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consequence of other known polynomial identities ([Lev93]). This last part,
although is not new at all, has been automatised due to the Grébner bases

. Introduction

The problem of theorem proving is older than someone cap Imagine. Its
roots seems to be linked with Euclid’s Stoicheia, arround 330 b.C. One might find
there theorems from number theory with its famous Euclid’s algorithm, or some
theorems from plane geometry. Euclid tried to find methods to give algorithms
for theorems proving, starting from the idea that a theorem is proved via logical
deductions, making use of a set of axioms or other already proved theorems. .

For many years the theorem proving in plane geometry had an erppinc
character, Later, Reneé Descartes (1596-1650) had three dreams, from which he
Imagined the vaste opera Le Monde. In 1637 he published his fundamenta.l opera
Un discours de la Méthode pour conduire correctement la Raison et cher’chler la
Vérite dans le Sciences; Fn outre essais de cette Méthode en Dz'éptrz'qug, Météores,
Ge’ome’m‘e, Wwhere he put the first bases of what we know as analytic geometry.
t hus, hig last dream came to life, but the problem never been automatised until

¢ Grébner Bageg Theory appeared. ‘
- This Paper tries }tlo lr))f: as accesible as possible, in 01".der to p‘ut m. t?,iih
Fhe feader with thjg new view of theorem proving, where Grobner bases are very

H{Hch mvolyed ([Dav92]).

———
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2. Ideal Ill(‘,llll)(‘fl‘h‘lli ) ‘)1‘()‘)1(‘31]]
b1

As we already know the [uclidean n-space
A |

R™ = {(2y,... s )@ € R0 =T n}
is an affine n-space ([DC92), [AL92], [Coh93])). One defines here 2 polynomj,)
J € Rley, ... x,] which determines a Junction R™ — R defined by
(1, 2,) fley, .0 zy)
for all (a4, ... y &y ) € R™ called evaluation.

Thus we throw a light between geometry and algebra. This light i still
too weak to enlight the bridge and we have to go further and give an ex
and complete algebraic model for Tarski’s result ([Bot96])
going to identify the set of multivariate polynomi
needed to prove an existing theorem by the corr

plicitely
. As a first step we are
als assigned to the set of axjomg

esponding system of polynomia|

equations. So, given fy, ... ,fm € Rlzy,... z,], the set of all solutions for the
system
(1) f1:0:'°-’fm:0

is called variety defined by f;,..., fou:
(2) V(fl"” ,fm):{(ml,...,mn)ERnlfl :01--- afm:0}~

Why we need this? In fact, a variety gives an algebraic landscape of a
geometrical object. See for instance that V(x? + y2? — 1) C R2 is nothing else but
the circle in the zy plane with the center being the origin and the radius equal to
- In the world of numerical analysis there are many methods to find a va-
riety, more precisely, some of its elements. Unfortunately these methods does.nt
show us the geometric properties of the solution space. Besides, the corr}putatlir—l
speed can be improved by changing the system with an equivalent one, as in Gaﬁbbd
Jordan elimination, so the last system obtained is easier to solve, b.ut this 'met h(; )
applies only for a class of systems of polynomial equations. One might thu;)l‘(k:are
we are going to stray from the subject of this paper. Actually we are not. e
not even interested in obtaining the solutions, but only to give an algebralC -
geornetric information about a system of type (1). This will be fulﬁ.lled by starf ’
to take into consideration the ideal generated by a set of polynomials fi,- -/

I = N P L
(3) :<{{11]f1+:,">’+'anzfrizlai ER[IIH,...,.’B,,]J: 1,7)&}. gr])
Can be very easily verified that I is an ideal indeed ([DC92], [C0119.3], [}V(V}Vl-j?jb;)ner

Given f € R[zy,... ,z,] and I C R[zy,...,z,] a non-zero %dea. ’the e

bases theory gives an algorithm! to check whether f € I or not, which is

; : . Wolfgang
!Called Buchberger’s algorithm, following the name of Grobner bases inventor .
Grébner was the advisor of Bruno Buchberger’s thesis.
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. 1A Al .
mbership problem. To solve it we haye find a “picep

me G
al 7 and that will be a Grébner basig for |

: representation of the
e |

3. G I‘(il)]‘l(‘.l“ bases

Most of the books appeared in this field ([WWA95]

e i : ' Lev93] [CD99T o
a quite nice and interesting presentation of wh [ 8, (CD92]) gives

ay (} O Nner I)(’j‘“.:’ )€ ans ‘V‘ are
l[ | I n - m - ”
\ t l 1 o l e V ew | ”l UJ )y € 1 t:‘) h

goal of this paper. Moreover, this brief presentation jg concieved in a manner t}
will lead the reader to the impression that Grébner bases theory is not 3 ?if;ﬁr: aji
subject and it will be easier for him later, to read some high level stquTJaF;out tf:l
beautiful subject ([Dav92], [JHD93], [Coh93)). i
In order to do this, lets study an easy to follow example, for the univariate
pol)'}lonlials case. Take f = z% 4+ 23 — 9222 4 8z, fi=2*+2z-1, f, =1z and’
the ideal I = (fy, f5) C R[z]. If one tries to divide f by 2%+ 2z — | will get
f - (z* =z +1)(22 42z — 1) + 5z, which means that f € 1. Following the notation
[—h, where h is the remainder of the division of f by g, our result looks like

552240, Or much shorter f —fl—’{i 0.
‘ . Thus, in the univariate polynomials case, the ideal membership problem
looks like the Euclidean algorithm. -

In general, given I C R[z] a non-zero ideal
) feref-5.,0
) ‘Is 1t true that problem (4) can always be solved? What happens if the
f}“?efat_lng set of ] is infinite? As far as we know up to now there is no information
14t might enlighten us. Anyway, there is a crucial result that led to all the results

n Gpg . :
(”1 ;ro!?ner bases theory, the so called Hilbert Basis Theorem. For the univariate
“45€ this wi] be:

Thegy _
{f{lem 38.1. In the ring R[z] we have the following:
v t[{ I C...C 1, C...isan ascending chain of ideals of R
. lere erystg n ~/ ) o = D= ...
( o o such that I,,, = I,,+1 no+2 W _
1) ng ‘s an adeal of R[z] then t(;zere erists a finite set of polynomals fr. - fm €
(2] such that I = (fy, ... fm).

[z], then

e "t 1 S 1 ".[( s all i
oud, L

([WWA95], [CDI3]):

r basis and that 1s
lement of the
\bination of

It ig
" EOL sy How clear if an algorithm for (4)
1€ ana . :
o Answers for the questions posed above A
fine a Grobne

{ “‘r(f 18 . 3
e g, 15 only one more step before to de e
' ppens if an ¢

ap ) : : | , p
EUn with the ideal’s structure. So, what ha

v
I
|

ll-',
! "I'“]pl

T et of . . o oressed as a linear con

o engy o Ta non-zero ideal 1 can be <)4P1"“"”f'dt (“ \thing happens, but one
| © Can he - o fact not o
AT an he dope something about 1t In fac L d that it will

" Moy (). enerating set
q (;HI « “ld»t ""'l[l(*“t i“ ()]'(](gr to g(.‘t a l)(*“’,(;l- 80[1(.[1.!.““&
e bagis ’
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We discussed in this section only about the univariate polynom
R and the real problems about Grobner bases are posed for R[kl, N
extension to the multivariate polynomials case can be done easily by ’de?-”'l. The
term ordering ([CD92], [WWA95]). Afterwards Hilbert’s Basis Theorem ]]ng :
still on its feet and the division algorithm will become 1l be
Why an ordering?

([KOG92).

1als gy,

a little more complicateq
Only then we can make the division work algorithmip“”'
A ) >3, y

Theorem 3.2. Hilbert Basis Theorem. In the ring Rz, ... ' Tn] we haye th
following: S

W) IfLCLC...CI, C ... s an ascending chain of ideals of R[z,, ..
then there exists ng such that Ing = Ingt1 = Ing42= ...

(1) If I 1s an deal of R[xy, ..., x,] then there exists a finite set of polynomials
fisoo o fm €R[ey, ..o @) such that I = (f1,... fm)-

Definition 3.3. Now let I C R[zy,...,z,] a non-zero ideal and G C I. Then
1s a Grobner basis for I if and only if

.,rn]y

(5) fele f—i)+0, where f € Rlzy,...,zn).

Implementation of Buchberger algorithm, the method to find a Grobner
basis for a generating set of a multivariate polynomials, implies to define the S-
polynomials ([WWA95]) and on this way to present a strategy of how to obtain
a Grobner basis. Because the purpose of this paper is to give a challenge for the
theorem proving in the Euclidean geometry, we are not going to insist on this
theory, we already done what we wanted to do in order to link it with our goal.

Moreover, up to now we hope that this presentation was a good arouser for your
interest in this part of Computer Algebra.

4. Examples of theorem proving

As we have seen up to now, in order to prove a theorem we have to express
the hypotesis and the conclusion as a system of polynomial equations. After this
is done, to prove that the theorem is valid means to prove that the polynOmlal
from the conclusion is a linear combination of the hypotesis polynomials. In other

. . . . spner
words, the conclusion’s polynomial normal form is zero with respect to the Grobn
basis of the hypotesis polynomials.

4.1. Carnot’s Theorem.

. . . . . s rcum:
Theorem 4.1. Given a triangle, the circumscript circle is equal to the c¥

: . . . . »thoce
script circles determaned by each of the two of triangle’s vertices and the orth
ter.

, : ; . - rope!
The first step to do in order to prove this theorem is to choose all)( E o
3 . . e
coordinate system. As we can see from the picture, a good start is to ta
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T y

C(0.c)

0(0.0) \ B(5/0)

O (x;. ;)
\

FIGURE 1. Carnot’s Theorem

points like A(a, 0), B(b, 0), C(0,c). Then the orthocenter is H(h,0), the AABC’s
crcumcenter is Og(zo, yo) and the AABH’s circumcenter is O1(z1,y1).

An important remark to make here is that the orthocenter’s and circum-
centers’ coordinates are parametric, we don’t know their exact expressions, but
they can be computed. According to this, the variables needed to compute the
“rresponding Grobner basis will be only the undeterminates zo, yo, 1, y1, h-
CUt this is the nice part of theorem prooving, you don’t have to express every point,
18U to give relations that will figure out what their position means. For example,
Y0 say that Oo(zo,0) is AABC’s circumcenter we write |OgA| = |00B| = IOO.B]‘
, fotm this relations we extract the first polynomial identities we will need, saying
tha

SquareLine(M,N) = (zp — 2zn) + (usr —un)*

fi = SquareLine(OyA) — SquareLine(OpB) =0
f = SquareLine(0Og A) — SquareLine(OoC) =0

a ) 1 'l ."1 =
0. g Analogoug) tosay that 0, (931, 3/1) is AAB H’s circumcenter we write |01 l

1B| ~ \ TR
l¥) 10w, from which we come up with another polynomial identities
9) fs = SquareLine(0, A) — SquareLine(O1B) = 0
Ja = Square Line(0Q1 A) — Square Line(O H) =0
We

W ‘ : ¢ . hocenter, too.
Ve have 1, describe in some polynomial identities the orthc )

o Ve alre, o : , have to say in a
‘y,.,,,m;ﬂ i(‘MJy know that C'11 | AB, but it is not enough, we¢

Iz J"““"y that BI 1 AC, too. For this let introduce the formula
Crper . , Loo,
Iu,udwula'r(M, N PQ) = (ay — eyr)(xg —xp) + (YN — ynt) (v — YP)-
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This means that

(10) fs = Perpendicular(B, H, A, C)=0.
Finally, our conclusion, as a polynomial identity should be
(11) f = SquareLine(OyC) — Squareline(OyH) = 0.

And that will be all we have to do so far, Maple whil handle the Grghy,
computation to show that f = 0.

A short program in Maple will demonstrate that the normal form of f
with respect to the Grobuer basis? of polynomials fi up to fs will be zero.
SquareLine := proc (M,N) (M[1]-N[1])"2 + (M[2]-N[2])"2; end:
Perpendicular := proc (M,N,P,Q)

(N[2]-M[2])*(Q[2]-P[2]) + (N[1]1-M[1])*(Q[1]-P[1]);

end:

A := [a,0]: = [b O]: ¢ := [0,c]: H := [0,h]:

0_0 := [x_0,y_ 0] = [x_1,y_1]:

f_1 := expand( SquareLine(O_O,A) - SquareLine(0_0,B) ):
f_2 := expand( SquareLine(0_0,A) - SquareLine(0_0,C) ):
f_3 := expand( SquareLine(0_1,A) - SquareLine(0_1,B) ):
f_4 := expand( SquareLine(0_1,A) - SquareLine(O_1,H) ):
f_5 := expand( Perpendicular(B,H,A,C) ):

£_6 := expand( SquareLine(0_0,C) - SquareLine(O_1,H) ):
with(grobner):

¥ := [x_0,y_0,x_1,y_1,h];
F := [f_1,f_2,f_3,f_4,f_5];
G := gbasis(F,X);

normalf (f_6,G,X);
4.2. Desargues’ Theorem.

Theorem 4.2. [f two triangles has the vertices, two by two, on three concurent
straight lines, then their edges are crossing out in three collinear points.

Again, let choose the coordinate system to have the origin identical to the

crossing point of the three straight lines dy, ds, d3 and consider that d; is Oy axis.
This means that the fascicle has the equation:

(11 : & = 0
(]2) d'_g N0 T A /jgy = 0 r
ds: 03 24+fyy = 0 |

2
The Grobner basis of fi up to fs with respect to (z0,v0,1,y1,h), arranged in the lexi-
co“raphl(. order, is

= (hc+ba,—a — b+ 229, —a — b+ 2xy, —c® — ba + 2yoc¢, ¢ + ba + 2cy1)-
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GROBNER BAsRs IN GEoMmETRYy

Let define the point_.s and theiyr Coordinateg: A1(0, y, ), By(z d
C1(%eys Yey, ) Will be the vertices for the fipgt Y 1), j}f(;bl,ybl) and
Cy(Zeyy Yeu) Will be the second triangle’s vept; ly, the o= Wa) an
e they are collineay denoted by ps

should prove they are co ’ Y N
P,Yp)
The fact that 4, ¢ dy and Ay € d, is alre

: : ady Specified, so there
the other points for which we ¢

ko
A2 € v s remaing
an get thejy polynomial identitieg: ‘

(13) fi = ¥2Tp, + fyy, =

(14 o=y, 4 Paws, = 0
(15) fs = X3Ze, + Bay,, = 0
(16) fa = X3%c, + IBByCz =0

2
FIGURE 2. Desargues’ Theorem

i t M is
Writing the equation of A;B; and Ay By respectlvely, the fa:cfi 't(};:ntities,
freed € point A; B, N A3 By can be expressed in two polynomial i

o i applies for N
;zyd”f that i € A1B) and M ¢ A2 B respectively. The same rules app

(]7 — & by  —
(18) Js = (:’/b1 - yal).’L'M - (.’L‘bl - .’L‘al)yM + %6, Ya, — Ta, U B
— Lay Yo
(19) Jo = (.'l/b, - 1“2)1'M - (xbz - {L’ag)l‘/M T Bbalg ~ T f(y ) =0 &
J) fr = (e, — Yar JEN = (2c, — a,)UN + Te,Yay — Tar Yeu B b
T (s — 0,0 + Tesbles — Tustes =
(21) - (y62 - y“?)lN o " * + &b, Yo, — Ley Yo,
= = ) (e, — e+ 0 -
(22) 1 (31 / + " yc B wCbez
fro = (ybz - ycz):cp — (:L'b,J — wc?)yp 2Yca

97

A



ALIN BLAGA

One may ask what happened with the condition that di, dy, d3 haye onl
one crossing point, say the rank of corresponding matrix from (12) is equal to 9 Ir}:
fact this condition is true, since we chose and wrote the corresponding equationg

for the point Q(0,0) to be the crossing point.
Now. the hypotesis is completely gpecified. The last, thing we haye t, &

is to write the polynomial f, describing the conclusion and then to verify if
normal form with respect to Grobner basis of fi up to fi; vanishes. M, N p -

collinear 1t

1 1 1
('23) f=12m aN zpP = 0.
Yym YN Yp

A short code in Maple will verify the collinearity imediately®.

5. Hints about writing a code in Maple
A Maple session known as a worksheet 1s based on two main regions, one
is where you write the code, called the input and the other one is where the results

are printed out, called the output.
First of all Maple is like a pocket scientific calculator as shown in the

following commands

> 34+485;

119
> 574,

625
> cos(Pi);

-1

As far as wee see from these commands Maple is able to handle among

ordinary operations, several functions (if you are a little bit experienced you may
find even some more complex functions) and some constants. One might see that

all commands end-up with a semicolon. This tells Maple to compute and print

and the indeter”

3¢
2Suppose that the parameters are a1, 81, a2, 82, Yay ,Yby 1 Ye1 1 Yazr Yoy Yea o
up to J1

minates are ThyrTeyryLbyrTegy M YMHI»EN YN TP, YP. Then the Grobner basis of fi
with respect to the corresponding basis of indetermintes in the lexicographic order is

G = ((—Z‘/bl Yag + Yoy Yay Jzmaz + (yblya, Yby — Yby Yby Yaa )82, |
Yb, Yay Yay — Yoy Yay Yo, — YbyYaz Yay + YbyYb, Yas + (—Yb, Yag + ¥Yby¥a, Yym
(Ve Yar — Yoy Yas)Tna3 + (=Yea Yag Yoy + Yoy Yea Yar )Ba,
~YeyYazYay * Yoz YazYey + Yey YagYa; — Yey YeqV¥a, + (Yeq¥ay — Yeyu ya,)ym
((Yeu Y, = Yey by )Tpas + (Yo, Yey Yea = Yea Yey Yoy )B3) a2 + (Yea Uby Yoy — Yby Yer Yba
(Yea Wby — Yer Yoy )Up + Yby Yey Yoy — Yby Yey Yez — Yea Yby Yby T YeaYer Yoso
oz, + B2y, 3we, + Bayey, a22b, + B2yby, X3Tcz + P3Yey)-

)aaﬁ%
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out the corresponding r_nsult,. If you don’t want the
screen, replace the semicolon by a coloy Then Ma
:\-it.h()llt' printing the r(.*snltu

To see something more powerfy] than a pocket calculator canpot do, ¢
these lines and see what happens: , type
> 100!;
> evalf(Pi,500);

If you need more informations you should read
using Maple, like [Mat95], [Moh95], [Mon94], [Dav92].

You can create and use your own variah]
“:=". For example:

> Alpha := sin(Pi/3);

result to he printed out on the
Ple will procegs the command

es from the assignmeny command

Alpha = %x/??
> 1 := Alpha;

.1
1 .= 5\/5
Variables in Maple, among those from other languages, are bounded. This

means that once you have assigned a value to a varj

change it untj] you assign another value. Take the previous example* and see what
happens if we assign the variable i to jtself:

> 1;

1

-3

, 2

> 1 = ’i’,

1:=1
> i,

)

of o1 Maple has several libraries you can load explicitely in your session. Few
" them gy already loaded when you start a session and those are also known to

;e % Dart of g kernel. For our purposes, I will show how to load the Gﬁijbner

.Jases Package.
"Ith(grobney) .

"1 4oy YO ned more help you may type on the input region the questio ype l:
f}'ll()wi:)u- o help about a command, a package, or progran;l\ln‘lélr]%iu‘ol(;n is not
Mo, ln.lmed'late]ys by a word representing your search. A s
At in ghig ase, meaning that
Hobner [normay ¢

1 =
Ihj
s ex: N
wirr  xample shows you how to unbound a variable, too.
'thout ta

S or blank spaces
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> ?grobner [normalf] ;

is one and the same thing, showing a help window for the normalf function Within
the grobner package.
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