
STUDIA UNIV. BABE�-BOLYAI, INFORMATICA, VoLUME II, NUMBER 1, 1997

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIC
PROGRAMMING

DOINA TATAR SORANA CAMPAN

Abstract. The purpose of this paper is to illustrate how constraint logic programming (CLP) can be used to reduce the incomplete information in a database for which some
fixed types of restrictons are given. An operational semantics of this process is
defined in terms of the semantics of logic programming.

1. Introduction

In [5] the author believes that "CLP is one of the most promising and stimulating
areas in computer scence". The confluence between CLP and databases is part of a
general trend by which different fields are explored in order to profit from their common
properties. The integration of logic programming and databases extends the frontiers of
the management for complex data instead of simple data. In [4] is described how is
possible to build systems of coupling logic programming to databases, providing efficient data access. These systems (as for example QUINTUS-PROLOG) contain an interface that is capable of recognizing the database predicates and treating them in a special way. Our paper presents by small examples some posibilities of
treatement of incomplete databases by logic programming when the constraints are
added. Our tool is the language Turbo Prolog. The presence of the relational operators
{,=,>>,=<>} make from the language Turbo Prolog a language "like" constraint
logic language.

2. Incomplete databases

For a given database we assume that we have more informers (persons, statistic

papers, etc.). As the information comes from different sources, there are some major
problems that can appear: inconsistency and incompleteness. We will approach the
second problem, considering that the first one has been solved.

Having multiple informers means every given information is correct, although it

mght be incomplete. One approach for reducing incompleteness is to use constraints
referring to the databases.

For the databases we choose the relational model for representing the information.
S0 there is a given number of attributes, and a given number of tuples. A special

attribute will be the time index. In this way, what the databases represents in fact is the

mage of a smaller databases, placed in different time moments. For the small

Received by the editors: May 7, 1997.
991 Mathematics Subject Classification.68N17, 68P15.
99! CR Categories and Descriptors. F.4.1 |Mathematical Logie and Formal Languages|: Mathematical

Logic - logic programming.

D. TATAR AND S. CAMPAN

databases we keep more states of the databases. In this way we have the evolution.

data. This way of representation with constraints that are giving the evolution of t
database (for example the monotonity of an atribute) allows modelling the genersl

behaviour of the database.

f

Attribue A_ Attribute A Attribute A,
a2

Time
ain o
a2n a22 o

din lo
ait1,n ai+1,2 ai,

dnn. ml
Table 1. Model for relational databases with the time attribute

In the previous representation, the following notations were used:
(with k = 0..p)- the time index for a tuple. All the tuples having the same time

index consist the image of the database in one moment.
ay (with i= 1...m, j = I..n) - thej-th attribute of the i-th tuple.

All these notations will be used later.
The number of tuples in time moment t, can be different from the number of tuples

in time momnet t, (i# j) as the database is dynamic.
In a database, the data can be classified in three types, with the mention that by

data we understand a given attribute of a given tuple, there are unknown data there is
an infinite set of possible values for the data; incomplete data - there is some
information about the data that restricts the infinit set of possible values (to a set with
the cardinality greater than one); known data - there is an exact value for the data.

Some relations between different type of data can be shown. These will be

discussed in the section dedicated to constraints.
For representing the content of a database, the following notations will be used for

different type of data: ?n -- for an unknown data, where n is an integer or a letter;, n-

n,il,, n;-nkik - for incomplete data, where ng are integers. For example [3-7,10-12J Is

the representation for {3,4,5,6,7,10,11,12};p -for a known data, where p is an integer.

3 Constraints
A constraint is a sentence that shows a behaviour of the database. There are ma

types of constraints, which we divide into two classes the BASE constraints and
GENERAL constraints.

3.1. Base Constraints

Definition 3.1. [3, 7] A base constraint gives the behaviour of preciseiy attributes of given tuples. It can have one of the following forms: a) refi num, relop
b) refi num), num, relop
c) ref ref; relop

given

64

ÎNCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIc PROGRAMMING

Here ref and ref2 are simple algcbric expressions with a single reference to an
attribute (so there are two reierences or less in a constraint); relop is a relational
operator; numj and num2 are numbers and |num, num2] stands for an interval of

integers.

Let us consider the database from the Table 2, and the following constraints B,

(given in postfixed form):

a 3 =

a125,107

ass20,70] #

a1233

a2 as2

where we used the notations from Table 2.

A2 A
13

Time A
5 [7-10]

3

Time
13 0 4

9 8 0 2 4 9 8

45 21 6 45 [7-10] 6 0 6 6

1 7 2 23 [0-19,71-100] 23 23
5

2

9 22 5 1

(b) (a)
Table 2. (a) Database B1; (b) Reduced form of database B

The last two constraints have special meaning. Although they are unknown (so we
Know nothing about them), beetwen two unknown data ,some relations can be described

equality, unequalities). The last two restrictions presented above are describing such
relations.

Although good for representing base constraints, the notation used above is not
userul when trying to present the general constraints. This fact force us to introduce
another notation for referring to the attribute of a tuple - oo.aa (instead of a,). Here oo is

the index tuple (equal with i-/) and aa is the attribute index (equal withj-1). The tuple
dCx (o0) is considered related to the entire database (the time moment does not

matter).
Before a base constraint the letter 'b' appears. Using this form for referring to an

DUle, the above constraints will have the following form
b $01.00 3 =

b $00.01 [5,10]=
b $02.02 S02.03>
b $03.03 [20,70] #
b $00.01 $02.02 =
b $01.00 $04.01 =

After Pplying the constraints to the database, that will change as shown in Table2.

65

D. TATAR AND S. CAMPAN

3.2. General Constraints

The name of this type of constraints is general, because unlike base constr

with a single constraint we give the behaviour of more tuples (eventualy all the tunla

the database). me i

the
which we force the database to fit. These restrictions can give the behaviour of

With the help of general constraints we define a frame for the database, fram t

database in certain time moments, or its evolution in time.

m
The reference to an attribute for these types of constraints is a bit different

,00
that in the case of base constraints. It is like $t.oo.uu where tt is the time index

and aa having the same meaning as in the case of base constraints. The difference is t

the tuple index (oo) is considered related to the time moment specified, and not to th.
that

the

entire database.

The general form of this type of constraint is [7, 3]

LogExp (AlgExpfrefi., refii).., AlgExp,frefnis., refn.n)

where LogExp is a logical expresion, AlgExpk are algebrical expresions, ref are

references to attributes.
The general constraints can be local, global, key, temporal or set constraints. From

one type of constraint to another some more restrictions are added to the general form,

or this form is changed a bit.

Local Constraints. A local constraint gives separate behaviour of the database
inside specified time moments. To be clear we give the following two constraints, in

which the first is considered to be base constraint (see 'b' before the constra int) and the

second is a local constraint (letter " before it):
S00.02 5 < (constraint B,)
I S00.00.02 5 < (constraint L,)

The first restriction says that the attribute a,3 has a value less then 5. In this way
is decribed the behaviour of a certain attribute from a certain tuple ("the third attribulte
of the first tuple should be less then 5").

The second constraint means that starting from time moment 0 (the first monnc
the third attribute of each tuple (inside a time moment) should have a value less tne This way a general behaviour of the database is described, starting from a c

rtan

moment.

By modifying the time index, the moment starting from which the cou should be satisfyed is changed.
As we already mentioned, there can be more references in a constraint, o. clearer understanding we will use only two at the beginning. If the rerercnt

for

nstrant

different time indexes, then the behaviour of the database inside a time modelled related to another time moment. For example, the constraint:

have

nomen.

S00.00.00 $01.00.01l< (constraint L,) says that starting from the second time moment (01) the value of the Seco
should be greater that the values existed for the first attribute in the pi*

attribute

time

moment. evious

66

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIC PROGRAMMING

For a better understanding we consider the database L, from Table 3 (a). By
applying the constraint Li, and consider as existing (and applied) constraints that give

the equality between different unknown data, the reduced form of database L is
presented in Table 3 (b).

Time AL A2 A Time A
j0-51

7
3
[0-51

0
22 0 4

[0-5)
0-51 6

7 2
1 ?1 3

8 23 8

(a) (b)
Table 3. (a) Database L; (b) Reduced form of database L

If there are two references with the same index both for time and ojbect, then the
relation that the constraint describes, is beetwen the specified attributes of the same

tuple.
If the object index is different (but the time index is still the same), then the

constraint refers to all possible combination of different tuples inside a time moment.
The functional dependencies are also part of local constraits. They are working

inside time moments.
As known, with a functional dependency we can find out the value of an attribute

according to the value of other attributes. There can be A = f{A ,A), where A, Az, and

A; are attributes.
If we know the form of function f then we can construct the constraint. For

instance, if fix.y)=x+y, the constraint will be like

1 800.00.01 $00.00.00 S00.00.03 + (constraint L3) ex P6

If the form of the function is not known then we can still model the functional

dependency in the following form

$00.00.00 S00.01.00 S00.00.02 S00.01.02 =

& $00.00.00 S00.01.00_(constraint L,)

where stands for implication.
The constraint says if the first and the third attributes of two tuples are equal, then

the second attributes will also be equal.
After applying constraint L4 to the input from Table 4 (a) we obtain the reduced

1orm shown in Table 4 (b).
Time A2

7

Time

0 2

2 7 3 9 0 2 3 9

6 ?2 2 8 6 10 2 8

73 16 4 23 16 3 4

10 2 10
(a)

Table 4. (a) Database Lz (b) Reduced form of database L

2

(b)

61

D. TATAR AND S. CAMPAN

Global Constraints. A global constraint describes the global behaviour of the
database no matter the time moment. The database is considered entirely (all time

moments together).
The time index has no semnification here. The most important help of glohal

constraints is the possibility to implement functional dependencies that are valid no

matter of the time moment.
Let us consider a global constraint that has the same form as L2. Notice that in

front of the constraint the letter g' appcars.

g $O0.00.00 S00.01.00 $00.00.02 800.01.02 =

& $O0.00.00 $00.01.00= (constraint G)
Consider also the databases from Table 5. After applying the constraint G we

obtain a reduced form of the database:
Here the fumetional dependency was applied between tuples placed in different

time moments (the first and the forth tuple).

Time Time A A4

9 0 2

22 2 1 6 10 8

2 23 3 4 2 7 3 4

6 10 10 2 2 2
(a)

Table 5. (a) Database G1; (b) Reduced form of database G

6

(b)

One can look other constraints presented in the local constraints paragraph as

global constraints. The way they will work is similar to the way they work as local
constraint, it's like we had the big database in one time moment instead of consisting of

several smaller databases.

Key Constraints. A key constraint gives the combination of attributes that are the

key for the tuples. In the most simple (and frequent) case the key is formed by only one
attribute. Still, the general form is the one presented previously (see General
Constraints) on which some restrictions are added. The new form is

LogExp (refn refi2 ,.. relu ref: ,., refni refh:)

where

LogExp accepts as operators and (&) and or (|);

ref and ref2 (for i=1, ., n) refer the same attribute of different objects;
refi.. refns have the same object index;

refi2.. refn2 have the same object index, different from the previous one.

The following constraint is a key constraint (letter 'k' appears in front of it):

k $00.00.01 $00.01.01 (constraint K,)

It says that the second attribute is the key attribute.
The key constraint is actually a strong form of local functional dependencies.

say that if beetwen two tuples the combination of key attributes is identical, then all e

68

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIC PROGRAMMING

attributes should be equal. Which concludes the fact that these constraints give the

identification of tuples. Two tuples that have the same key are cqual (in fact is the same

tuple). According to the standard terminology of key in databases.

The constraint A; 1s saying that the second attribute is the key attribute. That

means that if inside a time moment there are two tuples with the same value for the

second attribute, then all the other attributcs have to have the same values (an
intersection will be made between the existing values).

The fact that the key constraints act locally (inside a time moment) is very

naturally. The key attributes identify the tuple. But in time, some attributes of a tuple
change their values. For example, if we had a database that keeps the personnel of an
interprise, then the attribute "age" will change its value from one time moment to
another. That means that in different time moment it is natural to have different values

for that attribute, although we are talking about the same person.
So a key constraint has two effects. One is that it sets the key, and the second is

that it makes the reduction. The setting of the key is important, as other types of

constraints (temporal and set constraints) use the identification of tuples made by key
constraints.

Temporal Constraints. A temporal constraint gives the evolution of particular
uples, and the way the database evoluates in time.

For instance the monotony of an attribute can be modelled with such kind of
constraints. The temporal constraints use the identifications of tuples made by key
constraints.

The temporal constraint (notice letter't' before it):
t$00.00.01 S01.00.01< (constraint T1)

says that the second attribute increases its value in time. This means that for tuples (placed in consecutive time moments) that have the same identification, the value of the
second attribute has to be increased.

Az
[0-3] 67
[0-5] 78

45

As Time A Az Time A A2
21 2 67 0

0 4 22 78 4
4 45 A 6

56 1 56
ewwewwwwwoaow

(B) (a)
Table 6. (a) Database Ti; (b) Reduced form of database T

After applying the constraint 7, (Table 6 (a) (and considering that a key constraint
at sets the first attribute as the key attribute has already been applied) the reduced
lorm presented in Table 6 (b) will be obtained.

Constraints. A set constraint has two parts: a normal (local) constraint, and a
tO numbers that give possible cardinalities of tuples that within one time moment
will satisfy the first part of the constraint

0 the general form of the constraint is modified as the folowing (letter 's' appears
in the beginning of set constraints):

69

D. TATAR AND S. CAMPAN

s LogExp (AlgExp,(ref.., refit).. AlgËxp,freft,.,refn.in) (n),..n) =

where (n,.,n) is the set of possible cardinalitics, n; (withj = 1, .., k) are integers and
all the references have the same time index and object index. The object index has to be
the same, otherwise the set constraints are loosing their sense, because different
references would cause choosing different tuples and as in all possible combinations
they would appear, proper counting would not be possible. The time index has to be the
same (as we refer in this first part of tlhe constraint to the same tuple), and the constraint
will be considered starting fron the moment specified by this index.

What such a constraint says is that there are nj or nz Or ... or nk tuples that within
one time moment satisfy the first part of the constraint.

The following set coustraint:

s $00.00.00 2 (0,3) (constraints S)
says that there are 3 or there are no tuples that within one time moment have the first

attribute with a value of 2.
After applying the constraint S, - Table 7 (a) as there are already two tuples that

have the value of 2 for the first attribute (in time moment 0), this value will be excluded

from the domain of possible values for the first attribute of the fourth tuple. Inside the
second time moment the unknown data ?1 and ?2 will be set to the value of 2 as there
have to be 3 or zero tuples with the value of 2 for the first attribute, and there already
exists one with such value (so the cardinality zero is excluded). The reduced form of the
database is presented in Table 7 (b).

Az
8

Ag Az Time A A Time A
31 0 10 8 0 31 10
2 4 56 2 4 56
33 40 10 33 40 10

[0-2,4-10]1 l6 [0-10] 16 8 8

2 9 0

0 17 9 0 2 77 9
2 9 2 7 9
?1 64 39 4 39
22 90 60 1 90 60

wwwww.

(a) (b)
Table 7. (a) Database S,; (5) Reduced form of database S

4. Using constraint logic programming9 4.

CLP has a long tradition in computer science. It attempts to preserve
advantages of logic programming while removing their limitation, bz using constran
solving beside unification as an operational scheme.

The language considered here is essentially that of first-order predicate. Let:

Pbe a set of predicate symbols. When these symbols correspond to a database
will call them database predicates;

Cbe a set of constant symbols;
Vbe a set of variable symbols.

70

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIC PROGRAMMING An atom over CUV is of the form

P(u,un), n 2 0,
DE P with arity n, and each u, is an element of CUV or lists from these

nts Let us remark that we work with a simplified version of Prolog, caracterised
by the absence of function symbols (as in Datalog). If the arguments u; are not interesting in a particular context, then we will denote
an atom simply by p.

4.1. Base constraints

A database correspond to a database predicate p e P, every tuple in a database is
an argument of p which type is list. Every ref in section 1 is an element of a such list. If
a tuple contains an unknown element, then the corresponding list contains a variable, on
the corresponding position. If a tuple contains an element with a value interval, then the corresponding list contains a variable and the body of clause contains a constraint of the
form b as below.

Let us remark that the only reason for considering the database predicates with only one argument, (of type list), and not with the number of arguments equal with the length of the tuples |4) is that of an easier querying of the programs. Definition 4.1. The constraints corresponding to base constraints in section 1 are of
the forms:
a) X <relop> numl,
b) X>=num1, X <=num2, c) X <relop> Y.
where X and Y are variables, elements of the lists, and relop and numl, num2 are as in section 1.

Definition 4.2. A constraint logic program P of the first type is a sequence of Horn clauses of the form:

where pis an atomic formula and qi, n
s, the comma is the logic operation "and", and the signis "if" or reverse

Or Constraints, the co of the logical implication. A clause (a fact) can have an empty bOuy

are either atomic formulas in first-order logic

We refer to the left (p): and right-hand side (4» 4u) of a clause as its u head and its
ody. A clause is logic gically interpreted as the universal closure of the implication q1.. np.

DB) and the others form the extensional database (EDB).A
Corresponds to an incomplete database DB or a predicate which

non-base} constraint is allways in IDB.
finition 4.3. A goal

The
ntens predicates that are in a head of a clause with a nonempty body, form

ensional database
predicate

Is denoted by
consists of a conjunetion of atomic forulas, r), ., r, and

71

D. TATAR AND S. CAMPAN

Let us consider the CLP program for the database BI, from section 1, The

database predicat name (here bl) corresponds to the batabase name, as in all the
following examples:

domains
lista=integer*

predicates
b1 (lista)

cl(integer)
c2(integer)
c3(integer)
member(integer,lista)
append(lista, lista,lista)
e(integer)
lista_int(lista,integer)

clauses

bl([o.5.X,4,13]):-cl(X).
bi([0.X,4,9,8):-c2(X).
b1([0,6,45,X,6]):-c1(X).
bi([1,7,2,23,X):-c3(X).
bi([1,3,X,5,9]):-c2(X).
c1(X):-e(X),X>=0,X<=10,X>6.
c2(X):-e(X),X=3.
c3(X):-e(X),X<20,X>=0.
c3(X):-¬(X)X>70,X<=100.
e(X):-lista_int(Y,100),member(X, Y).
lista_int([O],0):-!.
lista_int(Y,N):-M=N-1,lista_int(Z,M), append(Z,[N],Y).
member(X,[XL).
member(X.LIT]):-member(X,T).
append([].X,X).
append([HT].Y,[HJU]):-append(T,Y,U).

for the goal -b1(X) we obtain all the 60 tuples in the reduced database B1 /

The base constraints of type a) and b) as in section I are done by the constraints of
type a) and b) as above definition, and the constraints of type c) in section I are done by
imposing the same body for the clauses. Here the atomic formula cl(X) in the first and
the third clause corresponds to the {\bf base } constraint a as = in the section 1.2.
Analogously for the atomic formula c2() and the base constraint a2 d =. The atomic
formula eX) coresponds to the implicit constraint that all the integers are less than 100.
Let us remark that in [6], the author considers an similar way of enumerating integers.

4.2. General constraints

As 1S presented in section 1, a general constraint describes a constraint about tne

behaviour of the whole database. As the arguments of a database are lists, some general
constraints can be still expressed by the CLP programs with a single argumeit ot
database predicate representing a tuple of the database. The reson is that the type st
takes over some informations like these about time in local constraints. Let us conside
the database L), section 1.2. The corresponding CLP program is the following

domains

lista-integer*
predicates

11(lista)
cl(integer)

12

INCOMPLETE RELATIONAL DATABASES AS CONSTRAINT LOGIc PROGRAMMING c2(integer)
member(integer,lista)
append(lista,lista, lista)
einteger)
lista_int(lista,integer)

clauses

11([0,X,5,3]):-c1(X).
11([0,4,7,X]):-¢2(X).
11([0,X,7,2]):-c2(X).
1([1,X,6,3]):-cl (X).
1((1,2,8,23]).
cl(X):-e(X).X>=0,X<K6.
c2(X):-e(X),X>=0,X<6.
e(X):-lista_int(Y,100),member(X,Y). lista_int([0].0):-!.
lista_int(Y,N):-M=N-1,lista_int(Z,M), append(Z,[N],Y).
member(X,[XL]).
member(X,LIN):-member(X, T).
append(].X,X).
append([HT],Y,[HJU]):-append(T,Y,U). the clauses for cl(X) and c2(X) are the same because the minimal second attribut in the second time moment is 6 */
*for the goal 11(X) are obtaining the 25 tuples of the database LI */

The method that will leave to express better general constraints is to consider the
set of tuples as an entity, which can be entierely manipulate. Accordingly, a new
predicat is needed, which forms a database from the tuples (the predicate formlist). The
tuples are linked by this predicate and the general restrictions, about the whole database,
can be expressed.

Let us consider the CLP program for the database L The database predicat name
15 2. The constraint L means that, for each two lists, if the second and the fourth
clements are equal, than the third elements are also equal.

domains
lista=integer*
llista=lista*

predicates

formlist(lista,lista,lista,lista,lista,llista)
12(1lista)
member(integer,lista, in teger)
member(lista,llista,integer)

clauses
12([L1,L2,L3,L4,L5]):-LI=[0,2,X1,3,6], L2=[0,2,7,3,9),

L3=[1,6,X2,2,8], L4=[1,X3,16,3,4],
LS=[1,6,10,2,2], formlist(LI,L2,L3,L4, L5,L),
member(U,L,PI), member(V,L,P2),
Pl>P2, member(Z,U,2), member(Z,V,2),
member(W,U,4), member(W,V,4)
member(X,U,3), member(X, V,3).

member(H,[HL_),1).
member(E,LIT),N):-member(E,T,M),N=M+I.

formlist(L1,12,L3,L4, L.5,[LI,L2,L3,LA,L5]).

Oral e programn for the database 7 is as the following. Remember that the

ame idents nti says that for tuples in consecutive time moments, which have the

iindn the value of the second attribute is to be increased.

domains
13

D. TATAR AND S. CAMPAN

lista-integer*
llista=lista*

predicates
formlist(lista,lista,lista,lista,llista)
t (lista)

member(integer,lista,integer)
member(lista,llista,integer)

clauses
tl succeds with the goal:

t([0,2.2.67],[0,4,4,78],[1,4,6,45,
[1,2,4,56]]) and fails with the goal:

t1([[O,2,8,67].[0,4,4,78],[1,4,6,45],
[1,2,4,56]1) */

t1(LI,L2,L3,L4]);:-Ll=[0.2,X1,67], L2=[0,4,X2,78), L3=[1,4,6,45],
L4=[1,2,4,56], formlist(LI,L2,L3,LA,L),
member(0,L,P1), member(V,L,P2), P1<P2,
member(AI,U,2), member(A1,V,2),
member(0,U, 1), member(1,V,1),
member(Xi,U,3), member(A2V,V,3),
X1<=A2V,X2<=A2V.

member(H,[HL],1).
member(E,LT],N):-member(E,T,M),N=M+1.
formlist(LI,L2,L3,LA,{Li,L2,L3,L4])

Computation in CLP 5
A computation in a constraint logic program can be described as a goal-directed

derivation procedure from the initial goal using the program clauses. A computation

State [11] is defined as a pair s-(g, o) where g is the multiset of atoms and constraints to
be solved, and o is the set of constraints accumulated so far. (The empty set of

constrains is)
A transition from a computation state s = (g, o) to another, s'= (g', o), is defined

as the following rewriting relation "":

Definition 5.1.

iff
there exists an atoma eg, selected by a computation rule anda clause, renamed to
new variables:

h:-h,, hm
such that a and h have the same predicat symbol. Then,

g'= (g \ {a }) U {h,.., hn and o'=oU{a=h}

Here the expression a = h is an abreviation for the conjuction of equations between

corresponding arguments of a and h, and s' = (g'. o).

there exists a constraint c in the goal part that can be satisfied with the constrant
store. In this case, s' is obtained from s by removing this constraint from the goa

part, and by adding this to the constraint store a .Thus, s'= (g, d), where:

74

TNICOMPIETE RELATIONAL. DATABASES AS CONSTRAINT LOGIC PROGRAMMING
gg {c}, a'= o U {c}

Let 11s observe that the constraint store o is always consistent.
A Computation 1s a sequenCe: S S2 ...Sn. If>* denotes the reflexive and ive closure of the relation >, then the above computation can be denoted as s

goal

Remark 5.2. The SLD refutation in logic programming requires that the atom in a siS. which is rewritten in a step by the computation rule, must be the leftmost
atom.

Definition 5.3. A computation state s,(g, o) of a finit computation
S1S2... S

is terminal if one of this conditions is fulfiled:

a) the goal part g is empty (and is denoted by o), or else,
b)no computation state s' exists such that s, > s'

Definition 5.4. A finit computation is successful if the terminal state has an empty g0al, and fails otherwise (case b). In this case we say that s, fails. If (p. o) is a terminal
state of a succesful computation,any set X of variables, such that the constraints a are
fulfilled is an answer constraint [12].

The operational semantics of a database DB reprezented by the predicate db, can be
defined as the set of answer constraints X, such that from (db(x), a) starts a successful
computation. This set is denoted by succes (db):

Succes(db) = {X\(db(X9, d)=*(6, o)}

Let us remark that o is any consistent set of constraints. In our examples from
section 1, the reduced form of a database with the name DB is the set succes(db). For
each X a tuple of the database DB is obtained.

To formalise the way our programs are queried with some ground goals, let us

introduce the following two sets:

ground (db) = {d| (db(d), d) >* (0. D)}

and

In
example, the goal with the answer "yes" was of the form db{d) with d from

ground (db) = {d | (db(d), D) fails

db{d) and the eoal with the answer "no" was of the form db(a) with d rom

ground dbd).

. Conclusions

The mathematical pra
roperties of the incomplete databases are insufficientely treated

ational
m a point of view of theoretical fundation. In [13] a

model-theoretical of nulls in a

SCbased on modal logic is presented. The treatment of an incomplete

75

lational database

D. TATAR AND S. CAMPAN

database by the formalisme of CLP presents some evident advantages. One of this is
formalisation of semantics in terms of logic programming semantics. Moreover, as the

translation from a system of equations in relational algebra to a logic program and

conversely is allways possible [4] the introduction of some new relational operators
(which can express the peculiarityes of the incomplete databases) represents, we think, a
tool for generating some sound constraint logic programs.

REFERENCES

(1 K.R. Apt, M.H. van Emden, Contribution to the theory of logic progranming Jourmal of ACM, vol. 29

(1982), pp. 841-862.
)K.R. Apt, D. Pedreschi, Studies in pure Prolog, CWI Report CS-R9048, September 1990.

3] S. Campan, Incomplete databases. Reducing the incomplete information by constraints, Babes-Bolyai
Univ., Master Thesis, 1996. (in romanian)

14 S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Spriger-Verlag, Berlin, 1990.
$) J. Cohen, Constraint logic programming languages, Communications of the ACM, vol. 33 (1990), pp

52-68.
16 Colmerauer, An introduction to Prolog II1, Communications of the ACM, vol. 33 (1990), pp. 69-90.

7 P.Domonkos, Representing databases under constraints, Report LIA, Univ. de Savoic, 1994.
8) M. Falaschi, G. Levi, M. Marteli, G. Palamidessi, Declarative modelling of the operational behaviour of

logic languages, Report Univ. di Pisa, TR-10 (1980).
91 H.Gaifman. H. Mairson., Y. Sagiv, M.Y. Vardi, Undecidable Optimization Problems for Database Logie

Programs, Joumal of ACM, (1993), pp. 683-714.
[10] A. van Gelder, K.A. Ross, J.S. Schlipf, The Well-Founded Semantics for General Logic Programs,

Journal of ACM (1991), pp. 620--651.
[11] P. van Hentenryck, H. Simonis, M. Dincbas, Constraint satisfaction using constraint logie

programming, Artificial Intelligence, vol. 58/1-3 (1992), pp. 113-161.
[12] J. Jaffar, M.J. Maher, Constraint logic programming: a survey, J. Logic programming, vol. 19-20

(1994), pp. 503-581.
[13] K.L.Kwast, The incomplete database, Proceedings of IJCAI (1991), pp. 897-902.
[14] J. Minker, Perspective in deductive databases, J. Logic Programming, vol. 5 (1988), pp. 33-61, .

Automated Reasoning, vol. 5 (1989), pp. 167-205.
[15] D. Tatar, Term rewriting systems and completion theorems proving Studia Univ. Mathematica, 1992, PP:

117-127.

Babe_-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, su Kogalniccanu 1, România.

E-mail address: dtatar@cs. ubbcluj.ro
Universite de Savoie, Laboratoire Intelligence Artificielle, 73376 Le Bourget du Lac, France.
E-mail address: sorana@l ia.univ-savoie.fr

76

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

