STUDIA UNIV. BABES-BOLYAI, INFORMATICA, VOLUME I1, NUMBER 1, 1997

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIC
PROGRAMMING

DOINA TATAR SORANA CAMPAN

Abstract. The purpose of this paper is to illustrate how constraint logic programming
(CLP) can be used to reduce the incomplete information in a database for which some
fixed types of restrictons are given. An operational semantics of this process is
defined in terms of the semantics of logic programming.

1. Introduction

In [S] the author believes that “CLP is one of the most promising and stimulating
areas in computer scence”. The confluence between CLP and databases 1s part of a
general trend by which different fields are explored in order to profit from their common
properties. The integration of logic programming and databases extends the frontiers of
the management for complex data instead of simple data. In [4] is described how is
possible to build systems of coupling logic programming to databases, providing
efficient data access. These systems (as for example QUINTUS-PROLOG)
contain an interface that is capable of recognizing the database predicates and treating
them in a special way. Our paper presents by small examples some posibilities of
treatement of incomplete databases by logic programming when the constraints are
added. Our tool is the language Turbo Prolog. The presence of the relational operators
{<,<=>=>,= <>} make from the language Turbo Prolog a language “like” constraint

logic language.

2. Incomplete databases

For a given database we assume that we have more informers (persons, statis.tic
papers, etc.). As the information comes from different sources, there are some major
problems that can appear: inconsistency and incompleteness. We will approach the
second problem, considering that the first one has been solved. .

Having multiple informers means every given information is correct, although 'f
might be incomplete. One approach for reducing incompleteness is to use constraints
referring to the databases. o ,

For the databases we choose the relational model for representing the 1|1t<)1‘111at1?f1.
So there is a given number of attributes, and a given number of tuples. {\ Spt“bldl
attribute will be the time index. In this way, what the databases represents in mg't‘lbvtni
image of a smaller databases, placed in different time moments. For the “sma

Recejved by the editors: May 7, 1997.
1991 Mathematics Subject Classification.6G8N17, 68P15. 1. Mathematical
1991 CR Categories and Descriptors. ¥.4.1 [Mathematical Logic and Formal Languages|: Mathcma

Logic - logic programming.

D. TATAR AND S. CAMPAN

databases we keep more states of the databases. In this way we have the evplution of
data. This way of representation with constraints that are giving the gvolutlon of the
database (for example the monotonity of an attribute) aliows modelling the genery

behaviour of the databasc.

Time Attribute A /1tlr/'/mtc_r/rlgw e ___/!{t[,l'_/‘w_tg_/!ﬂ_,ﬁ
) dp) dyp
) Ay dy9 AP drn
1y a d L dip
t) Qi) iy ce Qi+
[L diy) Ay o0 o anm

Table 1. Model for relational databases with the time attribute

In the previous representation, the following notations were used:

e 4 (with k = 0...p) - the time index for a tuple. All the tuples having the same time
index consist the image of the database in one moment.

o a,(withi=1I..m,j= I..n)-the j-th attribute of the i-th tuple.

All these notations will be used later.

The number of tuples in time moment ¢ can be different from the number of tuples
In time momnet ¢, (i# j) as the database is dynamic.

In a database, the data can be classified in three types, with the mention that by
data we understand a given attribute of a given tuple, there are unknown data - there is
an infinite set of possible values for the data; incomplete data - there is some
information about the data that restricts the infinit set of possible values (to a set with
the cardinality greater than one); known data - there 1s an exact value for the data.

Some relations between different type of data can be shown. These will be
discussed in the section dedicated to constraints.

For representing the content of a database, the following notations will be used for
different type of data: ?n -- for an unknown data, where # is an integer or a letter; 7y~
Ny, -, NNk - for incomplete data, where n,, are integers. For example [3-7,10-12] IS
the representation for {3,4,5,6,7,10,11,12}; p - for a known data, where p 1s an integer.

3. Constraints

A constraint is a sentence that shows a behaviour of the database. There are many

types of constraints, which we divide into two classes : the BASE constraints and ¢
GENERAL constraints.

3.1. Base Constraints

Definition 3.1. [3, 7] A base
attributes of given tuples. It can h

a) ref; num relop

b) ref; [num,, num; relop

¢) refyrefs relop

Oyt ol _ : jven
constraint gives the behaviour of precisely &'
ave one of the following forms:

64

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIC PROGRAMMING

Here ref; and ref; are simple algebric expressions with a single reference to an
attribute (so there are two references or less in a constraint); relop is a relational
operator; num, and num; are numbers and [num,, num;| stands for an interval of
integers.

Let us consider the database from the Table 2, and the following constraints B,
(given in postfixed form):

as 3 =
ap [5.10] =
3303 >
as [20.70] #
A;>2Azz =

A s> —

where we used the notations from Table 2.

Time A, A, A; Ay Time A, A, A; Ay
0 5 1 4 13 0 5 [7-10] 4 13
0 72 4 9 8 0 3 4 9 8
0 6 45 71 6 0 6 45 [7-10] 6
1 7 2 23 23 1 7 2 23 [0-19,71-100]
] 3 2 5 5 1 3 3 5 9
(a) (b)

Table 2. (a) Database B;; (b) Reduced form of database B,

The last two constraints have special meaning. Although they are unknown (so we
know nothing about them), beetwen two unknown data ,some relations can be described
\equality, unequalities). The last two restrictions presented above are describing such
relations.

Although good for representing base constraints, the notation used above is not
useful when trying to present the general constraints. This fact force us to introduce
enother notation for referring to the attribute of a tuple - 00.aa (instead of a;). Here 00 is
the index tuple (equal with i-7) and aa is the attribute index (equal with j-7). The tuple
index (00) is considered related to the entire database (the time moment does not
Matter),

_ Before a base constraint the letter 'b' appears. Using this form for referring to an
“ltribute, the above constraints will have the following form:

b $01.003 =

b 800.01 15,10 =

b $02.02 302.03 >
b 803.03 120,70) 4
b $00.0/ $02.02 =
b$01.00 $04.0; -

After
o applying the constraints to the database, that will change as shown in Table 2.

65

D. TATAR AND S. CAMPAN

3.2. General Constraints

The name of this type of
with a single constraint we give
the database). ‘

With the help ot gener S
which we force the database l:) fit. e on in -

\ 0 cortain time moments, o1 18 € ime. | . o
dambq‘slzcll:;ft‘:'lc‘:::e‘1:)“;\11 attribute for these types of constraints 1s a bit different from

that in the case of base constraints. It is like $1t.00.ad - wher‘e tt }thhz-tflfme 1nd§x, "
and aa having the same meaning as in the case of basc constraints. 'fe d1 erdence s th;
the tuple index (00) 18 considered related to the time moment specified, and not to
entire database. s

The general form of this type of constraint 1s [7, 3]

LogExp (AlgExp,(rcff”,...,ref,,”),..., AlgE)Cpn(refm,m,re n,in))

constraints 18 general, because unlike base constrajp
the behaviour of more tuples (eventualy all the tuples i,

Al constraints we define a frame for the databaS§, frame
These restrictions can give the behaviour of the

where LogExp is a logical expresion, AIgExp; are algebrical expresions, ref; ar
references to attributes.

The general constraints can be local, global, key, temporal or set constraints. From
one type of constraint to another some more restrictions are added to the general form,
or this form is changed a bit.

Local Constraints. A local constraint gives separate behaviour of the databas:
inside specified time moments. To be clear we give the following two constraints, In
which the first is considered to be base constraint (see b’ before the constraint) and th
second is a local constraint (letter '1' before it):

b $00.02 5 < (constraint B))

[$00.00.02 5 < (constraint L;)

| The first restriction says that the attribute @,; has a value less then 5. In this way !
1s decribed the behaviour of a certain attribute from a certain tuple (“the third attribue
of the first tuple should be less then 57).

The second constraint means that starting from time moment 0 (the first mommer!

the third attribute of each tuple (inside a time moment) should have a value less thet

This way a general behavi . . _
I g viour of the database is described, starting from a cer®”

By modifying the time ind : it
should be satisfyed is changed. eX, the moment starting from which the constrat

| , the constraint:
$00.00.00 $01.00.01 < (constraint L))
bk

says that starting f;
g from the sec - .
should be greate cond time momen e
er the . (01) the v ond att™
hat the the t‘x)fst att?itl:teot; nthfh:e;reVious e

moment, values existed for

66

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT [OGIC PROGRAMMING

For a better understanding we consider the database L, from Table 3 (a). By
applying the constraint L, and consider as existing (and applied) constraints that give
the equality between different unknown data, the reduced form of database £, is

presented in Table 3 (b).

CTime Ay Ay Ay ime Ay A A
0 L5 3 0 (0-5] 5 3
0 4 7 M 0 4 7 [0-5]
0 272 0 [0-5] 7 2
l o6 3 [[0-5] 6 3
I 28 0» 1 2 8 23

(a) (b)

Table 3. (a) Database L;; (b) Reduced form of database L;

If there are two references with the same index both for time and ojbect, then the
relation that the constraint describes, is beetwen the specified attributes of the same
ple.
It the object index is different (but the time index is still the same), then the
constraint refers to all possible combination of different tuples inside a time moment.

The functional dependencies are also part of local constraits. They are working

mnside time moments.
As known, with a functional dependency we can find out the value of an attribute

according to the value of other attributes. There can be 4, = f{A4;A3), where A;, A,, and

A; are attributes.
If we know the form of function f then we can construct the constraint. For

instance, if f{(x,y)=x+y, the constraint will be like
[$00.00.01 300.00.00 $00.00.03 + = (constraint L;) ex P6

If the form of the function is not known then we can still model the functional
dependency in the following form

[$00.00.00 $00.01.00 = $00.00.02 $00.01.02 =
& $00.00.00 $00.01.00 = _(constraint L)

where _ stands for implication.
The constraint says if the first and the third attributes of two tuples are equal, then

the second attributes will also be equal.
After applying constraint L, to the input from Table 4 (a) we obtain the reduced

form shown in Table 4 (b).

Time A, A, Ay Ay Time A, A, A, Ay
0 27 3 6 0 2 7 3 6
0 2 7 3 9 0 2 7 3 9
l 6 N7 2 8 l 6 1 2 8
| 2 16 3 4 1 23 6 3 4
4 6 10 2 2 | 0 2 2
(a) (b)

Table 4. (a) Database L; (b) Reduced form of database L

67

D. TATAR AND S. CAMPAN

Global Constraints. A global constraint describes the global behaviour of the
database no matter the time moment. The database is considered entirely (all time
moments together).

The time index has no semmification here. The most important help of globg)
constraints is the possibility to implement functional dependencies that are valid pq
matter of the time moment.

et us consider a global constraint that has the same form as L,. Notice that iy
front of the constraint the letter "g" appears.

¢ $00.00.00 $00.01.00 = $00.00.02 $00.01.02 =
& $00.00.00 $00.01.00 = (constraint (i)

Consider also the databases from Table 5. After applying the constraint (7, we
obtain a reduced form of the database:

Here the functional dependency was applied between tuples placed in different
time moments (the first and the forth tuple).

Time A, A, A; A, Time A, A, A Ag

0 2 71 3 6 0 2 7 3 6

0 2 7 3 9 0 2 7 3 9

1 6 72 2 8 1 6 10 2 8

1 2 73 3 4 1 2 7 3 4

1 6 10 2 2 1 6 10 2 2
(a) (b)

Table 5. (a) Database G;; (b) Reduced form of database G,

One can look other constraints presented in the local constraints paragraph as
global constraints. The way they will work is similar to the way they work as local

constraint, it's like we had the big database in one time moment instead of consisting of
several smaller databases.

Key Constraints. A key constraint gives the combination of attributes that are the
key for the tuples. In the most simple (and frequent) case the key is formed by only one
attribute. Still, the general form is the one presented previously (see General
Constraints) on which some restrictions are added. The new form is

LogExp (refy; refi =, ..., refirefio =, ..., refy; refy =)

where

e LogExp accepts as operators and (&) and or (||);

e refy; and ref;; (for i=1, ..., n) refer the same attribute of different objects;
s ref); ... ref, have the same object index;

e ref); ... ref,; have the same object index, different from the previous one.
The following constraint is a key constraint (letter 'k appears in front of it):
k $00.00.01 $00.01.01 = (constraint K)

It says that the second attribute is the key attribute.
The key constraint is actually a strong form of local functional dependencies. They
say that if beetwen two tuples the combination of key attributes is identical, then all the

68

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIC PROGRAMMING

attributes should be equal. Which concludes the fact that these constramts give the
identification of tuples. Two tuples that have the same key are equal (in fact is the same
tuple). According to the standard terminology of key in databases. _

The constraint K; 1s saying that the second attribute is the key attribute. That
means that if inside a time moment there are two tuples with the same value for the
second attribute, then all the other attributes have to have the same values (an
intersection will be made between the existing values).

The fact that the key constraints act locally (inside a time moment) is very
naturally. The key attributes identify the tuple. But in time, some attributes of a tuple
change their values. For example, if we had a database that keeps the personnel of an
interprise, then the attribute "age" will change its value from one time moment to
another. That means that in different time moment it is natural to have different values
for that attribute, although we are talking about the same person.

So a key constraint has two effects. One is that it sets the key, and the second is
that it makes the reduction. The setting of the key is important, as other types of
constraints (temporal and set constraints) use the identification of tuples made by key
constraints.

Temporal Constraints. A temporal constraint gives the evolution of particular
tuples, and the way the database evoluates in time.

For instance the monotony of an attribute can be modelled with such kind of
constraints. The temporal constraints use the identifications of tuples made by key
constraints.

The temporal constraint (notice letter 't' before it):

¢ $00.00.01 $01.00.01 < (constraint T7)

says that the second attribute increases its value in time. This means that for tuples
(placed in consecutive time moments) that have the same 1dentification, the value of the
second attribute has to be increased.

Time Al Az A3 Time Al Az A3

0 2 71 67 0 2 [0-3] 67

0 4 2 78 0 4 [0-5] 78

1 4 6 45 1 4 6 45

1 2 4 56 1 2 4 56
(a) (b)

Table 6. (a) Database 77; (b) Reduced form of database 7}

After applying the constraint T, (Table 6 (a)) (and considering that a key constraint
that sets the first attribute as the key attribute has already been applied) the reduced
form presented in Table 6 (b) will be obtained.

Set Constraints. A set constraint has two parts: a normal (local) constraint, and a
SC_‘ of numbers that give possible cardinalities of tuples that within one time moment
Will satisfy the first part of the constraint.
. So the general form of the constraint is modified as the following (letter 's' appears
In the beginning of set constraints):

69

D. TATAR AND S. CAMPAN
s LogExp (AIgExp (refy, ..., refy)..., Algkxp,(ref, ... ref,) (n,...n) =

where (ny,....,ny) is the set of possible cardinalities, n; (with j = 1, ..., k) are integers anq
all the references have the same time index and object index. The object index has tq be
the same, otherwise the set constraints ace loosing their sense, because differen;
references would cause choosing different tuples and as in all possible combinatiops
they would appear, proper counting would not be possible. The time index has to he the
same (as we refer in this first part of the constraint to the same tuple), and the Constraint
will be considered starting from the moment specified by this index.

What such a constraint says is that there are #; or n, or ... or ny tuples that within
one time moment satisfy the first part of the constraint.

The following set constraint:

s $00.00.00 2 = (0,3) (constraints S;)

says that there are 3 or there are no tuples that within one time moment have the first
attribute with a value of 2.

After applying the constraint S; - Table 7 (a) as there are already two tuples that
have the value of 2 for the first attribute (in time moment 0), this value will be excluded
from the domain of possible values for the first attribute of the fourth tuple. Inside the
second time moment the unknown data ?1 and ?2 will be set to the value of 2 as there
have to be 3 or zero tuples with the value of 2 for the first attribute, and there already

exists one with such value (so the cardinality zero is excluded). The reduced form of the
database is presented in Table 7 (b).

Time A, A, A, Time A, A, A,
0 31 10 8 0 31 10 8
0 2 4 56 0 2 4 56
0 33 40 10 0 33 40 10
0 [0-10] 16 8 0 [0-2,4-10] 16 8
0 2 7 9 0 2 7 9
0 2 77 9 0 2 77 9
1 2 7 9 1 2 7 9
1 71 64 39] 2 64 39
1 72 90 60 1 2 90 60
(a) (b)

Table 7. (a) Database S;; (b) Reduced form of database S,

4. Using constraint logic programming

CLP has a long tradition in computer science. It attempts to preserve t_he
advantages of logic programming while removing their limitation, bz using constraint
solving beside unification as an operational scheme.

The language considered here is essentially that of first-order predicate. Let:

e Pbe a set of predicate symbols. When these symbols correspond to a database we
will call them database predicates;

e (Cbe a set of constant symbols;

e Vbe a set of variable symbols.

70

INCOMPLETE RELATIONAL. DATABASES g (ONSTRAINT [)31 PROGRAMMING
’ J M
An atom over CU V'is of the form

Py, ... Up), n > (),

where p € P with arity 7, and eacly U is an element of Cuy o lists from thege

elements. Let us ‘l't‘ﬁlna]'.k that we work With a simplified version of Prolog Caracterised
by the absence of function symbg|s (as in Datalog), ? :

If the arguments u; are noy interost:
an atom simply by p.

4.1. Base constraints

Let us remark that the only reason for considering the datapage predicates with
only one argument, (of type list), and not with the number of arguments equal with the

length of the tuples [4] is that of an easjer querying of the programs.

Definition 4.1. The constraints corresponding to base constraints in section [are of
the forms:

2) X <relop> numl,
o) X>=nmumi, X <=num2,
¢ X <relop> Y.

Where X and ¥ are variables, elements of the lists, and relop and num] , num?2 are as in
Section |

Definit; on 4.2. A constraint logic program P of the first type is a sequence of Hom
claygeg of the form :

P <q, .., dn
' ' -order logic
Wherep is an atomic formula and 41 .., q, are either atomic formulas in first-order log

" ; is "if"" or reverse
{o ; Onstrains, the comma is the logic operation "and", and thebsujn « 18" o
" e logicy] implication. A clause (a fact) can have an empty body.

- ° s its head and its
b e teer ' the left (p) and right-hand side (g, -, 4) OT y Cfla}lllsirzrllplication qr A
"y Clause j logically interpreted as the universal closure of the
"op. ly, form
. . ty body,
Ing The Predicates that are in a head of a clause with a f{"l"‘z{';ltzgasc (EDB).A
Dr°"§l Mal databyge (IDB) and the others form the extensnona. \ predicate which
c()ﬁdlcate db that corresponds to an incomplete database DB or ¢
Ite)
und to {non-base} constraint is allways in IDB. .., r,and

~ ic formulas, 7,
| “linit; 7y ists of a conjunction of atomi
! 'on 4, ¢ s1sts of a con
Sdenoted b M4.3. A goal G consists Y

«ry,..,n
71

D. TATAR AND S. CAMPAN

Let us consider the CLP program for the database B/, from section [, The
database predicat name (here b/7) corresponds to the batabase name, as in 3| the

following examples:

domains
lista=integer™*

predicates
bl(lista)
cl(integer)
c2(integer)
c3(integer)
member(integer,lista)
append(lista,lista,lista)
e(integer)
lista_int(lista,integer)

clauses
bI([0,5.X,4,13]):-c 1(X).
b1([0.X,4,9,8]):-c2(X).
b1([0,6.45,X,6]):-c1(X).
b1((1,7,2,23,X]):-¢3(X).
bI([1,3,X,5,9]):-c2(X).
c1(X):-e(X),X>=0,X<=10,X>6.
c2(X):-e(X),X=3.
c3(X):-e(X),X<20,X>=0.
c3(X):-e(X),X>70,X<=100.
e(X):-lista_int(Y,100),member(X,Y).
lista_int([0],0):-!.
lista_int(Y,N):-M=N-1 lista_int(Z,M), append(Z,[N],Y).
member(X,[X]_]).
member(X,[_|T]):-member(X,T).
append([],X,X).
append([H|T],Y,[H|U]):-append(T,Y,U).

/* for the goal <----b1(X) we obtain all the 60 tuples in the reduced database B1 */

The base constraints of type a) and b) as in section 1 are done by the constraints of
type a) and b) as above definition, and the constraints of type c) in section 1 are done by
imposing the same body for the clauses. Here the atomic formula c/(X) in the first and
the third clause corresponds to the {\bf base } constraint ;> a;; = in the section 12
Analogously for the atomic formula ¢2(X) and the base constraint a,; as,=. The atomic
formula e(X) corresponds to the implicit constraint that all the integers are less than 100,
Let us remark that in [6], the author considers an similar way of enumerating integers.

4.2. General constraints

As is presented in section 1, a general constraint describes a constraint about the
behaviour of the whole database. As the arguments of a database are lists, some geners
constraints can be still expressed by the CLP programs with a single argument of.‘ﬂ
database predicate representing a tuple of the database. The reson is that the type /&
takes over some informations like these about time in local constraints. Let us consider
the database L,, section 1.2. The corresponding CLP program is the following:
domains
lista=integer*
predicates
11(lista)
cl(integer)

72

INCOMPLETE RELATIONAL DATAB/\SES AS CONSTRAINT LoGic PROGRAMMING

c2(integer)
member(integer,lista)
append(lista,lista,lista)
c(integer)
lista_int(lista,integer)
clauses
11([0,X,5,3]):-c1(X).
11([0,4,7,X]):-¢2(X).
11([0,X,7,2]):-c2(X)
([1,X,6,3]):-¢1(X).
11([1,2,8,23)).
c1(X):-e(X),X>=0,X<6.
c2(X):-e(X),X>=0,X<6.
e(X):-lista_int(Y,1 00),member(X, Y).
lista_int([0],0):-!.
lista_int(Y,N):-M=N-| lista_int(Z,M), append(Z,[N],Y).
member(X,[X]]).
member(X,[_|T]):-member(X,T).
append([],X,X).
append([H]T],Y,[H|U]):-append(T,Y,U).
/* the clauses for c1(X) and c2(X) are the same because the minimal second attribut in the
second time moment is 6 */
/* for the goal 11(X) are obtaining the 25 tuples of the database L] */

The method that will leave to express better general constraints is to consider the
set of tuples as an entity, which can be entierely manipulate. Accordingly, a new
predicat is needed, which forms a database from the tuples (the predicate formlist). The
tuples are linked by this predicate and the general restrictions, about the whole database,

can be expressed. '
Let us consider the CLP program for the database L,. The database predicat name

is I,. The constraint L, means that, for each two lists, if the second and the fourth

clements are equal, than the third elements are also equal.

domains
lista=integer*
llista=lista*
predicates _
formlist(lista,lista,lista,lista,lista,llista)
12(1lista)
member(integer,lista,integer)
member(lista,llista,integer)
clauses
12([L1,L2,L.3,14,L5]):-L1=[0,2,X1,3,6], L2=[0,2,7,3,9],
L3=[1,6,X2,2,8], L4=[1,X3,16,3,4], W150)
L5=[1,6,10,2,2], formlist(L1,L2,L3,L4,L5,L),
member(U,L,P1), member(V,L,P2),
P1<>P2, member(Z,U,2), member(Z,V,2),
member(W,U,4), member(W,V,4),
member(X,U,3), member(X,V,3).
member(H,[H|],1).
membcrEE,[l__l'lf] ,N):-mf:mbcr(E,'l‘,M),N-“-1'\5'1+ I
formlist(L1,1.2,1.3,14,1.5,(L1,L2,L3,L4,L5])- . Remersber hat the

. - followin)
Finally, the program for the database T is 25 t-hz time moments, which have the
~Poral constrain T) says that for tuples in co'nsecu.t‘l ‘;o be increased.
“ame identiﬁcation, the value of the second attribute 13
domaing -

D. TATAR AND S. CAMPAN

lista=integer*
llista=lista*
predicates

formlist(lista,lista,lista,lista,llista)

t1(llista)

member(integer,lista,integer)

member(lista.llista,integer)

clauses

/* tl succeds with the goal:
t1([[0,2,2,67],]0,4,4,78],[1,4,6,45],
[1,2,4,56]]) and fails with the goal:
t1([[0,2,8,67],[0,4,4,78],(1,4,0,45],
[1,2,4,50]) ¥/

tI([L1,L2,L3,L4]):-L1=[0,2,X1,67], L2=[0,4,X2,78], L3=[1,4,6,45],
L4=[1,2,4,56], formlist(L1,L.2,L3,L4,L),
member(U,L,P1), member(V,L,P2), P1<P2,
member(Al,U,2), member(Al,V,2),
member(0,U,1), member(1,V,1),
member(X1,U,3), member(A2V,V,3),
X1<=A2V,X2<=A2V.

member(H,[H|_],1).

member(E,[_|T],N):-member(E,T,M),N=M+1.

formlist(L1,L.2,1.3,14,[L1,1.2,L3,L4)).

5. Computation in CLP

A computation in a constraint logic program can be described as a goal-directed
derivation procedure from the initial goal using the program clauses. A computation
state [11] is defined as a pair s=(g, o) where g is the multiset of atoms and constraints to
be solved, and o is the set of constraints accumulated so far. (The empty set of
constrains is D)

A transition from a computation state s = (g, o) to another, s’ = (g’, ¢’), is defined
as the following rewriting relation “=":

Definition 5.1.

)

§=>s
iff
o there exists an atom a € g, selected by a computation rule and a clause, renamed t0
new variables:

h .'-hl, cey h,,,
such that ¢ and 4 have the same predicat symbol. Then,

g =(@\{a}) Uth, .., h,) and o’ =0 U {a=h}

Here the expression ¢ = A is an abreviation for the conjuction of equations between
corresponding arguments of a and 4, and s’ = (g', &). .
e there exists a constraint ¢ in the goal part that can be satisfied with the constraint
store. In this case, s’ is obtained from s by removing this constraint from the goal
part, and by adding this to the constraint store o .Thus, s' = (g', o), where:

74

INCOMPLETE RELATIONAL DATABASES AS ("ONe
ASES A¢ NSTRAINT LOGIC PR
i ROGRAMMING
u' y \ ,l). |
g-g\{c), o o U)
Let us observe that the constraint store o jg always consistent

A computation 1s a scquence: 5, —» S2 = 8, 16 =% denotes ¢ q

S o af the relation = s the reflexive and

Ltive closure of the relation =, then (he - s
transitive , 1€ above computation ca

n be denotec ;

ks, ted as s,

Remark 5.2. The SLD refutation in logic programming requires that the atorm |
no il fo FERIHan tn o ot : ! atom in ¢
goal $ g_i $. which is rewritten in a step by the computation rule, must be the]eftmo;
atonl.

Definition 5.3. A computation state s,, = (& o) of a finit computation
S = Sr... > S

is terminal if one of this conditions is fulfiled:
a) the goal part g is empty (and is denoted by ¢), or else,
b) no computation state s’ exists such that s, = s,

Definition 5.4. A finit computation is successful if the terminal state has an empty
goal, and fails otherwise (case b). In this case we say that s; fails. If (¢, o) is a terminal
state of a succesful computation,any set X of variables, such that the constraints o are
fulfilled is an answer constraint [12].

The operational semantics of a database DB reprezented by the predicate db, can be
defined as the set of answer constraints X, such that from (db(X), ®) starts a successful
computation. This set is denoted by succes(db):

succes(db) = {X|(db(X), ®) =* (¢, o)}
Let us remark that o is any consistent set of constraints. In our examples from
section 1, the reduced form of a database with the name DB is the set succes(db). For

each X a tuple of the database DB is obtained.
To formalise the way our programs are queried with some ground goals, let us

infroduce the following two sets:
ground’(db) = {d | (db(d), ®) =* (¢,)}

and

ground (db) = {d | (db(d), @) fails}
In our example, the goal with the answer "yes" was of the form dbgd) witt?z(li ggg:
8ound"db(d) and the goal with the answer "no" was of the form db(d) Wi
grouna* db (d)

Conclusions
- arffici treated

) etical of nulls in a
ion. In [13] a model-theore e olete
relatlonal database based on modal logic 1s presented. The treatment of an mncomp

75

D. TATAR AND S. CAMPAN

database by the formalisme of CLP presepts some evident advagtages. One of this jg
formalisation of semantics in terms of logic programming semantics. Moreover, as the
translation from a system of equations in relatllonal algebra to a logxg program ang
conversely is allways possible [4] the introductlon of some new relational Operator
(which can express the peculiarityes of the mc;omplete databases) represents, we think
tool for generating some sound constraint logic programs.

REFERENCES

(1] K.R. Apt, M.H. van Emden, Contribution to the theory of logic programming Journal of ACM, vo. 29
1982), pp. 841-862.

2) §\R ApF:E)D. Pedreschi, Studies in pure Prolog, CWI Report CS-R9048,~ September 19?0.

3] S. Campan, Incomplete databases. Reducing the incomplete information by constraints, Babes-Bolya
Univ., Master Thesis, 1996. (in romanian) ' .

(4] S.Cen, G. Gottlob, L. Tanca, Logic Programming and Databases, Spriger-Verlag, Berlin, £990.

(5] 1. Cohen, Constraint logic programming languages, Communications of the ACM, vol. 33 (1990), pp
52-68.

(6] Colmerauer, An introduction to Prolog III, Communications of the ACM, vol. 33 (19?0), pp- 69-90.

(7] P. Domonkos, Representing databases under constraints, Report LIA, Univ. de Savoie, 1994.

(8] M. Falaschi, G. Levi, M. Martelli, G. Palamidessi, Declarative modelling of the operational behaviour of
logic languages, Report Univ. di Pisa, TR-10 (1 980).

(9] H. Gaifman, H. Mairson, Y. Sagiv, M.Y. Vardi, Undecidable Optimization Problems for Database Logic
Programs, Journal of ACM, (1993), pp. 683-714.

[10] A. van Gelder, K.A. Ross, J.S. Schlipf, The Well-Founded Semantics for General Logic Programs,
Journal of ACM (1991), pp. 620--651.

[(I1] P. van Hentenryck, H. Simonis, M. Dincbas, Constraint satisfaction using constraint logic
programming, Artificial Intelligence, vol. 58/1-3 (1992), pp. 113-161.

(12] J. Jaffar, M.J. Maher, Constraint logic programming: a survey, J. Logic programming, vol. 19-20
(1994), pp. 503-581.

[13] K.L.Kwast, The incomplete database, Proceedings of IJCAI (1991), pp. 897-902.

(14] J. Minker, Perspective in deductive databases, J. Logic Programming, vol. 5 (1988), pp. 33-61, J.
Automated Reasoning, vol. 5 (1989), pp. 167-205.

[15] D. Tatar, Term rewriting systems and completion theorems proving Studia Univ. Mathematica, 1992, pp:
117-127.

Babeg-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, St
Kogalniceanu 1, Romania.

E-mail address: dtatar@cs.ubbcluj . ro

Universite de Savoie, Laboratoire Intelligence Artificielle, 73376 Le Bourget du Lac, France.

E-mail address: sorana@lia.univ- savoie. fr

76

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

