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Abstract. In this paper we define g subclass

sy . of the clacc :
which 1s equivalent to a subclass of conditiona © class of indexed languages 1]

I languages, a

™7 Af thace 1r , - , and prove th; .

(2] of these languages is linear, which gives examples of non-y f ove that the density
- r-languages.

1. Introduction

| The m;:un 1dea for the definition of ¥-grammar was a kind of , correlation” which
realises the indexes by the application of index-rules. This is more ;bviously if at first
appear all indexes and afterwards all index rules are applied. The W-grammar realises
such a derivation. So the study of properties is easier too.

. RTmark 1.1. We will denote the length of the word x by | x |, the cardinal of a set
" b}f M , or by n(M), the empty word by e, the reflexive and transitive closure of the
relation — by —*, the class of indexed grammars by Ind, the class of ¥-grammars by

Yire '
L mlf G is a class of grammars then the corresponding class of languages we denote by
),

Definition 1.2. A W-grammar is an indexed grammar {1] G =N, T. . 2.3 o

Whi .
hich the following conditions are satisfied:
1. .
NNy UN, N, AN, =@ S N,

The rules of £ have the form A > Bfwith A e N, BeN.fel.
the rules i the indexes have the form A — z, with 4 € N,z N0 D

and the corresponding fanuly of

an We will denote the class of W-grammars by ‘¥,
EUagcs by L(lil)
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Example 13.LetG=({S, Z A}, {a},{f g} P, §), where P containg the ry]
S — Zg, Z — Zf, and the indexes are /' = (Y > 4, 4. — 4"], g = {4 - q with kes
natural number. 2

Each derivation in G which gives a terminal word (i.e. a word from T*) haye "
form § — Zg > 2fg > Zffg = 2f'¢ >* 2f'"'g > Af'g >* (Af'g) > (aprgpe |
(Ag)""" >* a"" (m > 0). We observe that LG)={d"|n=01 2 .. .

Remark 1.4. (1) From the definition results that in a W-grammar each derivatio,
has two parts: first only the rules of P are applied, and is obtained S—* 47 4 €N ze
F*, after them are applied only the rules from the indexes, because after the applicatiqp
of any rule from any index appears a nonterminal symbol from A; or a termina] Symbo]
on which cannot apply the rules from P.

(2) With the rules of P a regular language (i.e. from L ; ) is obtained in the alphabet
N U F*; we will denote it with L.

Definition 1.5. We call (nonterminal) composition set of the word x € I* the set
Vx) = Ky (x) ={ A € N | A4 is in x}. (i.e. the set of the nonterminal symbols which
appears in x).

Notation 1.6. If all index sequences after all nonterminal symbols of the word x €
I* ends with the same index sequence z € F* then we will write (x)z (ie. if x =
x14,21z... X AkzkzXi+ 1, then we will write (x;4,z; ... X AiziXs 1)z, and conversely).

Definition 1.7. The number s(f) = max { x| | A - x e f} is the degree of th
index f

Definition 1.8. The number sy = max { |pry (x)| | A — x e f} (where pry() is
projection of the word x on the neterminal alphabet N) is the nonterminal degree of 1
index f.

Definition 1.9. The nonterminal degree of the grammar G is the number Sy~ ma¥

{sn() | feF}.

Sy
Definition 1.10. The degree of the grammar G is the number s = max {s(f) /'€ d
(If the grammar is not obviously, we can write SGN O SG).

. A2
Remark 1.11. We have s > sy > / for each nonterminal, and for each fin £ S(f)is
sn(f) 2 1, s 2 s(f) and sy > sp(f). If the language is infinite, then s > / (but ¥ -

: . . L es
possible for some infinite languages too, e.g. for the grammars with the rules in et
of the form A — Ba).
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Notations 1.12. We will denote: | N, ] =n(N,) =

n: ,Nzl :nN} = -
n(F) = q (the number of indexes in 7), | p l = n(p) - (N) = nn, | F|

=P (the n :
=n(T) = t (the number of terminal symbols): the numb umber of ryleg in P), | 7|

e - .
I of terming] Symbols is » + nn.
Ifxel*ze N UD* %x 5% and

indexes from x, then we will write Rix) =5

S__)*Afufr] f}. andyl :A’ ){/ = R(yj—lfrt/rz) forj - 2’ 3, oy

where A € N, fi € F, forj =] 2 Y, Yres € T* and in the firgt part of the derivatior
only the rules from P are applied (and i the second part, obviously, only the indey
rules).

2. Thelinear density of the Y-languages

Theorem 2.1. Each infinite ‘P-language has no more than linear density.
The proof of the theorem can be made using the following lemmas.

Remark 2.2. If a language is finite, then it is regular, and may be generated by
grammar of type 3.

Lemma 2.3. In each infinite ¥-language there exists a word x which derivation
begins with: § —* 47 1fqfz, where only the rules from P are applied, witha e N, z,, ¢, 2,
€F* f € F, and such that the following conditions are satisfied:

2) the two appearances of the index f are obtained through the same rule from P;

b) R(4zy)| < IR(Az fgf)| (i.e. through the application of the index string gf the
length of the word doesn’t increase); . R

¢) ¥ (R(4zf)) = V(R(Az,fqf)) # @, and we denote by ¥, (.1.e. the composition
R(Azzﬂ doesn’t change through the application of the index string gf).

he number of a
Proof. We number the rules of P such that: v: 4 —).Bf (1 <v<p). The
Tue determines the index which appears through its application. o
tats the first mndex
The Composition sets which appear after the application obfer Oef e subset H
bsets of N>, we number these subsets from 1 to 2™, and the num

T have s > [.)
" then e have 4 > Jog, b. (For an infinite language We

87

]



A.F. BOER

If L(G) is an infinite language then for each natural number n there exists a word
from L(G) with the length greater than 7.

We will see the derivations by ,steps®, where each step means the applicatiop of
an index on all the nonterminal symbols to which this refers (i.e. each step has the fory,
(x)f =* R(x(/)). To each step it corresponds the pair (u;, vy formed from the number
the composition set of the word obtained through the application of the index of rang j
and from the number of the rule from P, through which application was this indey 6f

rang ; obtained.

The total number of such pairs (u, v) 1s p2"; now, if we take a word x € L(G) wit
x| > &V then at least a pair (u, v) repeats. By each step the length of the word
increases at most s times, so for to obtain a word of length a we need at least loga steps.
Furthermore, if @ > "7, then we have at least a repetition of a pair (i, v) so, that
between the two appearances of the pair (u, v) the length of the word (in the alphabet
= N U T) increases. So, with the followings, the lemma is proved.

Indeed, the derivation of a word x with [x| > ny = P2 shows so:

S >*G, Afy .. fi =y o fi>*G G o fi ¥

6 i - X Or1)f - i 2% Ol wfio¥y=xeTH

where (u; v) = (4; v;), consequently V(y;) = V(y) and f; = f;, where the two indexes are
obtained through the same rule from P and between y; and y; we have a growth of the
length: |y, > yil, and so V(y) # &. From y;, by the help of the index string fi+; - fit
obtains the terminal word x € T*, and so fj+; ... iz e. If we note f; = f, = f, f; [ =
fivi o fr1 =4, fiv1 - f1 0 22, then we have y; = R(Azyf), y; = R(Az fqf). ‘

Lemma 2.4. In each W-grammar |R(»)z| < [yls”!, fory € V* 2z eF*.

The proof can be made by induction on |z|, using the fact that, from the definition
of s, |R(Af)| < s, and |R(af)| = |a| =1, where A e V,f e F a e T.

Lemma 2.5..11? each infinite language L, which is generated through an indexed
grammar G € ¥, it is a sequence of words x,, x,, ..., x, x,, € L(G), so that il <
LA/ IR AR ’

x,,+,| and it is a natural number ¢ so t '
hat we hdve |xm+1| < clxml for all m = 0, l, 2, e

Proof. rFr}(l)m LLemma 2.3 and from the fact that the rules of P have the for™ of
grammars of the type 3 grammars follows tl : )

m § hat § >* 42z M, for =0, ] 2
Az f(qf)"z; >* x,, € T* and |x,| < |x,,, |. Sqf) "z, tor m

The derivation is mg ’
made as fol i aceord: e e S
lows: according to Lemma 2.3, § —* Azfafz» 1

—* Bz, >* Bofz, B, —* B.f
I S0 By % By, By >+ Az;; obviously, the derivation B, —* Bifq may

be repeat however often ini
, obtaining Az, f(a)"= . fur :
8 8 Azif(q/)"z5; further, from Lemma 2.3 too, we have:
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AZqf >* () qfz, —s* (U1)z, —>* ¢ . T+
and Vi) = v) = AL A k2 )z, means thyt o
‘ q non empty termunal word (because aren’t rules of form, A
/. ...k
We consider Az/(q)"zy —* () (q)" '2) > ()2,
follows V) = Vi) = {4, ... Ay}, so for cachm = 2, ..

ach A, from Viu,)
- >¢) Ajzy % W, e T*
for ]
and having Viu,) — Viu,)
.- we have (Up)z, —5* X .

From Lemma 2.3 follows that u;| > i), what is possible only if there €Xists at
last an A, € V(o) for which [R(4,qg)| > 1] = 1; this Ay appears in cach o 50 the length
increase from u; 10 eyt 1] <y, i = ), h2 . m1. From this follows that
< R((u-)z:l and s0 [l < lxii]. In this way we obtain the seduence of words x
v, o Withy, € L(G) and |x,| < on | for m = o, L2

R((u)z,)
m X ...,

We have still to prove that there is 2 constant ¢ for which [x,,. | < clnl. Let gfl = 4-
en R((un)@f)] < luplss BUL 1) = R((u,)qp), and so 1] < Jtt] 5.

From the equality x,, = R((u,)z;), and noting |z,| with d’ we obtain:
| R(Cus1)z2)| < = [y, |57 <sU5%u,| <57,
SINCE (U] <[]
We take ¢ =5/ and so we obtain the needed equality.

Proof of the theorem. The density is linear when there exists a constant % such
that for any natural number n > n, there exists a word x € L(G) such that n < [x| <
= (1+k)n = cn (see [2]).

We consider the sequence xg, x4, ..., X, ..., built in the Lemma 2.5. From the

Properties of this sequence follows that for each n > |x,| there exists an x,, such that: |x,,|

p e . ) _ A+

~"“Mns.|. Then from the Lemma 2.5 we can write: 71 < [X,4; | Sc |x,| Sen e =577

t'irj[h n, =
0

9| the theorem is proved.

Corollar Y 2.6. From this theorem follows that if an (infinite) language has a
"-'Hsny Ereater than linear, then it cannot be generated by a W-grammar. E.g. the
Tlage /, (@ > 0} is not in L(¥).
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