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1. Introduction

2lgebraic domains. Host languages vary from Lisp in Reduce (A. C. Heam, early '80s)
0Cin Maple (created at the Waterloo University, Canada in the late '80s, early '90s).
Therefore the direction consacrated to the definition of abstract types of domains
(which woylq be particularized by the ones mentioned above) appeared in the theory of
Symbolic computation as a natural phenomenon. The most well-known SCS based on
these ideas i AXIOM (R. Jenks, R. Sutor, 1992), but it was preceded by Scratchpad,
Pesed on the Lisp language (R. Jenks, early '80s). Although AXIOM is an outstanding
acCompliShment, some authors criticize it for being too rigid, therefore not very
“Onvenien; for some cases. The proposed alternative would be to create more ﬂemt;le
odules, Capable of describing abstract domains, which shoulq be attachedy tOVUZ
Lr{”"’l\rllnofl]y used SCS [3]. As a research direction, we intend to build such an extensio
r 'athematl'ca. 7 ' heory of
do 'lfhe Study of implementing abstract types of structures .ls basi;i a(z‘[(iotll':fintg to i3]~
s and iegorics. We present here the essence of these wl«]ﬁi or other domains.
Omains gre parametrized types; the parameters can be values ract

[he ) ategories are abs
S an be oy in a SCS by a functiow/procedure. Categoric
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A. ANDREICA

parametrized types, the parameters can also be values or domains. The
by many domains and provide a code which is independent of data repre

For example, if we consider the Sef as a category, we cap Write
function/procedure to create a set domain M. We must also provide the Possibility 0?
introducing some operations on M, the most common ones being the tests for equality
and non-equality.

Developing our example, an Euclidean domain £ would be a new category, create
by a function / procedure and for which at least the division remainder and geq
operations would be defined. Describing the Euclidean algorithm within this context j
an example of enriching the abstract structures with specific algorithms. It is general];
recommendable that the corresponding algorithm of the host SCS would be the one
implicitly used, the newly defined algorithm being only its extension for more abstract
cases.

The algebraic semigroup - monoid - group - abelian group - ring - (field, abelian
ring - abelian field) hierarchy, which is the object of this paper, was described using
only representation algorithms, since the above mentioned domains do not have specific
abstract algorithms. The technique of its defining is further described; the purpose of the

paper 1s to propose elementary means of building this hierarchy using a Mathematica
package.

Y can be shyp, q
sentation,

2. Implementing the Mathematica package

The semigroup - monoid - group - abelian group - ring - (field, abelian ring -
abelian field) hierarchy is well-known [4]. We intend to implement it using 2
Mathematica package which will be able to build one ore more groups, one or more
nngs, etc., with different names. Moreover, on any of these domains we must have the
possibility to perform elementary operations, such as applying an operator upon two 1ot
necessarily elementary operands (the result is to be obtained as a concatenation of the
operands as strings), testing equality and non-equality of two operands, verifying that
the operands of an expression belong to the domain, explicitly applying some propertics.
All operations performed within a domain will regard the properties of the
corresponding operator: associativity, commutativity or distributivity. ,

The operator characters which can be used are defined as members of the list
Operatii — )/"IH, NAH’ N+II’ H*N, II$II’ H_N, II/H' r/'/n’ n#n}. AS most Of these charactel‘s have
built-in meanings and properties in Mathematica, which are not convenient to our
purposes, we adopted a technique inspired from Mathematica's internal representation ‘g
order to correctly manipulate abstract expressions. We wrote a procedure \V"h“
generates an internal type form of the expression, similar to FullForm tl‘t“‘;
Mathematica [5] and another procedure which obtains the external string-type form (©
an internal type form). "

Obviously, the equality "=" and non-equality “<>" tests will be performed ll?ol
the internal form because once the operators were associated their properties (f’[-‘i{'
Orderless), the built-in Mathematica functions SameQ and UnsameQ [5] can be applie r

To every operator character we associate a name used in the internal type form tOS
example "+" - "Oplus", "*" - "Ostea", etc. This association uses a list of name
(corresponding to the list of operators) and two functions which provide the name of an
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operator, respectively the character associated 0 a name. To allow automatic
application of the properties corresponding to the attributes, the interna| form heads wil]
be symbols (results of NumeSimp function), o

The internal form, built by  FForm function looks ik
Operator_name[operands_list] similar to FullForm from Malhematiéa[Sj In ;)ur c e
the abstract operators from the above-mentioned hierarchy are binary FF.orm fun ?’ o
follows the basic idea from constructing a binary tree associated.to an arith]jlei?irc1
expression; in order to make the transformation more general, valid for expressions

containing paren‘thesis, this case has also been dealed with, as well as the situation when
operators have different priorities.

_ n, Whose nput 1s a string expression, retains its operands and
operators 1nto a vector Sir with dim
the priorities of each element from Sjr into a vector Pr.

CrSir[s_String] =Module[{i=1 J =O,pr=0,n=0,x,c} ,
n=StringLength[s];
While [i<=n,c=StringTake[s, {1,i}]
Which[c=="" j++,
c=="(",pr+=10;i++,
c==")"pr-=1 0;i++,
ELitera[c],
x="";While[ELitera[c]&&i<=n,x=x<>c;If[i<n,i++:
c=StringTake[s, {i,i}],i++]];
Sir[++j]=x;Pr[j]=pr+100 |,
Operator(c], Sir[++j]=Nume[c];Pr{j]=pr+prio[Nume[c]];i++] J;
dim=j]

.
>

Afterwards, CrForm recursive function looks for the smallest priority element
between two indexes in Sir and introduces it as head of expression with the arguments
obtained from the two remaining subintervals.

CrForm[i_Integer,j Integer]:=Module[ {mnk,ind},
Which[

1>j,Return([], o

i==J,If[]MemberQ[Nm,StringDrop|[Sir[i], 1 .]],‘
Return[NumeSimb(Sir[i]]],Return[Sir[i]]],

i<j,For[mn=Pr1[i];k=i;ind=i, k<=j, k++,
If[Pr[k]<mn,mn=Pr[k];ind=k,] ;

Appl}I/T;uméimb[Sir[ind]],List[CrF orm(i,ind-1],CrForm([ind+1,j]]1]]]

) scribed
The internal form is obtained by combined application of the tgo 2b?!rfl:\f;§rl(t;hc
“ctions upon the expression string in which the blanks e blekas from blanks
functjon that eliminates the blanks distinguishes non-significant Pla‘ and Times are
Presenting  multiplication). Previously, attributes specific o .fm.iativity.
®movyeq In order to avoid implicit application of commutativity or assoc

FForm[expr | :=Block([ {Attributes},ElimAtrib;
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Return[CrForm[1,CrSir[ElimBlank| ToString[expr]]]]]]

OForm function brings back an expression given in the internal fo
argument, to the external string-type form. The function is recursive, bas
principle that 7 orm forms are binary and takes into account the case of oper
different priorities.

m, ag an
ed on the
atorg with

OForm[e ]:=Module[{ol,02,x,y},

IffAtomQ[e], Return[ ToString|c]],
ol=Level[e,1][[1]]; 02=Level[e,1][[2]];

If]prio[Head[e]]<=prio[Head[o1]] || AtomQ[o1],
x=OForm[o1], x="("<>OForm[o1]<>")"];

Ifprio[Head[e]]<=prio[Head[02]] || AtomQ[o2],
y=OForm[02], y="("<>OForm[02]<>")"];

Return[x<>ToString[Car[Head[e]]]<>y]]]

In order to obtain a correct form for all operators, we also use the auxiliary
function Tr which transforms a FullForm argument into the new internal type FForm
expression. This function is necessary because in Mathematica there are more than one
built-in operators with the same FullForm head, for example /, !, *, # have the same
head Times and +, - have the head Plus [5]. This problem is not trivial, since a FullForm
form can have an arbitrary number of arguments, whereas FForm has only two and
there are internal forms which use heads specific to other operations. For example,
FullForm[a-b-c] is Plus[a, Times/-1,b], Times[-1,c]] but has the FForm form
Ominus[a, Ominus[b,c]], FullForm[a/b/c] is Times/[a, Power[b,-1], Times[c,-1]] but
Frorm is Oslash[a, Oslash[b,c]], FullForm[a#b#c] is Times[a, b, ¢, Power[Slot[1], 2]
but FForm is Odiez[a, Odiez[b,c]].

The significant part of internal form arguments was retained in the elements of an
array 7, which will be used by Aux function to generate the form Head[T[1],
Head[T[2], ... , Head[T[n-1],T[n]]...]], using Trdux auxiliary function. 7TrAux
recursively comutes the two arguments in the form generated by Fold [5] built-in
function TrAux[Fold[f,T[n], Table[T[i],{i,n-1,1,-1}]]]

Trle__]:=Module[ {c,x,y,p=0,n=0,T,i=0,h},
[flAtomQ[e],e,
c=ToString[Head[e]]; x=e[[1]];
h=NumedinFF[c];
n=Length[e];
In>=2, y-e[[2]],};
Which[c=="Power",
Return[Apply[Ocaciula, List[ Tr[x], Tt[y]]]],
c=="Times",

Which|
MatchQ[y,Power[ -1]],
T[1]=Tr[x];
Do[lf]MatchQ[e([[i]],Power[ ,-1]],T[i]=Tx[e[[i])[[1 1]
{1,2,n}];

Return| Aux|Oslash, T,n]],
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MatchQ[e[[n]],Slof| I M;ltch()[cﬂnll,l‘owcr[Slm[ I, 1],
T[] Trx):

Dol T7i] Trlelli), 412,041},
Return| Aux|Odiez, T n-1 I,

Malch()[y,l*uclm'iull ,
l)()[lﬂM)ulcthlcl|i||,l"uc(()riul[ LT i1 'l'r[c[[i”[[l”],l,

n2n;

Tn]=Tr|x];
Return| Aux|( Jexclam, T n| |,

MatchQly, |,
TI1=Trx];
Do[T[i=Trle[[i]]], {i,2,n}];
Retum[Aux[Ostea,T,n]]],
¢=="Plus" || c=="Altematives",

Which|

MatchQ[y,Times[-l,_ﬁ]] && c=="Plus",
T[1]=Tr{x]; |
Do[IﬂMatchQ[e[[i]],TimesL,-1]],T[i]=Tr[e[[i]J[[ZJJJJ,

,2,n}];

Return[Aux[Ominus,T,n]],

MatchQ[y, ],
T[1]=Tx(x];
Do[T[i]=Tr[e[[i]]],{i,2,n}];
Return[Aux[NumeSimb[h],T,n]]]]]]

The procedure which defines a semigroup contains the def@tion of applying the
OPerator upon two not necessarily elementary op;rands, the ;qga}lty and non-equ;hty
sts, an operation which allows the explicit applying of associativity upon FForrf? otrﬁlel
and "corect” operation, which verifies whether all symbols Wthh. appear ﬁ)lr e
4rgument expression belong to the domain. Morep\t/ier?ttc)) the corresponding opera
associate t ' Flat (which specifies associativity).

In or}c;zraigll;;iorm 'gcorectu I())peration, we introduced all the nggoifb}}gjt :\;ff;e
Used in a domain (D1,*) or (D2,+%*) into list§ of symbols refefreﬁ geﬁl;’led d01’1 e
fespectively Simb[D2, "+" "*"]. We also retained the names o t ef S dotmain
0 te LD Jist, as well as neutral elements and conespondmg type 'Or'e already used
The verification whether the symbols which belong to an expression wer

: - 2)
> 1 { jomain (1 or 2),
'm thC domain iS dOHC depending on the number of Opcratlons in the d (
r)y: ’

ApDom][e»__,D” ,OpHJ;ZMOdulC[{f,xyli},f' lim) ]
f=FForm{e|;x=Union Table[Sir[i], {i,dim} |]; » Il
Retum[Iilunal[x,In[crs[cclion[x,Appgnd[Slmb[l),op |,Nume[op]]]]
ApDom2je 1y o) ,02]:=Module[{£,x,1} Jim) 11
f=Fl*'0rm[e]';x—-Union['l‘ubIC[Si"l‘.J’“",‘ Sl 2
Return[Equal[x,]ntCrSCCm’“[X"'O”]l‘Slmb[D’Ol’0 J,
{Nume[o1],Nume[02]}]]1]]
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We give below the body of the function which defines a semigroup.

Semigrup[S_,op_]:=Module| {f,ffa,ffb,ix},
If[Operator|op],
L.D=Append[LD,S];
TipDom(S,op]="Semigrup";
Oper[S]-op; Simb[S,0p]={};
f£-NumeSimb[Nume[op]]; prio[f]=1;
If] Length[ Attributes[ f]]==0,
r=Attributes| f]={Flat, Listable} :Print[1],
r=Attributes[f]=Union[ Attributes|f], {Flat, Listable}]];
S[op,a_,b__]:=Module[{x,y},
ffa=FForm[a];
Simb[S,op]=Union[Simb[S,op], Table[Sir(i], {i,dim}]];
ffb=FForm[b];
Simb[S,op]=Union[Simb[S,op],Table[Sir[i], {i,dim} J];
x=Tr[FullForm[a][[1]]];
y=Tr[FullForm[b][[1]]]; Print["=",Attributes[f]];
Iffop=="$",0Form[x]<>" $ "<>OForm[y],

OForm{ Apply[Nume[op],List[x,y]]]]];
S["=",a_,b_ ]:=SameQ[FForm[a],FForm[b]];
S["<>",a__,b_]:==UnsameQ[FForm[a],FForm[b]];
S["corect",ex _]:=ApDoml[ex,S,op];

S["asoc",expr _]:==Module[{f,x},
f=FForm[expr]; x=Head[{];
If[Depth[expr]<=2, Return[expr],
Which[MatchQ[f,x[x[a_,b ],c 1],
Return[x[S["asoc",a],x[S["asoc",b],S["asoc",c]]]],
MatchQ[fx[a_ ,x[b__,c_1]],
Return[xl[x[S["asoc",a],S["asoc",b]],S["asoc",c]]]]]],
Fail]]

Thus, in order to define a semigroup X, with the operator "*", We call
Semigrup[X,"*"], while a sequence of operations on X could be, for example:

m=X["*", a, b]

n=X["*"'b, c]

X["*", m*c, a*n] will generate True. .

For a group, the basic operations from a semigroup are "inherited" by the explic!
call qf the corresponding procedure; this method is applied repeatedly for a”,otha
domains. For monoids and groups, the neutral element is stated as an argument 1
call of the procedure which creates the domain we need: for a ring or field, bO*
()pera}()rs and both neutral elements are specified. f

‘ Ir hc. supplemental commutativity property (Orderless) is introduced in the quy ’
thc f.uncl’lolns which describe domains with this property and the explicit applicati®® y
distributivity appears as an operation in the ring procedure. Within the definitio” °

82



A POSSIBILITY TO DESCRIBE AN ALGEBRAIC HIERARCHY

. or field domain, the monoid operator was chosen to have a bigger priority than the
ring

group operator.

Monoid[S_.op e J:=Module| {},
Semigrup[S,op];
TipDom|[S,0p]="Monoid";EIN[S ]~c;Simb[S,op]'~f {e};
Slop,e.a_.b ]=Ifla==¢, b, [flb==¢, 4, S[op,a,b]|]|

Gmp[s__,op_,e_]:f'Monoid[S,op,e];'l‘ipl)omI'S,opjz"Grup";
S['esim";a_ b '—SachlFForm[S[op,a,b]|,c| &&
SameQ[FForm[S[op,b,a]],e]

GrupCom(S_,0p_,e_]:=Block]{ f.Attributes},
f=NumeSimb[Nume[op]];
Attributes[f]={Orderless} ;
Grup[S,op,e];TipDom[S]="Grup comutativ"]

Inel[S_,plus_,stea_,e0 el ]:=B lock[{},
prio[NumeSimb [Nume[plus]]]=1;
prio[NumeSimb[Nume[stea]]]=2;
Grup([S,plus,e0];
Monoid[S,stea,el];
Simb[S,plus,stea]=Union[Simb[S,plus],Simb[S,Stea]];
TipDom([S,plus,stea]="Inel";
S["corect",ex_]:=ApDom2[ex,S,plus,stea];
S["distrib",expr]:=OForm[Distn'bute[FForm[expr], Nume[e1], Nume[e0]]]]

InelCom[S ,plus stea_,e0_,e1_]:=Block[ {f,Attributes 1,
f=NumeSimb[Nume[stea]];
Attributes[f]={Orderless};

Inel[S,plus,stea,e0,e1]]

Corp[S_plus_,stea ,e0 e 1_]:=Block[{},
prio[NumeSimb[Nume[plus]]]=1;
prio[NumeSimb[Nume[stea]]]=2;
Grup(S,plus,e0];
Grup[S,stea,el];
Simb(S, plus,stea]=Union[ Simb(S,plus],Simb[S,Stea]];
g[iPDOm[S,p]us,stea]="Corp"; |
"corect" ex 1:=A Dom2[ex,S,plus,stea]; ‘
S["distrib",exgr__%:=Olgorm[Distribute[FForm[expr], Nume[e1], Nume([e0]]]]

Corpcom[s_,plusdstea_,eO_,e 1_]:=Block[ {f,Attributes},
f‘:NumeSimb[Nume[stea]] ;
Attributes[f]= {Orderless};
COIp[S,plus,stea,eO,e 1]
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3. Conclusions

The subject of the paper belongs to the direction of'upplying symbolic computatig,
principles for abstract domains; it provides an example of constructing a simple domajy
hierarchy using a Mathematica package.

By' describing the semigroup - monoid - group - abelian group - ring - (

field

: 0 y . e £ . . , )

abelian ning - abelian field) hierarchy we experimented a few techniques which Might

be used for a future extension of Mathematica that would allow manipulating abstrat
domains.

REFERENCES

(1] B.Buchberger, G. E. Collins, R. Loos, R. Albrecht (ed.), Computer Algebra and Symbolic Computation,
Springer Verlag, 1982
(2] D. Harper, C. Wolf, D. Hodgkinson, 4 Guide to CA Systems, Wiley Ed., 1991

(3] A. Miola (ed.), Design and Implementation of Computer Algebra Systems, DISCO '93, p. 81-94, 12-
133, 177-191.

1. Purdea, Gh. Pic, Modern Algebra Treaty, 1st vol., 1977

[5]  S. Wolfram, Mathematica, 1992

“Emil Racovita” Theoretical High School, Cluj-Napoca, Romania.
E-mail address: Ghergari@hera.ubbcluj.ro

84




{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

