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APOSSIB1LITY TO DESCRIBE AN ALGEBRAIC HIERARCHY 
ALINA ANDREICA 

Abstract We propose a Simple way of describing in Mathematica the 
semigroup - monoid - group - abclian group - ring -(field, abelian ring - abelian field) 
hierarchy by specifying the properties of each structure and a few operations which 
characterize them. These ideas could be the starting point for constructing a symbolic computation module to manipulate abstract domains. 

1. Introduction 

The symbolic computation systems (SCS) have been successfully used during the last decades in order to obtain quickly the desired results in symbolic computation sequences which involve series, limits, differentiations, integrations, etc. There were 
wo directions that marked SCS evolution: designing complex, general-purpose systems 
or designing specialized systems, meant to deal with calculations characteristic to certain domains, such as: astronomy, quantum mechanics, relativity, etc. [1]. The most popular systems (Reduce, Maple, Mathematica, whose performances are studied in [2], together with Macsyma and Derive) contain complex algorithms for a large variety of calculations but they deal only with common algebraic domains: integer, rational, Ireal and complex domains and do not provide the possibility of working with other types of algebraic domains. Host languages vary from Lisp in Reduce (A. C. Heam, early '80s) to Cin Maple (created at the Waterloo University, Canada in the late '80s, early '90s). Therefore the direction consacrated to the definition of abstract types of domains Which would be particularized by the ones mentioned above) appeared in the theory of mbolic computation as a natural phenomenon. The most well-known SCS based on ese ideas is AXIOM (R. Jenks, R. Sutor, 1992), but it was preceded by Scratchpad, on the Lisp language (R. Jenks, early '80s). Although AXIOM is an outstanding 

bas 

mplishment, some authors criticize it for being too rigid, therefore not very h tor some cases. The proposed alternative would be to create more tlexible 

CO ,Capable of describing abstract domains, which should be attached to the 
nmonly used SCS (3]. As: research direction, we intend to build such an extension 

The study of implementing abstract types of structures is based on the theory of 

for Mathematica. 

domains and catego caegories. We present here the essence of these concepts accordng to |5|. 

parametrized types; the arameters can be values or other domains Domains are 
ney can be create 

They 
Tcated in a SCS by a function/procedure. Categories are abstract 
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A. ANDREICA 

Shared 
parametrized types, the parameters can also be values or domains. They can be sharo 
by many domains and provide a code which is independent of data representation 

For example, if we consider the Set as a category, we can write 

of 
function/procedure to create a set domain M. We must also provide the possibilitu 
introducing some operations on M, the most common ones being the tests for eaualit. 

a 

and non-equality. 

Developing our example, an Euclidean domain E would be a new category, created 
by a function / procedure and for which at least the division remainder and gcd 
operations would be defined. Describing the Euclidean algorithm within this context is 
an example of enriching the abstract structures with specific algorithms. It is generaliv recommendable that the corresponding algorithm of the host SCS would be the one 
inmplicitly used, the newly defined algorithm being only its extension for more abstract 
cases. 

The algebraic semigroup 

ring abelian field) hierarchy, which is the object of this paper, was described using 
only representation algorithms, since the above mentioned domains do not have specific abstract algorithms. The technique of its defining is further described; the purpose of the 
paper is to propose elementary means of building this hierarchy using a Mathematica 

package. 

monoid - group - abelian group - ring - (field, abelian 

2. Implementing the Mathematica package 
The semigroup monoid 

abelian field) hierarchy is well-known [4]. We intend to implement it using a 

Mathematica package which will be able to build one ore more groups, one or more 
rings, etc., with different names. Moreover, on any of these domains we must have the 
possibility to perform elementary operations, such as applying an operator upon two not 
necessarily elementary operands (the result is to be obtained as a concatenation of tne 
operands as strings), testing equality and non-equality of two operands, verifying tha 
the operands of an expression belong to the domain, explicitly applying some properties. 
All operations performed within a domain will regard the properties or 
corresponding operator: associativity, commutativity or distributivity. 

The operator characters which can be used are defined as members of the list 
Operatii = {"|", "N", "4", "*", "S", "", "/", "!", "#". As most of these characters nave 

built-in meanings and properties in Mathematica, which are not convenient to 

group abelian group - ring - (field, abelian ring 

purposes, we adopted a technique inspired from Mathematica's internal representation 
our

order to correctly manipulate abstract expressions. We wrote a procedure whict 
generates an internal type form of the expression, similar to FullForm ro trom 

Mathematica [5] and another procedure which obtains the external string-type tO 
(of 

an internal type form). 
Obviously, the equality "=" and non-equality "<>" tests will be pertorned up 

the internal form because once the operators were associated their properties 
Flat 

Orderless), the built-in Mathematica functions Same and Unsamees] can be applheu 
lo every operator character we associate a name used in the internal type form, 

example " - "Oplus", "*" - "Ostea", etc. This association uses a list of nani 

(corresponding to the list of operators) and two functions which provide the name o f an 

îmes 
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A POSSIBILITY TO DESCRIBE AN ALGEBRAIC HIERARCHY 
operator, respectively the character associated to a name. aDDlication of the properties corresponding to the attributes, the internal form heads will be symbols (results of NumeSinmb function). 

The internal 

To allow automatic 

form, built by FForm function, looks like Operator_name[operands _list), Similar to FullForm firom Mathematica[5]. In our case, the abstract operators from the above-mentioned hierarchy are binary. FForm function follows the basic idea from constructing a binary tree associated to an arithmetic expression; in order to make the transformation more general, valid for expressions containing parenthesis, this case has also been dealed with, as well as the situation when operators have different priorities. 

First, CrSir function, whose input is a string expression, retains its operands and operators into a vector Sir with dim elements, eliminates the parenthesis and introduces the priorities of each element from Sir into a vector Pr. 

CrSirls_String)=Module[{i=1j-0,pr-0,n-0,x,c}, n-StringLength[s]; 
While[i-n,c-StringTake[s, {i,i}] 

Which c=" ",itt, 
C pr+=10;i++, 
c"",pr-=10;i+t, 
ELitera[c], 

x="",While[ELitera[c]&&i<=n,x=xOc;If[i<n,it+; 
c-StringTake[s, {i,i} ],it+]]; 

Sir++j]x;Pr0]-pr+100 
Operator[c],Sir[++j]=Nume[c]:Pr[jl-pr+prio[Nume[c];i++]: 

dim-j] 
Afterwards, CrForm recursive function looks for the smallest priority element 

between two indexes in Sir and introduces it as head of expression with the arguments 
Obtained from the two remaining subintervals. 

CTForm[i_Integerj_Integer):=Module[ {mn,k,ind), 
Which[ 

i>j,Return[ 
[MemberQ[Nm,StringDrop[Sir[i],1]], 

Return[NumeSimb[Sir[i]]],Retum[Sir[i]]. 
ij,For[mn=Pr[i};k=i;ind-i, k<=i, kt+, 

If|Pr[k]smn, mn=Pr[k];ind=k,|k 
Returnf 

Apply[NumeSimb[Sir[ind]], List[CrForm[i,ind-1],CrForm[ ind+ 1j]]]]] 

eTnal form is obtained by combined application of the two above described 

nctions upon the expression string in which the blanks have been removed (ne 
ction that eliminates the blanks distinguishes non-significant blanks from blanks 

Cm 8 multiplication). Previously, attributes specific to Plus and 7imes are 

n order to avoid implicit application of commutativity or associativIty. 

The 

FFormexpr_]=Block[{Atributes},ElimAtrib; 
19 



A. ANDREICA 

Return[CrForm[1,CrSir[ElimBlank[ToString|expr]]]]] 
OForm function brings back an expression given in the internal form,as 

argument, to the external string-type form. The function 1S recursive, based on tha principle that FForm forms are binary and takes into account the case of operators with different priorities. 

an 

th 

OForm[e -Module[{ol,02,x,y} 
If[AtomQ[e]. Return[ToStringle 

ol-Level|e,1 ][[ ]]; 02-Level[e, 1 ][2]]; 
If prio[Head[e]]<-prio[tHead[ol]I || AtomQfol], 

x-OForm[ol], x="("<OForm[ol]""]; 
Ifprio|Head[e]]<-prio|Head[o2]1 || AtomQ[o2], 

y-OFormo2], y="("OForm[o2]""]; 
Return x>ToString{Car[Headfe]]l>ylll 

In order to obtain a correct form for all operators, we also use the auxiliary function Tr which transforms a FullForm argument into the new internal type FForm 
expression. This function is necessary because in Mathematica there are more than one 
built-in operators with the same FullForm head, for example /, !, *, # have the same 
head Times and +, - have the head Plus [5]. This problem is not trivial, since a FullForm 

form can have an arbitrary number of arguments, whereas FForm has only two and 
there are internal forms which use heads specific to other operations. For example, 
FullForm[a-b-c] is Plusfa, Timesf-1,b], Times[-1,c]] but has the FForm form 
Ominusfa, Ominus[b,c]], FullFormfa/b/c is Times[a, Power[b,-1], Timesfc.-1]] but 
FForm is Oslashfa, Oslash[b,c]], FullForm|ab#c/ is Timesfa, b, c, Power[Slot[/. 
but FForm is Odiezla, Odiez[b,c 

The significant part of internal form arguments was retained in the elements of an 
array T, which will be used by Aux function to generate the form Head[T[ 

Head[T[2],.. , Head[T[n-l], Tfn]]...]}, using TrAux auxiliary function. TrAtu 
recursively comutes the two arguments in the form generated by Fold [5] built-in 

function TrAux[Fold[,T[n],Table[T[i), fin-1,1,-1}]1 

Trfe j-Module[ {c,x,y,p-0,n=0,T, i=0,h}, 
IfAtomQ[e),e, 
cToString[Head[e]]; x=e[[1]]: 
h-NumedinFF[¢]; 
n=Length[e]; 
Ifn-2, y-e[[2]],]; 
Which c="Power", 

Return[Apply[Ocaciula,List[Tr|x],Tr[y1]]]. 
c="Times", 

Which 
MatchQly,Power|-1|], 

T[I]=T|xj: 
Do[l[MatchQ[e[[i]].Power[-1]],T[il=Tr[e[]L]I) 

i,2,n} 
Return Aux[Oslash,T,n]], 

80 



A POSSIBILITY TO DESCRIBE AN ALGEBRAIC HIERARCHY 

MatchQelln]].Slot[_I| MatchQ{el[nj|.Power|Slot[_1. ]. T[I] Trlx: 
Dol Tlil-Tr[e[lil, {i,2,n-1}]; 

Return Aux[Odiez,T,n-1 ||, 
MatchQ[y,Factorial 1. 

Do I MatchQ|e|li]].Factorial[ 1],T[i-1J-Tr(ef[i]l[1IL, i,2.n}: 
Tnl-Ttx] 
Return[Aux|Oexclam,T,n]}, MatehQ[y._1. 
T[11=Tr[x]; 
DofT[il-Tr[e[[]], {i,2,n} ]; 
Return[Aux[Ostea,T,n]}, c="Plus" || c="Alternatives", 

Which 
MatchQ[y,Times[-1, 1] && c=="Plus", 

T[1]=Tr[x] 
Do[lf MatchQ[e[[i]],Times[-1]],T[iJ=Tr[e[[lI[2]].]. 

i,2,n} ] 
Return[Aux[Ominus,T,n]], 

MatchQ[y,], 
T-Trx 
Do[T[i]-Tr[ellijl], fi,2,n} ]; 
Return[Aux[NumeSimb[h],T,n]]]]]] 

The procedure which defines a semigroup contains the definition of applying the 
operator upon two not necessarily elementary operands, the equality and non-equality Tests, an operation which allows the explicit applying of associativity upon FForm form 
and "corect" operation, which verifies whether all symbols which appear in the 
argument expression belong to the domain. Moreover, to the corresponding operator we 
asociate the attribute Flat (which specifies associativity). 

n order to perform "corect" operation, we introduced all the symbols that were 
n a domain (DI,) or (D2,+,) into lists of symbols refered by Simb[D1, "*" 
pectively Simb/D2, "+", n*"]. We also retained the names of the defined domains 

T LDlist, as well as neutral elements and corresponding type for each domain. 
The 
cation whether the symbols which belong to an expression were already used 

Omain is done, depending on the number of operations in the domain (l or 2), 
by 

the 

ApDoml[e_ D ,op :=Module[ {f,x,i), 
FFForm[e]:x=Union[Table[Sir[i), {i,dim; ]l: 
unqual[x, Intersection[x,Append[ Simb[D,op],Nume|op|]|| 

pDom2[e_D ,ol ,o2]:=Module[ {f,x,i, 
FFormfe]x=Union[Table[Sir[i], fi,dim} ]}: 
eurn[ Equal[x, Intersection|x,JoinlSimb]D,o1,02) 

Numefo1 ], Nume[o2]} ]I) 
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A. ANDREICA 

We give below the body of the function which defines a semigroup. 

Semigrup[S ,op_]:=Module[{f,ffa,ffb,i,x}, 

1Operator|op]. 
LD-Append[LD,S]; 

TipDom|S,op]"Semigrup" 
Oper[S] op; Simb[S,op]-{}; 
fNumeSimb[Nume[op]]; prio[f]-1; 
IfLength[Attributes[f]-=0, 

-Attributes[fl={Flat, Listable};Print[|], 
Attributes[f]=Union[Attributes[f), {Flat, Listable}]]; 

S[op.a_b_]:=Module[{x,y}, 
ffa-FForm[a]; 
Simb[S,op-Union[Simb[S,op],Table[Sirfi], {i,dim} ]]; 
ffb-FForm[b]; 
Simb[S,op]-Union[Simb[S,op],Table[Sir[i], {i, dim} ]]; 
x=Tr[FullForm[a][1]]1 
yTr[FullForm[b][[1]]; Print["=",Attributes[f]]; 
Iffop"S",OForm[x]<>"$ "OForm[y], 

OForm[Apply[Nume[op],List[x,y]I||: 
S["",a_b_]:-SameQ[FForma],FForm[b]] 
s"a_b_]=UnsameQ[FForm[a),FForm[b]}: 
S["corect",ex_]=ApDoml[ex,S,op]; 
S["asoc",expr ]:=Module[{fx}, 

f-FForm[expr]; x=Head[f]; 
IfDepth[expr]<=2, Return[expr], 

Which[MatchQ[f,x[x[a_b_]e]], 
Returnx[S["asoc",a],x[S["asoc",b],S["asoc",c]]]. 

MatchQ[fx[a_x[b_ ]. 
Return[x{x[S["'asoc",a].S["asoc",b]].S["asoc",¢]1, 

Fail]] 

Thus, in order to def+ne a semigroup X, with the operator "*", we ca 

Semigrup[X,"*"7, while a sequence of operations on X could be, for example: 
m=X["*", a, b] 
n=X["*", b, c} 
X["*", m*c, a *n] will generate True. 
For a group, the basic operations from a semigroup are "inherited" by the exp 

call of the corresponding procedure; this method is applied repeatedly for all 
domains. For monoids and groups, the neutral elenment is stated as an argument 
call of the procedure which creates the domain we need; for a ring or nc 
operators and both neutral elements are specified. 

The supplemental commutativity property (Orderless) is introduced in the o 
the functions which describe domains with this property and the explicit app of a 
dhstributivity appears as an operation in the ring procedure. Within the definition 

plicit 

other 

in the 

both 

ly of 
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eld domain, the monoid operator was chosen to have a bigger priority than the 
group operator. 

Monoid[S.op e_]=Module[ {}, 
Semigrup[S,op]; 

TipDom[S,op]="Monoid";EIN[S]-e;Simb[S,op]-{e}: Slop,e,a,b ]-lla=e, b, It|be, a, S[op,a,b]]]] 

Grup[Sop_,e_]=Monoid|S,op,el;TipDom[S,op="Grup", S"esim",a_b_]-SameQ|FForm[S[op,a,b]].e] && 
SameQ[FForm[S[op,b,a]],.e] 

GrupCom[S_op_e_]=Block[{f,Atributes), 
NumeSimb[Nume[op]]; 
Attributes[f-{Orderless}; 
Grup[S,op,e]:TipDom[S]="Grup comutativ"] 

Inel[Splus_stea_e0_el_]=Block[ 
prio[NumeSimb [Nume[plus]]]=1; 
prio[NumeSimb[Nume[stea]]]-2; 
Grup[S.plus, e0]; 
Monoid[S,stea,el ]; 
Simb[S.plus,stea]=Union[Simb[S,plus],Simb[S,Stea]]; TipDom[S.plus,stea]="Inel"; 

S["corect",ex ]:=AplDom2[ex,S,plus,stea]; 
S"distrib",expr]:=OForm[Distribute[FForm[expr], Nume[el], Nume[e0]]]] 

InelCom[S_plus_,stea_e0_el_]:=Block[{f,Attributes}, 
fNumeSimb[Nume[stea]]; 
Attributesff]={Orderless; 
Inel[S,plus,stea,e0,e 1]] 

Corp[Splus_,stea_e0_el_]-Block[{ 
prio[NumeSimb[Nume[plus]]=1; 
prio[NumeSimb[Nume[stea]]]=2, 
Grup[S.plus, e0]; 
Grup[S,stea,e1]; 
imbS.plus, stea]=Union[Simb[S,plus],Simb[S,Stea]}; 
TipDom[S.plus,stea]="Corp"; 
S"corect",ex ]=ApDom2[ex,S,plus,stea]; 
l distrib", expr|:=OForm[Distribute[FForm[expr), Numefe1), Numele0]] 

CorpCom[Splus ,stea c0 ,el_1:-Block[ {,Atributes, 
FNumeSimb[Nume[stea]]; 
Attributes[f={Orderless; 
Corp[S.plus,stea,e0,el || 
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3. Conclusions 3. 

The subject of the paper belongs to the direction of applying symbolic computatio 

principles for abstract domains; it provides an example of constructing a simple domain 

hierarchy using a Mathematica package. 
By describing the semigroup monoid group abelian group ring - (field 

abelian ring - abelian field) hierarchy we experimented a few techniques which mich 

be used for a future extension of Mathematica that would allow manipulating tract 

tion 
in 

domains.
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