according to the chosen point of view. They can be sharet
by different frames or they can refer to other frames, thus giving the possibili!

The deSCT’iptions 'indal}re of the attribute and the behaviour f—)ssomate "

rame, also called slots, generally consist of two p?

a slot-name, which specifies d . fies thet
R pecifies an attribute, and a slot-filler, which qualifies

I'herefore the structure of a frame 1s

<frame: (slot 1 (facet 1 value 1)

(facet n valye n))
(slot q (facet 1 value 1)
(facet 1t
m val
) ue m))>

Vi a ¥V &E T

REASONING WITH FRAME-BASED AND OBJECT-ORIENTED KNOWLEDGE

where each attribute is described by facets that specify the nature of the attribute
and the behaviour associated to it.

The classical facets values. The values can be simple (the integer, real,
Boolean and string values) or complex. The latter ones usually represent pointers
towards other frames. They give the type of attribute and their value represent
the name of another concept defined in the frame hierarchy. The type facet allows
ihe system to verify the coherence of a complex value that is to be assigned to
an attribute with the attribute itself. The value assigned to an attribute has to
be of a type that has as father a concept hierarchically equal or inferior to the
attribute’s type.

2.2. Reasoning with frames. Frames form a hierarchy such that each level
of frames is more specialised than the previous level of frames. They follow an
inheritance hierarchy such that default values of a class frame are propagated
across the class/subclass and class/me mber hierarchy. Obviously this 1s very
suited to object oriented programming. In the frame representation the prototype
of a situation is memorised as a unit of knowledge. The particular situations
related to that prototype are memo rised in form of knowledge units linked to
it. This latter units contain only the information which is different from the one
contained in the prototype. The reasoning is based on re-memorisation: being
given a network of units representing a domain of application, it is requested to
find the unit that can be used as prototype to describe the current situation.

So the basic idea is to seek (according to some heuristics specific to each
domain) the objects that fit the current situation and then, if needed, to classify
the found objects according to their degree of appropriateness with the current
situation. :

There are two main styles of reasoning with frames: first, as described above,
the matcher must decide in a given situation which of the many frames it is the
best match. This requires the matcher to be able to receive information about the
existing si tuation and perform a best match type search on all the frames it has
in its knowledge base.

Problems obviously occur when a default value has been overridden in a frame,
because the matcher will have problems in recognising that, although the default
value was overridden, the given frame fits in the closest way to the same frame as
if the de fault value wouldn’t have been overridden. So the reasoner needs to go up
the frame hierarchy checking each slot starting from the slots directly associated
with that frame, once these arc exhausted it goes up the tree getting values from
its parents’ slots. This is the inheritance mechanism which is the second main
reasoning style. ,

An instance of a frame possesses only its particular properties, the general
Properties being inherited in a dynamic way. lgnoring the exact value of one or
more of these properties doesn’t prevent the definition of an instance that can

19

D. TATAR AND A. DUMITRESCU

All the modification at a certain leve] of the

be completed later. ther treatment to all the descend

propagated without any O

An 1 mant can state: _ _ _ '
:/;n ;n(i(l))gcct belongs to a class/ this object inherits from these clasg
i) a ct be

ii) an object does not belong to a certain class / this object does HO? ey,
from 't.hosi‘, gtas:i“ might belong/inherit from one of these classes

::; ::)t,hi;g is known ab_out the class to wh.ich an object belongs

It is possible to have an 1ncqmplete mechamsm for the contro] of reasoning |,
the order of the events could be incompletely specified. One may knoy, tha the}"
is a certain order given by the ”pre required” and the ”post required” attributese
but some of these attributes might miss and/or the order might not be precise

In conclusion, frames store information in much larger chunks than Otﬁer
methods of representation and tend to focus more on the relevant issyes. Havip,
the 1dea of default-values is a very powerful one as it saves the same informatio;
having to be continually entered and enables the system to make assumptiops
If no specific data is given. This can be totally valid in many scenarios and any
deviations from the norm can be easily fitted into the model by changing the valye
from the default to the actual. Another important idea introduced is that of having
procedures attached to frames. These allow the system to deal with situations as
they arise in a far more flexible fashion than a simply ’static’ information based
system such as semantic nets. ‘Also with frames, the hierarchy is generally quite
simple for humans to follow and as such it is a less onerous task for the designer
to enter all the initial frames. It is quite possible for experts in various domainsto
present their knowledge to a frame based system without a great deal of difﬁcul.ty-
T.o resume, the frame representation allows 1) to consider the same event follows
Fhfferfent perspectives ii) to describe an object in different ways, according to the
inheritance that is highlighted iii) to consider only a part of the information th*
iiig:isgzt:hz };erils:lslai)r vision upon an obje9t and use that part in reasoning esl:) t.o
, ; , Y comparing them with the prototypes (parents, an¢
allowing some information to miss ip th ipti i ject

e description of a certain objec

2.3. Structural re

.
lations, T, :

oo . Tob

a complex task, re u

. et110

o . ild a system of frames might b_e’ gort! irectl!
building the sys.tergl ::utlg 3 ° h.lgh degree of expertise. An alternat1Ve bto pen 1
elements whicl, , : escribe the domajn of expertise by relations °°

v . ..
might lead tq ondividually, 5 VeTY partial knowle dge, but whosé
€ desired frame system ge, e

S, by a feature of

gsell

ai[lly’
a frame a slot or a facet is meant- ﬁiir 'ﬂue;
lots, the declarative features and ¢ eith?!

ames,
20

REASONING WITH FRAME-BASED AND OBJECT-ORIENTED KNOWLEDGE

Let St(F) denote the structure of a frame F', that 1s the set of its slots, with
the rela.tlons between them. St(F) f— Pu(F) + I)T'(F'), where [)r(F) 1S the ’set, of
slots private to thc-frame I, that is the slots which cannot be inherited by other
frarpes and Pu(F) is the set of public slots of F, that is the set of characteristics
which F can transmit to other frames. The structure of a slot will be referred in
a similar way: sl(slot) = pu(slot) + pr(slot).

Most of the relations defined here can be used not only to describe the prop-
erties of the slots of a frame, but also to describe the properties of the facets and
also, slots’ and facets’ properties related to a certain value of anot her slot or facet.’
[t means that these relations can be used at 3 levels: (1) values of slots or of facets,
(2) facets and (3) slots. .

1.1alike(F1.f1,..., Fn.fn)

Tw.o features f and g of two frames Fi and Fj are called alike features iff they are
entirely the same, with the single possible exception of their names. This property
will be denoted by the relation Fi.f alike F'j.g or by alike(Fi.f, Fj.g).

Example 2.1. Let us take the slots angle and length of two frames called triangle
and segment.

Both the slots length and angle can have the following identical structure
value: type: real default: 0 domain: 0, infinite property: additivity

Such a representation of the two slots is sufficient for many purposes. The
identity of structure can be expressed as the relation

trianglc.angle alike segment.length. The relation alike introduces in a set
of formulas the following implication:

Uso: alike(U.X,V.Y) — (U[S = X.Z] — V5" = Y.Z])

1.2.similar(F1.f1, .., Fn.fn)
Two features f1 and f2 of two frames, F'1 and F'2 are called similar if they have the
same public facets. This can be written as pu(F1.f1) = pu(F 2.f2) and the relation
will be expressed as follows: F1.f1 similar F2.f2 or similar(F1.f1, F2.f2).
In the upper example, let the slot length to have the same structure and

change the structure of angle to angle value

type: real
default : 0
domain: (0, infinite)
property: additivity
1.3.unlike(F1.f1,-- Fn.fn)(

The feature F1.f of a frame F1 is unlike the fe
of their characteristics are the same.

F1.funlikeF2.g)
ature F2.g of a frame F2 iff none

21

D TATAR AND A DUM!TRES(*I'

cpressed as sl(F1.f) intersected with sl(F2.g) i,

This relation can be e
empty sct.
Example.
coordinate cpoint 1s
true has no common .
in the upper example. We write | |
or unlike(coordinate.cartesian, triangle.angle).
| 4.rare:rare(f, F'1, . Fn,mazr)

re feature of a set of frame is a feature that does almost never occur in the

The slot cartesian belonging to a frame ("oordmate and defineq)
A location cangle is an :.mgle (:'artes1a.n type Boolean defa
facet with and 1t 1s entirely dlfferen't of the slot angle givy.
this as coordinate.cartesian unlike Lria“glﬂ.ang;;

Ara
frames of that set. . . .

For example, in the above hierarchy, the slot area 1s a rare feature in the set
of frames that form the hierarchy, since it appears only 1n the frame circle. This

can be written rare(area, segment, line, angle, circle)
1.5.common(f, F1, ..., Fn,min)

A feature [is called common to a set of frames is it appears 1n the structure of
the most of the frames of that set.

For instance, the slot sort-of, which appears in most of the frames of the
upper hierarchy can be regarded as a common feature. Like in the case of the rare
feature, a numeric variable can state the minimum number of occurrences of the
feature in the frames of the set: there is an m >= min such that there 1s a subset
i1,imof 1,...,n for which f belongs to St(fij) for every j =1,...,m.

1.6.must(f1,...,fm, F1, ..., Fn)

The occurence of a public feature common to a set of frames can be stated by the

:'nust relation: must(feature, setof frames). The relation must(f, F1, ..., Fn)can
e expressed as for every 7 from 1, ...,n f belongs to Pu(F').

1.7.should(f1,..., fm,F1,..., Fn)

['he _relati(fn_ should states that the occurrence of a feature in the frame’s stri
t_rfe 18 sufﬁ<_:1ent to characterize that frame, meaning that the feature is 2 privaté
cnaractenstic of the frames belonging to that set. That is: for every I from Lyl
f belongs to Pu(F4). ' .

3. Example

Let 18 C] . C e
us comsider the following example of frame given by some i nformation®
concept type(segment.angle,slot)

alike(segment.1ength,?.angle)
facet(lenght ,name,l.)

tacet(lenght,type,real)
facet(lenght,default value,0)
facet(length,property,adit;vity)

REASONING WITH FRAME-BASIKD AND OBIRE

CT-ORIENTED KNOWLEDGE

Altough incomplete,this single fr

ame provides a big amount of information
about the described concept. The final

[rame can be represented as the following:
segment

length
name L
type real
default value 0
property additivity

angle
type real
default value 0
property additivity

As a molecular F-formula, this frame can be described as:

segment(slotl = length[name — L, type — real, property — additivity,

de faultvalue — 0]

7

slot2 = angle[type — real, property — additivity, de faultvalue — 0]]

This F-formula can be obtained by a deduction from the set S of formulas
corresponding to above informations:

Ui : segment[slot] = angle]
Us : slot2 : segment
Us : segment[slot2 = lenght]
Us : alike(segment lenght, X.angle)
Us : lenght[type — real
Us : lenght[de faultvalue — 0"
Uz : lenght[property — additivity)
The new formulas obtained by deduction are:
Us : segment[slot2 = lenght[type — real|Us, Ustr,,Us
Finaly,
Ug : segment(slot2 = lenght[type — real, de faultvalue — 0,
property — additivity]]

Uyo; alike(U.X,V.Y) — (U[S=> X.Z) - V[S' = Y.Z))
(from semantics of relation ” alike”)
Uy segment(S => lenght.Z] — V[S' = angle.Z]; Uy, Urobpp Uy,

Uyy segrnent[slot]l = angle[type — real, de faultvalue — 0, property — additivity))
Uy, UnibmpUsz

Uiy : segment[stot2 = length[type — real, property — additivity, de faultvalue — 0],

.
)

23

D. TATAR AND A. DUMITRESCU

slotl = angle[type — real, property — additivily, de faultvalue — 0]]

where Ug, qu’ 1{2(713

In the previous deduction we assumed that all the data expressions and sig
nature expressions were inheritable,without noticing that by © — or © = ¢
simplify the notation. As we remarked, this rules are always applied firstly. If we
suppose that in the set S exists the F-formula:

Uvslength[name — L]

. were — means now that this value of attribute name of object length is nonin-
heritable, then from U4 and U;3 we obtain the final frame:

Urs : segment[slot2 = length[name = L,type — real, property — additivity,
de faultvalue — 0],

slotl = angle[type — real, property — additivity, de faultvalue — 0]]
References

(1] K.H. Blasius, H.J. Burkert, Deduction systems in Artificial Intelligence, Ellis Horwood Ltd.,
1989.

[2] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Spriger-Verlag, 1990.

(3] K.L. Clark, Predicate Logic as a computational formalism, Res. Mon. 79/59 TOC, Imperial
College, London, 1979.

[4] J. Cohen, Constraint logic programming languages, Comm. of the ACM, 33 (1990), pp.
52—68.

[5] P. Deransart, J. Maluszynski, Relating logic programs and attribute grammars, J. of Logic
Programming, 2 (1985), pp. 119-155.

[6] A. Dumitrescu, Incomplete information in frame-based systems, Report LIA Universite de
Savoie, October, 1996. (adviser L. Siklossy)

[7] M. Fitting, First-Order Logic and Automated theorems proving, Springer-Verlag, 1990.

(8] J.Jaffar,M.J.Maher:"”Constraint logic programming:a
1994:19,20:pp503-581.

(9] 0 K.L.Kwast:"The incomplete database”,Proceedings of IJCAI-91 PP 897-902. J.of Auto-
mated Reasoning, vol5, 1989, pp.167-205.

(10] M.Kifer,G.Lausen,J.Wu:"Logical Foundations of Object-Oriented and Frame-Based Lan-

guages” ,Journal of ACM,vol.42,n0.4,July 1995 pp741-843.

[11] J.Minker: “Perspective in deductive databases” J. of Logic Programming, vol.5, 1988, pp.33-
61.

[12] D.Tatar:“Logic grammars as formal
1994,nr.3.

(13] A.Thayse(ed):“From standard logic to lo

[14] M.H.van Emden, R.A Kowalski:
oct. 1976, pp.733-742.

survey” J.Logic programming

languages”,Studia Universitas “Babes-Bolyai”,

gic programming” 1988, John Wiley ,Sons.
“The semantics of predicate logic”, Journal of ACM,

' BABE?BOLYM UNIVERSITY, FACULTY OF MATHEMATICS AND INFORMATICS,
RO 3400 CLU-NAPOCA, STR. KOGALNICEANU 1, Romania
E-mail address: dtatarecs.ubbcluj.ro '

LABORATOIRE D’ INTELLIGENCE ARTIF

' : ICIELLE, UNIVERSITE DE SAVOIE, FRANCE
E-mail address: adina@univ-sovoie.

fr
24

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

