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THE P-LANGUAGES - A SUBCLASS OF THE INDEXED LANGUAGES 

A. F. BOER 

Abstract. In this paper we define a subclass of the class of indexed languages [|], which is equivalent to a subclass of conditional languages, and prove that the density 121 of these languages is linear, which gives examples of non-Y-languages. 

1. Introduction 

The main idea for the definition of Y-grammar was a kind of ,correlation" which 
Tealises the indexes by the application of index-rules. This is more obviously if at first 
appear all indexes and afterwards all index rules are applied. The Y-grammar realises 
such a derivation. So the study of properties is easier too. 

Remark 1.1. We will denote the length of the word x by xl, the cardinal of a set 
M by M| or by n(M), the empty word by e, the reflexive and transitive closure of the 
cation by*, the class of indexed grammars by Ind, the class of Y-grammars by 
G1s a class of grammars then the corresponding class of languages we denote by 

LIG) 
Definition 1.2. A V-grammar is an indexed grammar (1] G =(N, T. E. P, S, im 

wnch the following conditions are satisfied: 

3 The rules int the indexes have the form. >z, with A e N,z e(N;U T) 

2. The rules of P have the formA > Bfwith A e N, B eN,fEF. 

N N UN, N, nN, = Ø, S E N. 

Ote the class of Y-grammars by Y, and the corresponding lauly or 

languages by L(Y). 

Rewritino nd Descriptors. F4.2 [Mathematical gic and Formal 
Languages): 

Grammars and 

suages Operations in languages, Classes defined by gramman: 
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e nules 
Example 1.3. Let G =({ S, Z, A},fa}, {f. g), P, S), where P contains the 

ka 
SZg, Z -> Zf, and the indexes are f = {Y >A, A. A), g= {A > a], with 
natural number. 

Each derivation in G which gives a terminal word (i.e. a word from T*) have the form S Zg > ZYg Zf8 = Zfg>* Zf"g >Af'g -* (Afg* (Af 

(Ag) *a*. (n 20). We observe that L(G) = {a |n = 0, 1, 2, ... }. 

Remark 1.4. (1) From the definition results that in a P-grammar each derivation 
has two parts: first only the rules of P are applied, and is obtained S>* Az, A E N.z 
F*, after them are applied only the rules from the indexes, because after the application 
of any rule from any index appears a nonterminal symbol from N; or a terminal symbol 
on which cannot apply the rules from P. 

(2) With the rules of Pa regular language (i.e. from L ;) is obtained in the alphabet 

NUF*; we will denote it withL'. 
Definition 1.5. We call (nonteminal) composition set of the word x e 1* the set 

Vn) = Ky )=(A e N1A is in x). (i.e. the set of the nonterminal symbols which 

appears in x). 

Notation 1.6. If all index sequences after all nonterminal symbols of the word x ¬ 

*ends with the same index sequence z e F*, then we will write (x)z (i.e. ifx = 
xA1zz...xANZZXE+1, then we will write (xA121 ...Atk+1)z, and conversely). 

Definition 1.7. The number s() max { al | A >x Ef} is the degree of th* 
indexf 

Definition 1.8. The number sy = max { |prx (x)||A ->x ef} (where pry) 1s 
projection of the word x on the neterminal alphabet N) is the nonterminal degree of 

index f. 

Definition 1.9. The nonterminal degree of the grammar G is the number >y 
Imax 

SMIfe F}. 
Definition 1.10. The degree of the grammar G is the number s = max {s0) 

(If the grammar is not obviously, we can write SG,N, or sG). 
s2 Remark 1.11. We have s 2 sN 21 for each nonterminal, and for eachj in r ou 

sM0) 2 1, s 2 s) and sy 2 Sw(f). If the language is infinite, then s > I (but SN 
possible for some infinite languages too, e.g. for the grammars with the rules 

of the formA > Ba) 

ules in indexes 
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THE Y-LANGUAGES- A SUBCLASS OF THE INDEXED LANGUAGES Notations 1.12. We will denote: INj| = n{N) = 

n, IN2 = n(N) = 

nn, F = 
a (the number of indexes in F), |P| = n{P) = p (the number of rules in P),T =t(the number of terminal symbols); the number of terminal symbols is n + nn. 1f E, z e (N; U T)* *1x>" Z, and the derivation is made by application of all 

indexes from x, then we will write R(x) Z. 

Remark 1.13. Using this notation, each terminal derivation in a Y-grammar (i.e. 
tion which end in a terminal word from T*) may be written in the form: S Aff f, and yi = A, yj = R(yj.Urj+) for j = 2, 3,... r+I 

where A E N. f E F, forj = 1, 2, . , yr+ E T*, and in the first part of the derivation only the rules from P are applied (and in the second part, obviously, only the index rules) 

2. The linear density of the Y-languages 
Theorem 2.1. Each infinite Y-language has no more than linear density. 
The proof of the theorem can be made using the following lemmas. 
Remark 2.2. If a language is finite, then it is regular, and may be generated by grammar of type 3. 

begins with: S >* Azjfafaz, where only the rules from P are applied, with a e N, Z, 4. Z2 
EPfEF, and such that the following conditions are satisfied: 

a) the two appearances of the index fare obtained through the same rule from P; 
b) R[Az|< R(Azfq (i.e. through the application of the index string of the Iength of the word doesn't increase); 
)V(RAz) = V(R(Azfg)) Ø, and we denote by Vo (i.e. the composition set ot 

Lemma 2.3. In each infinite Y-language there exists a word x which derivation 

(Azy) doesn't change through the application of the index string gf). 

rule determines the index which appears through its application. 
The composition sets which appear after the application of the first index are 

RA 

foof. We mumber the rules of P such that: v: A -> Bf (1 <v Sp). The number of a 

subsets of N2, we we number these subsets from 1 to 2"", and the number of the subset Hc 

and then we have a 2 log, b. (For an infinite language we have s> 1) 

N we note by u(H). 
We 

a then |R(Az)| S s" (2E F*, A e N); we denote IR[Az)| with b 
remark that if |al = a 
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If LG) is an infinite language then for each natural number n there exists a word 

from L(G) with the length greater than n. 

form 

We will see the derivations by ,,steps", where each step means the application of 

an index on all the nonterminal symbols to which this refers (i.e. each step has the 

(x)f* R(x(D)). To each step it corresponds the pair (u, vy formed from the number of 

the composition set of the word obtained through the application of the index of rano : 

and from the number of the rule from P, through which application was this index of 

rangj obtained. 

The total number of such pairs (u, v) is p2"; now, if we take a word x e LG) with 

>s , then at least a pair (u, v) repeats. By each step the length of the word 
increases at most s times, so for to obtain a word of length a we need at least log,a steps. 

Furthermore, if a > SM, then we have at least a repetition of a pair (4, v) so, that 

between the two appearances of the pair (u, v) the length of the word (in the alphabet V 

= NUT) increases. So, with the followings, the lemma is proved. 

Indeed, the derivation of a word x with |x| > no =sPlN shows so: 

S*G, Afi.fi =yoi.f*G (V)f. fi* 

G (V-)f.fi*0-fi0)j+1 -.fi"y =xe T'. 

where (u, v) = (, v), consequently Vo) = Vy) and fj-f, where the two indexes a 

obtained through the same rule from P and between y, and y, we have a growth of tne 

length: bl> il, and so V(y) * . From yj, by the help of the index string f-!t 

obtains the terminal word x e T*, and so fj+1 .. fi# e. If we note f =f =fi f= 
S-1 . = 4, fn1 f0 z, then we have y = R{Az), y = R(AzJuf) 

Lemma 2.4. In each Y-grammar |R(0)z| s ps", for y e V* z eF*, 

The proof can be made by induction on |z, using the fact that, from the definiuo 

of s, R(AN|Ss, and |R(af)|= lal =1, where A e V,fe F, a E T. 

Lemma 2.5, In each infinite language L, which is generated through an indec 

grammar G E Y, it 1s a sequence of words Xo, X1, ... , Xm, . , X E L(G), SO uae 

moil and it is a natural number c so that we have lem+l S cl for all m 0, 1, 2, 

Proof. From Lemma 2.3 and from the fact that the rules of P have the form 
grammars of the type 3 grammars follows that S Az: fla"z, for m = 0. 1, 2 

Azfgf"z2* Xm E T* and k,ml< m. 

The derivation is made as follows: according to Lemma 2.3, S* Azjqj7: ie. S 

ot 

Bj22 >* BJ22, B; -* BJ4. B, Az; obviously, the derivation B, * B34 may 

be repeat however often, obtaining Az/f(q"2, further, from Lemma 2.3 too, we nd have: 
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Tur -LANGUAGES- A SUBCLASS OF THE INDEXED LANGUAGES Azfaf>* (1U0)qfz2 =* (1u1)z2 ->*x E T*, 
) {A, .. Axi k21. (111)72 >* x E T* means that cach 4, from V(u) 

and Vug) 

nan empty termnal word (because aren't rules of formA>e): Az, * w. e T* 

gves 

for1, . k. 
We onsider Azia)2: (u)(q)""z z ->* (,m)Z2, and having V(u) = Vu) su) = V(ug)={A1, Arf, so tor each m =1,2,.. we have (um)Z)-* x, Erom Lemma 2.3 follows that |u|>|4ol, what is possible only if there exists at aadt att 4, e V(uo) for which |R(AAE| |/1; this A appears in each u, so the length increase fiom. , to u,+: 4lu , i= 0, 1, 2, .. 

, m-1. From this follows that |R(lu)z) R (). and so l S Pi+il. In this way we obtain the sequence of words x, x, with x E L(G) and xm lm+1| for m = 0, 1, 2, 
We have still to prove that there is a constant c for which x-1l< cxm. Let gf = d; then R(u)q)i s }Um| but um+1 = R((4,)g), and so |ut| J4,m|s". 
From the equality x, = R(4m)Z), and noting |zal with d' we obtain: 

'*Xm | R(um-)z)|S = lum-1|s" ss'suni Ss#*dx 
since 4,S m 

We take c = s*, and so we obtain the needed equality. 
Proof of the theorem. The density is linear when there exists a constant k such 

nat for any natural number n 2 no there exists a word x e L(G) such that n < |x| < 
n-kn (1+k)n = cn (see [2]). 

We consider the sequence xo X1, ... , X .., built in the Lemma 2.5. From the 
PhOpertues of this sequence follows that for each n 2 lxol there exists an xn Such that: |Tm n n<m. Then from the Lemma 2.5 we can write: n< |m+1|Sc x S cn, c = s n n xol the theorem is proved. 

Gensity greater than linear, kanguage. = fa n 20} is not in L(Y). 

rom this theorem follows that if an (infinite) language has a 

then it cannot be generated by a Y-grammar. E.g. the 

Corollary 2.6. Frox 
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