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ALIN BLAGA 

Abstract. It is known that the three dreams of Descartes in november 1619 
become the first theoretical bases of the analytic geometry, but one of them 
will never come to ight until 370 years later. This paper will briefly discuss about this last dream of Descartes: proving a theorem of plane geometry is 
a matter of reducing it to a statement saying that a polynomial identity is a consequence of other known polynomial identities ([Lev931). This last part, although is not new at all, has been automatised due to the Gröbner bases theory. 

1. Introduction 

The problem of theorem proving is older than someone can imagine. Its roots seems to be linked with Euclid's Stoicheia, arround 330 b.C. One might find there theorems from number theory with its famous Euclid's algorithm, or some theorems from plane geometry. Euclid tried to find methods to give algorithms for theorems proving, starting from the idea that a theorem is proved via logical deductions, making use of a set of axioms or other already proved theorems. For many years the theoremn proving in plane geometry had an empiric character. Later, Reneé Descartes (1596-1650) had three dreams, from which he nagined the vaste opera Le Monde. In 1637 he published his fundamental opera n dascours de la Méthode pour conduire correctement la Raison et chercher la 
VErté dans le Sciences; En outre essais de cette Méthode en Diôptrique, Météores, 
Ométrie, where he put the first bases of what we know as analytic geometry. nis last dream came to life, but the problem never been automatised until Thus, 
the Gröbner Bases Theory appeared.
the reader with this new view of theorem proving, vhere Gröbner bases are very

Dis paper tries to be as accesible as possible, in order to put in touch 

much involved ([Dav92). 
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2. Ideal membership problenm 
As we already know the Euclidean n-space 

IR" = {21,. . , m)|T; E R, i = 1, n} 
is an afjine n-space ([DC92], [AL92), [Coh93|). One defines here a polynomial fER|e1, . . . ,*n which determines a function R" -> R, defined by 

(1 tn) f{r1, , Tn) 
for all (*1, .. . , n) E R", called evaluation. 

Thus we throw a light between geometry and algebra. This light is still too weak to enlight the bridge and we have to go further and give an explicitely and complete algebraic model for Tarski's result ([Bot96|). As a first step we are going to identify the set of multivariate polynomials assigned to the set of axioms needed to prove an existing theorem by the corresponding system of polynomial equations. So, given f1,... , fm ¬ R[1,.. . , 2n], the set of all solutions for the 
system 

(1) Si = 0, ... , fn = 0 

is called variety defined by f1,... ,Jm: 
(2) Vfi,.. Jn) = {(#1,... , Fn) E R°lfi =0,... fm = 0. 

Why we need this? In fact, a variety gives an algebraic landscape of a 
geometrical object. See for instance that V(*24+y - 1) C R2 is nothing else but 
the circle in the ay plane with the center being the origin and the radius equal to 

1. 

In the world of numerical analysis there are many methods to find a va- 

riety, more precisely, some of its elements. Unfortunately these methods doesn t 
show us the geometric properties of the solution space. Besides, the computation 
speed can be improved by changing the system with an equivalent one, as in Gaus 
Jordan elimination, so the last system obtained is easier to solve, but this method 
applies only for a class of systems of polynomial equations. One might think that 
we are going to stray from the subject of this paper. Actually we are not. We are 
not even interested in obtaining the solutions, but only to give an algebraic and 
geometric information about a system of type (1). This will be fulfilled by starting8 
to take into consideration the ideal generated by a set of polynomials fi,Jn 

I = {J1,... , fn) = 

= {a1fi + +mfmla; E R[*1,... , *p],i = 1, 7m 
(3) 

Can be very easily verified that I is an ideal indeed ([DC92|1, [Coh93], [(WWASOJ 
Given f E IR[#1,..., #n) and IC R["1,... , rn] a non-zero ideal, Grobl 

bases theory gives an algorithm' to check whether fEI or not, which is the laca 

Called Buchberger's algorithmn, following the name of Gröbner bases inventor. Wollg 
Gröbner was the advisor of Bruno Buchberger's thesis. 
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GRÖBNER BASES IN GEOMETRY 
mem anhership problem. To solve it we have to lind a "nicer" representation of the ideal and that it will be a Gröbner basis for I. 

3. Gröbner bases 

Most of the books appeared in this field ((WWA95], [Lev93], [CD92) gives anite nice and interesting presentation of what Gröbner basis means. We are coing to define it trom another the point of view, for our purposes, related to the coal of this paper. Moreover, this brief presentation is concieved in a manner that will lead the reader to the impression that Gröbner bases theory is not a difficult 
subject and it will be easier for him later, to read some high level stuff about this beautiful subject (Dav92], [JHD93], [Coh93]). 

In order to do this, lets study an easy to follow example, for the univariate 
polynomials case. Take f = x" +r3 - 2 + 8x, fi = ** + 2x - 1, fz = z and 
the ideal I = (f1, f2) C R[r]. If one tries to divide f by 2 +2r - 1 will get f= (- z +1)(x2+2x -1)+52, which means that feI. Following the notation 
h, where h is the remainder of the division of f by g, our result looks like 

f50. Or much shorter f 0. 
Thus, in the univariate polynomials case, the ideal membership problem 

looks like the Euclidean algorithm. 
In general, given IC R|z] a non-zero ideal 

4 SEIes0. 
Is it true that problem (4) can always be solved? What happens if the 

raing set of I is infinite? As far as we know up to now there is no information 

i ghtenlighten us. Anyway, there is a crucial result that led to all the results 
Gro ODner bases theory, the so called Hilbert Basis Theorem. For the univariate 

Theorem 3.1. In the ring R[e] we have the following: 

case this will be: 

2E..CI, C... is an ascending chain of ideals of R[e), then 

ersts ng such that Ino = lnot1 = no+2 
n deal of R[e] then there ezists a finite set of polynomials finen* n Jm 

such that I = (fi,.. .Jm) 

) 1f hC 

It is 
Ne got some 

answers for the questn posed above ([WWA95), [CD93)). " cIear if an algorithm for (4) exists, it will always terminates and 

the ideal's structure, So, what happens if an element ot the 

Bet of a non-zero 

There er ne more step before to define a Gröbner basis and that is 

wd again with the 1 Verating 
1l One something about it? In fact nothing happens, but one 

nove thal elemen 

he others? 
deal T can be expressed as a linear combuation of 

n order to get a better generatingset and that it will 
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We discussed in this section only about the univariate polynomials ove R and the real problems about Gröbner bascs are posed for R\T1, ... , 2.l. T 
extension to the multivariate polynomials case can be done easily by definine 
term ordering ([CD92], [WWA95|). Afterwards Hilbert's Basis Theorem will 
still on its feet and the division algorithm will become a little more complicatod 
Why an ordering? Only then we can make the division work algorithmicall. 
(KOG92) 

e 

Theorem 3.2. Hilbert Basis Theorem. In the ring R|T1,... ,T we have the 
following: 

(i) IfI1 C I2 C... C I, C... is an ascending chan of deals of R\?1,.. , Tnl 
then there exists no such that In, = lng+1 = Ino+2 ... 

(ii) 1f I is an ideal of R[21, ... ,2nthen there erists a finite set of polynomials 

Jm E R#1,... , Wn such that I = (ji,.. . fn).
Definition 3.3. Now let I C R[21,... ,zn a non-zero ideal and GE 1. 
is a Gröbner basis for I if and only if 

tn 

nG 

(5) fEIf40, where f ¬ R[#1,.r. , Fn]. 
Implementation of Buchberger algorithm, the method to find a Gröbner 

basis for a generating set of a multivariate polynomials, implies to define theS 
polynomials ([WWA95]) and on this way to present a strategy of how to obtain 
a Gröbner basis. Because the purpose of this paper is to give a challenge for the 
theorem proving in the Euclidean geometry, we are not going to insist on this 

theory, we already done what we wanted to do in order to link it with our goal. 
Moreover, up to now we hope that this presentation was a good arouser for your 

interest in this part of Computer Algebra. 

4. Examples of theorem proving 

As we have seen up to now, in order to prove a theorem we have to express 
the hypotesis and the conclusion as a system of polynomial equations. After tn 
is done, to prove that the theorem is valid means to prove that the polynomt 
from the conclusion is a linear combination of the hypotesis polynomials. n 
words, the conclusion's polynomial normal form is zero with respect to the GtroD 

basis of the hypotesis polynomials. 

4.1. Carnot's Theorem. 

Theorem 4.1. Given a triangle, the circumseript circle is equal to the c 
script circles determined by each of the two of triangle's vertices and the ortn 

ter.

The first step to do in order to prove this theorem is to choose a he 
oper 

coordinate system. As we can see from the picture, a good start is to tasc 
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C(0.c) 

MO.b) 

A(a.0) O(o.0) B(b/0) 

FiGURE 1. Carnot's Theorem 

points like A(a,0), B(b, 0), C(0, c). Then the orthocenter is H(h,0), the AABC's 
Creumcenter is Oo(*o, 3o) and the AABH's circumcenter is O1(1,1). 

An important remark to make here is that the orthocenter's and circum- 

enters coordinates are parametric, we don't know their exact expressions, but 
aey can be computed. According to this, the variables needed to compute the 

orresponding Gröbner basis will be only the undeterminates zo, J0, T1, U1, n. 
u his is the nice part of theorem prooving, you don't have to express every point, 

Logive relations that will figure out what their position means. For example, 
Froat Oo(20, 0) is AABC's circumcenter we write 1OgA| = |O%B| = |O,B| 
is relations we extract the first polynomial identities we will need, saying that 

SquareLine(M, N) = (zM - #N)' + (uM UN): 

= SquareLine(O,A) - Square Line (O, B) = 0 

J2=SquareLine(O%A) -SquareLine (O,C) = 0 

, nalogous, to say that Oj (1, Vm) is AABH's circumcenter we write 014| = 

9,B= O1,H\ 
from which we come up with another polynomial identities: 

SyuareLine(01 A) - Squareline(01, B) = 0 

SquarelLine(01 A) - SquareLine(O1 H) = 0 

have to describe in son , we alread know that CHLAB, but 
ome polynomial identities the orthocenter, too. 

it is not enough, we have to say in a 

We 
ynomial identity 

Perpendicular(M, 
Lhat BHLAC, too. For this let introduce the formula 

7, N, P,Q) = (zN - IM)(r9 - *p) + (yN- UM)(Q - VP) 
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This means that 

(10) = Perpendicular(B, H, A, C) = 0. 

Finally, our conclusion, as a polynomial identity should be 

S = Square Line(O%C) - Square Line(O, H) = 0. 

And that will be all we have to do so far, Maple whil handle the Gröbner 

(11) 

computation to show that f = 0. 
A short program in Maple will demonstrate that the norrnal form offt 

with respect to the Gröbner basis* of polynomials fi up to Ss will be zero. 

SquareLine = proc (M, N) (MC1]-NC1])*2 + (M[2]-N [21) *2; end: 

Perpendicular proc (M,N,P,Q) 
(N [2]-M [2] )* (q [2]-P [2]) + (N[1]-M [1])*(Q[1]-P [1]); 

end 

A [a,0]: B := [b,0] C = [o, cl: H := [o,h]: 
0_0 = [x_0,y_01: 01 = [x_1,y_1]: 

f1= expand ( SquareL ine (0_0,A) SquareL ine (00,B) ): 
f2= expand( SquareLine (0_0, A) - SquareLine (0_0, C): 

= expand( SquareLine (0_1,A) SquareLine (0_1,B) ): 
f_4 expand ( SquareLine (0_1,A) SquareLine (0_1,H) ): 
f_5 expand( Perpendicular (B ,H, A,C) ): 
_6 expand ( SquareLine (o_0,c) SquareLine (0_1 ,H) ): 
with (grobner): 
X Lx_0,y_0,x_1,y_1,h]; 

F [1-1,f-2,f_3,f_4,f_5]; 

f_3 

G gbas is (F,X); 

normalf (f_6,G,X); 
4.2. Desargues' Theorem. 

Theorem 4.2. If two triangles has the vertices, two by two, on three concurent 

straight lines, then their edges are crossing out in three collinear points. 

Again, let choose the coordinate system to have the origin identical to the 

crossing point of the three straight lines di, d2, da and consider that d, is Oy axis 
This means that the fascicle has the equation: 

d 

(12) d2 2 +B2y 
d3 a3 a+B3y 0 

The Gröbner basis of h up to fs with respect to (zo, Vo, #1 , V1 , A), arranged in the lexi 

cographic order, is 

G = {hc+ ba, -a - b+ 2*0, -a - b + 2x1,-c - ba + 2yoc, c+ ba + 2cy1) 

96 



GRÖBNER BASES IN GEOMETRY Tet. define the points and their coordinates: A1(0, ya), Bi(tb,, Vb,) and 
C e) will be the vertices tor the hrst triangle, A2(0, ya,), Bz(r)a, )and 
C co) will be the second triangle's vertices and finally, the points that we 

should prove they are collinear, denoted by M (2M, UM), N(zN, UN) and P(zp, yP) The fact that Aj ¬ di and A2 E di is already specified, so there remains 
the other points tor which we can get their polynomial identities: i= a2Tb +B2yb, = 0 
(13) 
(14) 
(15) 
(16) 

S2=a2tb, + B2yb2= 0 
Js=a3Te +Bave==0 
S4=a3Te +BaVe, = 0 

B 

N 

P 

d d3 
FiGURE 2. Desargues' Theorem 

ng the equation of Aj B1 and AzB2 respectively, the fact that M is placed on the point 5aying that M E B and M E AzB2 respectively. The same rules applies for N 

int A1B nA2B2 can be expressed in two polyno nomial identities, 

and P 

= 0 
17) 

6(y - Ya, )tM - (b, - atas )JM + "baVaa 
18) J5 (6-Ya )#M - (Xb, - a )UM + Xb, Ya, *a1 Jos 

= 0 

= 0 

Taz Voa 19 
F 

J7 (ye - Ja, )N - (wc - ta, )yN +We1 Va la, Yei 

=0 
21 e a)#N- (xc a,)UN + Tea Va -a,9ca 

= 0 
22 (U6,Ye, )*p - (xt, - Xe, )yp + tb,Ve -Te, b 
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In 
one crossing point, say the rank of corresponding matrix from (12) is equal to 9 

One may ask what happened with the condition that di, d2, da have. only 

fact this condition is true, since we chose and wrote the corresponding equation 

for the point O(0, 0) to be the crossing point. 
Now, the hypotesis is completely specified. The last thing we have to d 

is to write the polynomial f, describing the conclusion and then to verify if ito 

normal form with respect to Gröbner basis of fi up to Su vanishes. M, N, Pa 
are 

collinear iff 

1 1 
f=M CN p=0. (23) 

VM 3N UP 

A short code in Maple will verify the collinearity imediatelys. 

5. Hints about writing a code in Maple 

A Maple session known as a worksheet is based on two main regions, one 

is where you write the code, called the input and the other one is where the results 

are printed out, called the output. 

First of all Maple is like a pocket scientific calculator as shown in the 

following commands 

> 34+85 
119 

5 4 
625 

cos(Pi); 7 

-1 

As far as wee see from these commands Maple is able to handle among 

ordinary operations, several functions (if you are a little bit experienced you may 

find even some more complex functions) and some constants. One might see tha 

all cormmands end-up with a semicolon. This tells Maple to compute and prin 

Suppose that the parameters are a1,P1, a2,2, Va^, Vb , Vcj , Yaz: Yb21 Vca and the ln 
deter 

minates are tbj, Te1, b2, ®ca M: VM, TN, VN, TP, VP. Then the Gröbner basis of Si up w " 

with respect to the corresponding basis of indetermintes in the lexicographic order is 

G= ((-vb, Va2 t Vba Va )Tma2 + (yb, Va^ Vbayba b Jaa )a, 
b, Va Ua2b, 9a, Vb Ybz Yaa Vaj t/b b Ja2+(-yb1 Va2 +b a, )Jm 

(Veg Va- Vey Vag )tna3 + (-Jea Vag Vey t ye 3eg Va, )#3, 
Yca Ya, Va tyca Va, Jc tUe Vag Va ye1 Vca Va1 + (yeaVa -Ve1 Yaz )Un 

(ve,Veyve, Ve, )apas + (b, Je) Ve Vea e Vb, )Bs)aa + (ye Vby Voab, ge1 yb,)csea 
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GRÖBNER BASES IN GEOMETRY 
he corresponding result. It you don 't want the result to be printed out on the eereen, replace the sSemicolon Dy a colo1. Then Maple will process the command 

without printing the result. 
To see something more powertul than a pocket calculator cannot do, type 

these lines and see what happens: 

100! 

evalf (Pi,500); 
If vou need more informations you should read some good articles about using Maple, like [Mat95], [Moh95], [Mon94], (Dav92|. You can create and use your own variables from the assignment command . For example: 

Alpha := sin(Pi/3); 

Alpha V3 
i= Alpha; 

i=v3 2 Variables in Maple, among those from other languages, are bounded. This means that once you have assigned a value to a variable, you will not be able to change it until you assign another value. Take the previous examplet and see what happens if we assign the variable i to itself: 

i 'i'; 

i=i i 

be a part of the kernel. For our 

aple has several libraries you can load explicitely in your session. Few are already loaded when you start a session and those are also knoOwn to 

purposes, I will show how to load the Gröbner 

of them 

bases package: 

withgrobner): If you need more help you 
. 1f you 

tp about a command, a package, or programming hints type? 
ly° by a word representing your search. A semicolon is not 

may type on the input region the question mark 

portant in this case, meaninDg grobner normalf) that 

4This ample shows you how to without tabs or blank spaces 
unbound a varíable, too. 

99 



ALIN BLAGA 

or 

?grobner [normalf]; 
is one and the same thing, showing a help window for the normalf function within 
the grobner package. 
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