
1997

CTIDIA UNIV. BABES-BOLYAI, INORMATICA, VOLUME II, NUMBER 1, MABCt 1007

APOSSIB1LITY TO DESCRIBE AN ALGEBRAIC HIERARCHY
ALINA ANDREICA

Abstract We propose a Simple way of describing in Mathematica the
semigroup - monoid - group - abclian group - ring -(field, abelian ring - abelian field)
hierarchy by specifying the properties of each structure and a few operations which
characterize them. These ideas could be the starting point for constructing a symbolic computation module to manipulate abstract domains.

1. Introduction

The symbolic computation systems (SCS) have been successfully used during the last decades in order to obtain quickly the desired results in symbolic computation sequences which involve series, limits, differentiations, integrations, etc. There were
wo directions that marked SCS evolution: designing complex, general-purpose systems
or designing specialized systems, meant to deal with calculations characteristic to certain domains, such as: astronomy, quantum mechanics, relativity, etc. [1]. The most popular systems (Reduce, Maple, Mathematica, whose performances are studied in [2], together with Macsyma and Derive) contain complex algorithms for a large variety of calculations but they deal only with common algebraic domains: integer, rational, Ireal and complex domains and do not provide the possibility of working with other types of algebraic domains. Host languages vary from Lisp in Reduce (A. C. Heam, early '80s) to Cin Maple (created at the Waterloo University, Canada in the late '80s, early '90s). Therefore the direction consacrated to the definition of abstract types of domains Which would be particularized by the ones mentioned above) appeared in the theory of mbolic computation as a natural phenomenon. The most well-known SCS based on ese ideas is AXIOM (R. Jenks, R. Sutor, 1992), but it was preceded by Scratchpad, on the Lisp language (R. Jenks, early '80s). Although AXIOM is an outstanding

bas

mplishment, some authors criticize it for being too rigid, therefore not very h tor some cases. The proposed alternative would be to create more tlexible

CO ,Capable of describing abstract domains, which should be attached to the
nmonly used SCS (3]. As: research direction, we intend to build such an extension

The study of implementing abstract types of structures is based on the theory of

for Mathematica.

domains and catego caegories. We present here the essence of these concepts accordng to |5|.

parametrized types; the arameters can be values or other domains Domains are
ney can be create

They
Tcated in a SCS by a function/procedure. Categories are abstract

1991
Mathematics Subject Classification. 68Q40.

Received t by the editors: October 5, 1997. 1991 CR
d Descriptors. I.1.2 [Algebraic Manipulation|: Algorithms algebraic algorithms

A. ANDREICA

Shared
parametrized types, the parameters can also be values or domains. They can be sharo
by many domains and provide a code which is independent of data representation

For example, if we consider the Set as a category, we can write

of
function/procedure to create a set domain M. We must also provide the possibilitu
introducing some operations on M, the most common ones being the tests for eaualit.

a

and non-equality.

Developing our example, an Euclidean domain E would be a new category, created
by a function / procedure and for which at least the division remainder and gcd
operations would be defined. Describing the Euclidean algorithm within this context is
an example of enriching the abstract structures with specific algorithms. It is generaliv recommendable that the corresponding algorithm of the host SCS would be the one
inmplicitly used, the newly defined algorithm being only its extension for more abstract
cases.

The algebraic semigroup

ring abelian field) hierarchy, which is the object of this paper, was described using
only representation algorithms, since the above mentioned domains do not have specific abstract algorithms. The technique of its defining is further described; the purpose of the
paper is to propose elementary means of building this hierarchy using a Mathematica

package.

monoid - group - abelian group - ring - (field, abelian

2. Implementing the Mathematica package
The semigroup monoid

abelian field) hierarchy is well-known [4]. We intend to implement it using a

Mathematica package which will be able to build one ore more groups, one or more
rings, etc., with different names. Moreover, on any of these domains we must have the
possibility to perform elementary operations, such as applying an operator upon two not
necessarily elementary operands (the result is to be obtained as a concatenation of tne
operands as strings), testing equality and non-equality of two operands, verifying tha
the operands of an expression belong to the domain, explicitly applying some properties.
All operations performed within a domain will regard the properties or
corresponding operator: associativity, commutativity or distributivity.

The operator characters which can be used are defined as members of the list
Operatii = {"|", "N", "4", "*", "S", "", "/", "!", "#". As most of these characters nave

built-in meanings and properties in Mathematica, which are not convenient to

group abelian group - ring - (field, abelian ring

purposes, we adopted a technique inspired from Mathematica's internal representation
our

order to correctly manipulate abstract expressions. We wrote a procedure whict
generates an internal type form of the expression, similar to FullForm ro trom

Mathematica [5] and another procedure which obtains the external string-type tO
(of

an internal type form).
Obviously, the equality "=" and non-equality "<>" tests will be pertorned up

the internal form because once the operators were associated their properties
Flat

Orderless), the built-in Mathematica functions Same and Unsamees] can be applheu
lo every operator character we associate a name used in the internal type form,

example " - "Oplus", "*" - "Ostea", etc. This association uses a list of nani

(corresponding to the list of operators) and two functions which provide the name o f an

îmes

78

A POSSIBILITY TO DESCRIBE AN ALGEBRAIC HIERARCHY
operator, respectively the character associated to a name. aDDlication of the properties corresponding to the attributes, the internal form heads will be symbols (results of NumeSinmb function).

The internal

To allow automatic

form, built by FForm function, looks like Operator_name[operands _list), Similar to FullForm firom Mathematica[5]. In our case, the abstract operators from the above-mentioned hierarchy are binary. FForm function follows the basic idea from constructing a binary tree associated to an arithmetic expression; in order to make the transformation more general, valid for expressions containing parenthesis, this case has also been dealed with, as well as the situation when operators have different priorities.

First, CrSir function, whose input is a string expression, retains its operands and operators into a vector Sir with dim elements, eliminates the parenthesis and introduces the priorities of each element from Sir into a vector Pr.

CrSirls_String)=Module[{i=1j-0,pr-0,n-0,x,c}, n-StringLength[s];
While[i-n,c-StringTake[s, {i,i}]

Which c=" ",itt,
C pr+=10;i++,
c"",pr-=10;i+t,
ELitera[c],

x="",While[ELitera[c]&&i<=n,x=xOc;If[i<n,it+;
c-StringTake[s, {i,i}],it+]];

Sir++j]x;Pr0]-pr+100
Operator[c],Sir[++j]=Nume[c]:Pr[jl-pr+prio[Nume[c];i++]:

dim-j]
Afterwards, CrForm recursive function looks for the smallest priority element

between two indexes in Sir and introduces it as head of expression with the arguments
Obtained from the two remaining subintervals.

CTForm[i_Integerj_Integer):=Module[{mn,k,ind),
Which[

i>j,Return[
[MemberQ[Nm,StringDrop[Sir[i],1]],

Return[NumeSimb[Sir[i]]],Retum[Sir[i]].
ij,For[mn=Pr[i};k=i;ind-i, k<=i, kt+,

If|Pr[k]smn, mn=Pr[k];ind=k,|k
Returnf

Apply[NumeSimb[Sir[ind]], List[CrForm[i,ind-1],CrForm[ind+ 1j]]]]]

eTnal form is obtained by combined application of the two above described

nctions upon the expression string in which the blanks have been removed (ne
ction that eliminates the blanks distinguishes non-significant blanks from blanks

Cm 8 multiplication). Previously, attributes specific to Plus and 7imes are

n order to avoid implicit application of commutativity or associativIty.

The

FFormexpr_]=Block[{Atributes},ElimAtrib;
19

A. ANDREICA

Return[CrForm[1,CrSir[ElimBlank[ToString|expr]]]]]
OForm function brings back an expression given in the internal form,as

argument, to the external string-type form. The function 1S recursive, based on tha principle that FForm forms are binary and takes into account the case of operators with different priorities.

an

th

OForm[e -Module[{ol,02,x,y}
If[AtomQ[e]. Return[ToStringle

ol-Level|e,1][[]]; 02-Level[e, 1][2]];
If prio[Head[e]]<-prio[tHead[ol]I || AtomQfol],

x-OForm[ol], x="("<OForm[ol]""];
Ifprio|Head[e]]<-prio|Head[o2]1 || AtomQ[o2],

y-OFormo2], y="("OForm[o2]""];
Return x>ToString{Car[Headfe]]l>ylll

In order to obtain a correct form for all operators, we also use the auxiliary function Tr which transforms a FullForm argument into the new internal type FForm
expression. This function is necessary because in Mathematica there are more than one
built-in operators with the same FullForm head, for example /, !, *, # have the same
head Times and +, - have the head Plus [5]. This problem is not trivial, since a FullForm

form can have an arbitrary number of arguments, whereas FForm has only two and
there are internal forms which use heads specific to other operations. For example,
FullForm[a-b-c] is Plusfa, Timesf-1,b], Times[-1,c]] but has the FForm form
Ominusfa, Ominus[b,c]], FullFormfa/b/c is Times[a, Power[b,-1], Timesfc.-1]] but
FForm is Oslashfa, Oslash[b,c]], FullForm|ab#c/ is Timesfa, b, c, Power[Slot[/.
but FForm is Odiezla, Odiez[b,c

The significant part of internal form arguments was retained in the elements of an
array T, which will be used by Aux function to generate the form Head[T[

Head[T[2],.. , Head[T[n-l], Tfn]]...]}, using TrAux auxiliary function. TrAtu
recursively comutes the two arguments in the form generated by Fold [5] built-in

function TrAux[Fold[,T[n],Table[T[i), fin-1,1,-1}]1

Trfe j-Module[{c,x,y,p-0,n=0,T, i=0,h},
IfAtomQ[e),e,
cToString[Head[e]]; x=e[[1]]:
h-NumedinFF[¢];
n=Length[e];
Ifn-2, y-e[[2]],];
Which c="Power",

Return[Apply[Ocaciula,List[Tr|x],Tr[y1]]].
c="Times",

Which
MatchQly,Power|-1|],

T[I]=T|xj:
Do[l[MatchQ[e[[i]].Power[-1]],T[il=Tr[e[]L]I)

i,2,n}
Return Aux[Oslash,T,n]],

80

A POSSIBILITY TO DESCRIBE AN ALGEBRAIC HIERARCHY

MatchQelln]].Slot[_I| MatchQ{el[nj|.Power|Slot[_1.]. T[I] Trlx:
Dol Tlil-Tr[e[lil, {i,2,n-1}];

Return Aux[Odiez,T,n-1 ||,
MatchQ[y,Factorial 1.

Do I MatchQ|e|li]].Factorial[1],T[i-1J-Tr(ef[i]l[1IL, i,2.n}:
Tnl-Ttx]
Return[Aux|Oexclam,T,n]}, MatehQ[y._1.
T[11=Tr[x];
DofT[il-Tr[e[[]], {i,2,n}];
Return[Aux[Ostea,T,n]}, c="Plus" || c="Alternatives",

Which
MatchQ[y,Times[-1, 1] && c=="Plus",

T[1]=Tr[x]
Do[lf MatchQ[e[[i]],Times[-1]],T[iJ=Tr[e[[lI[2]].].

i,2,n}]
Return[Aux[Ominus,T,n]],

MatchQ[y,],
T-Trx
Do[T[i]-Tr[ellijl], fi,2,n}];
Return[Aux[NumeSimb[h],T,n]]]]]]

The procedure which defines a semigroup contains the definition of applying the
operator upon two not necessarily elementary operands, the equality and non-equality Tests, an operation which allows the explicit applying of associativity upon FForm form
and "corect" operation, which verifies whether all symbols which appear in the
argument expression belong to the domain. Moreover, to the corresponding operator we
asociate the attribute Flat (which specifies associativity).

n order to perform "corect" operation, we introduced all the symbols that were
n a domain (DI,) or (D2,+,) into lists of symbols refered by Simb[D1, "*"
pectively Simb/D2, "+", n*"]. We also retained the names of the defined domains

T LDlist, as well as neutral elements and corresponding type for each domain.
The
cation whether the symbols which belong to an expression were already used

Omain is done, depending on the number of operations in the domain (l or 2),
by

the

ApDoml[e_ D ,op :=Module[{f,x,i),
FFForm[e]:x=Union[Table[Sir[i), {i,dim;]l:
unqual[x, Intersection[x,Append[Simb[D,op],Nume|op|]||

pDom2[e_D ,ol ,o2]:=Module[{f,x,i,
FFormfe]x=Union[Table[Sir[i], fi,dim}]}:
eurn[Equal[x, Intersection|x,JoinlSimb]D,o1,02)

Numefo1], Nume[o2]}]I)

81

A. ANDREICA

We give below the body of the function which defines a semigroup.

Semigrup[S ,op_]:=Module[{f,ffa,ffb,i,x},

1Operator|op].
LD-Append[LD,S];

TipDom|S,op]"Semigrup"
Oper[S] op; Simb[S,op]-{};
fNumeSimb[Nume[op]]; prio[f]-1;
IfLength[Attributes[f]-=0,

-Attributes[fl={Flat, Listable};Print[|],
Attributes[f]=Union[Attributes[f), {Flat, Listable}]];

S[op.a_b_]:=Module[{x,y},
ffa-FForm[a];
Simb[S,op-Union[Simb[S,op],Table[Sirfi], {i,dim}]];
ffb-FForm[b];
Simb[S,op]-Union[Simb[S,op],Table[Sir[i], {i, dim}]];
x=Tr[FullForm[a][1]]1
yTr[FullForm[b][[1]]; Print["=",Attributes[f]];
Iffop"S",OForm[x]<>"$ "OForm[y],

OForm[Apply[Nume[op],List[x,y]I||:
S["",a_b_]:-SameQ[FForma],FForm[b]]
s"a_b_]=UnsameQ[FForm[a),FForm[b]}:
S["corect",ex_]=ApDoml[ex,S,op];
S["asoc",expr]:=Module[{fx},

f-FForm[expr]; x=Head[f];
IfDepth[expr]<=2, Return[expr],

Which[MatchQ[f,x[x[a_b_]e]],
Returnx[S["asoc",a],x[S["asoc",b],S["asoc",c]]].

MatchQ[fx[a_x[b_].
Return[x{x[S["'asoc",a].S["asoc",b]].S["asoc",¢]1,

Fail]]

Thus, in order to def+ne a semigroup X, with the operator "*", we ca

Semigrup[X,"*"7, while a sequence of operations on X could be, for example:
m=X["*", a, b]
n=X["*", b, c}
X["*", m*c, a *n] will generate True.
For a group, the basic operations from a semigroup are "inherited" by the exp

call of the corresponding procedure; this method is applied repeatedly for all
domains. For monoids and groups, the neutral elenment is stated as an argument
call of the procedure which creates the domain we need; for a ring or nc
operators and both neutral elements are specified.

The supplemental commutativity property (Orderless) is introduced in the o
the functions which describe domains with this property and the explicit app of a
dhstributivity appears as an operation in the ring procedure. Within the definition

plicit

other

in the

both

ly of

82

A POSSIBILITY TO DESCRIBE AN ALGEBRAIC HIERARCHY

eld domain, the monoid operator was chosen to have a bigger priority than the
group operator.

Monoid[S.op e_]=Module[{},
Semigrup[S,op];

TipDom[S,op]="Monoid";EIN[S]-e;Simb[S,op]-{e}: Slop,e,a,b]-lla=e, b, It|be, a, S[op,a,b]]]]

Grup[Sop_,e_]=Monoid|S,op,el;TipDom[S,op="Grup", S"esim",a_b_]-SameQ|FForm[S[op,a,b]].e] &&
SameQ[FForm[S[op,b,a]],.e]

GrupCom[S_op_e_]=Block[{f,Atributes),
NumeSimb[Nume[op]];
Attributes[f-{Orderless};
Grup[S,op,e]:TipDom[S]="Grup comutativ"]

Inel[Splus_stea_e0_el_]=Block[
prio[NumeSimb [Nume[plus]]]=1;
prio[NumeSimb[Nume[stea]]]-2;
Grup[S.plus, e0];
Monoid[S,stea,el];
Simb[S.plus,stea]=Union[Simb[S,plus],Simb[S,Stea]]; TipDom[S.plus,stea]="Inel";

S["corect",ex]:=AplDom2[ex,S,plus,stea];
S"distrib",expr]:=OForm[Distribute[FForm[expr], Nume[el], Nume[e0]]]]

InelCom[S_plus_,stea_e0_el_]:=Block[{f,Attributes},
fNumeSimb[Nume[stea]];
Attributesff]={Orderless;
Inel[S,plus,stea,e0,e 1]]

Corp[Splus_,stea_e0_el_]-Block[{
prio[NumeSimb[Nume[plus]]=1;
prio[NumeSimb[Nume[stea]]]=2,
Grup[S.plus, e0];
Grup[S,stea,e1];
imbS.plus, stea]=Union[Simb[S,plus],Simb[S,Stea]};
TipDom[S.plus,stea]="Corp";
S"corect",ex]=ApDom2[ex,S,plus,stea];
l distrib", expr|:=OForm[Distribute[FForm[expr), Numefe1), Numele0]]

CorpCom[Splus ,stea c0 ,el_1:-Block[{,Atributes,
FNumeSimb[Nume[stea]];
Attributes[f={Orderless;
Corp[S.plus,stea,e0,el ||

83

A. ANDREICA

3. Conclusions 3.

The subject of the paper belongs to the direction of applying symbolic computatio

principles for abstract domains; it provides an example of constructing a simple domain

hierarchy using a Mathematica package.
By describing the semigroup monoid group abelian group ring - (field

abelian ring - abelian field) hierarchy we experimented a few techniques which mich

be used for a future extension of Mathematica that would allow manipulating tract

tion
in

domains.

REFERENCES

B. Buchberger, G. E. Collins, R. Loos, R. Albrecht (ed.), Computer Algebra and Symbolic Computation
Springer Verlag, 1982

P1 D. Harper, C. Woll, D. Hodgkinson, A Guide to CA Systems, Wiley Ed., 1991

3) A. Miola (ed.), Design and Implementation of Conmputer Algebra Systems, DIScO 93, p. 81-94, 122
133. 177-191.

4] I. Purdea, Gh. Pic, Modern Algebra Treaty, 1st vol., 1977

/5] S. Wolfram, Mathematica, 1992

Emil Racovi��" Thcoretical High School, Cluj-Napoca, Romania.

E-mail address: Ghergari@hera.ubbcluj.ro

84

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

