
STUDIA UNIV. BABE^-BOLYAI, INFORMATICA, Voi,UME II, NUMBER1, 1997

MODELLING AND IMPLEMENTING PARAMETER
PASSING METHODS

ALEXANDRU VANCEA MONICA VANCEA

Abstract. The paper presents a parameter passing techniques specification method, a
model which helps their correct and cfficient implementation. By using these
abstactions at the im- plementation level we could exactly specify the transmission
mechanisms and we could approach the problems posed by some particular actions
that are necessary when employing these methods.

1. Preliminaries

The issue of parameter transmission is of a great importance for procedure calls

implementation. This is not aimed only to obtain more efficient versions of procedure
calls, but also to generate correct procedure calls implementations, which,
unfortunately, still depends upon the details of transmission of one or another particular
parameter passing method.

In this matter is important to notice the trend brought by Ada [1], which succeeds
to make abstraction of these details at the programmer's level. In Ada we have three
kinds of parameters:

in - semantics equivalent to call by value, the flow of data is from the caller's

environment to the procedure and the value of actuals cannot be changed;
out semantics equivalent to call by result, the flow of data is from inside the

procedure to the outer environment and the role of such actuals is only to communicate
results of computations;

- in-out semantics equivalent to call by reference, the actuals enter the procedure
wIth some needed values which can be changed inside and then "transported" outside.

Even if we mentioned this classification in relation with the semantics of some
well-known parameter passing methods, let's notice that we are only interested in their
semantics and we do not discuss particular ways in which they could be accomplished.

Anyway, when developing code in many programming languages (as Pascal or
10r example) we must consider these passing details at the programmer's level.

n order to develop the expressive power of a programming language, one has to

provide means to express as accurately as possible the implementation of its features. ln

2 and in many related papers we find descriptions of procedure calls implementations
One of the aspects not detailed there is how can we describe (and most important how

Received by the editors: July 6, 1997.
991 Mathematics Subject Classification. 68N15, 68Q60.
991 CR Categories and Descriptors. D.3.3 [Programming Languages]: Language Constructs and Features

procedures, functions and subroutines; data types and structures; D.3.1 [Programming Languages]: Formal
Definitions and Theory - semantics, syntax.

A. VANCEA AND M. VANCEA

can a compiler take further advantage of a g0od metalanguage description

implementation of a parameter passing method.

the

the

metalanguage presented in [4])) which is applied further in the description of them

wided used parameter passing methods. We can use further these descriptions in

context described in [2] which corresponds to the correct completion of the PAR fielda

the activation record that is built for any particular procedure call.

For this purpose we present here PARTRAN (our adapted version of

most

s

the

2. The PARTRAN metalanguage abstractions
2.

In this section we describe the abstractions of a metalanguage (which we called

PARTRAN) which are adapted from the results presented by Jokinen in [4].

A. Aprocedure can be defined and represented as

procedure pnamefx:t..XL){bodyf

and a procedure call as

pnamefa,., 4)

where a; is of type t
B. One of the most important elements introduced in our language is the use of the

environment concept. We will consider in PARTRAN that each procedure activation

has a manifest association with its environment (that is the environment in which its

activation takes place). That's why we will use for our procedures the tem

environment-valued procedures.

Why do we need them? The motivation resides in the fact that we cannot make

abstraction that for all significant actions (namely evaluations) that take place in the

parameter transmission phase, we need also the precise environment(s). For example.
the semantics of the call_by_value parameter passing method makes the body of pname
to be evaluated in an environment in which each x, is bound to the value of a

By envid= e, .., idm= em)

we denotethe environment in which an expression using some of the specineu
identifiers will be evaluated. Practically, an environment is a mapping from a finite s

of strings into data objects [3]. The result of this mapping are the bindings ma
between identifiers id, and the values of expressions e

An environment can be used in a clause

eval exp using env
be

where env evaluates to an environment and exp is an expression which value wi"

obtained through evaluation in the environment yielded by env. The value of this clau
is the value of exp whose free identifiers are bound as in the environment produced
env.

C. A procedure object is created with a clause

proc e: e2
where e is an expression that evaluates to an environment-valued procedure (EVP) an
e is the body of the procedure.

58

MODELLING AND IMPLEMENTING PARAMETER PASSING METHODs

D. Another interesting idea is the use of higher order functions as generators for
some other specific regular functions needed in our descriptions. We will introduce such

a higher order procedure, named parform, which generates an EVP. It accepts as an
ArCument a pair /s,1/, where s 1s a string and t is a type. The value of the invocation

parform s.
is an (environment-valued) procedure that maps an object x (of type t) into an
environment that binds s to x. If r is not of type t, the call causes a failure:

parform/s,t/r={" x), if x is of typet

fail otherwise
s is an arbitrary string-valued expression and it is the value of s (rather than the

identifier s) that becomes bound in the environment. The motivation of introducing higher order functions is for generating functions and procedures which will act as
agents for accomplishing the required actions at the moment of parameter transmission.

E. The case-clause is introduced in the syntax
case e inji: e, Jn en else jn+1 : en+l

where the values of clauses fi to fh+1 are EVPs. The else-part is optional. The clause is
evaluated by first evaluating the expression e and then invoking formals fi to fn (in an
unspecified order) using the value of e as the argument. If the invoked formal f returns
an environment, then e; is evaluated in that environment and the value of e, becomes the
value of the case-clause. Iffi fails, then the next formal is tried. If all the formals f to fn fail, then the optional formal fn+1 is invoked and the clause e,n+1 is evaluated in the
resulting environment. If f,+1 fails too or if there is no else-part, then the case-clause
fails.

Regarding the types involved, we will assume the use of standard types int, real,
string and type (meaning any type) and the type constructors ref, union, tuple and
Type ref t is the type of pointers to -typed cells. union [t,..,tn represents the union of
the specified types t,..,.y Type tuple [t,.,tn is the type of tuples (x,.. where x is

ot type t. The type of functions with domain t and range u is denoted by t-> u.

Example. Let's take a simple example: we want to define a generator for EVPs
tnat accept either a digits-string or an integer as their actual argument and convert it into
Ue corresponding integer value in the former case and let it unchanged in the latter case
ene transformation is actually done by the function stringtoval - the equivalent of the

Turbo Pascal VAL function):

Stringval = proc parform|"id", string]:
proc parform["r", union[string., int

proc parform|id, int|
(case x in

parform"i", int): i,
parform["s", string]: stringtoval s)

59

A. VANCEA AND M. VANCEA

Metalanguage at work 3.

The PARTRAN nmetalanguage promotes the idea that parameter transmission

mechanisms are closely related to types. So, transmissions by different mechanisms can

be reduced to passing various types of data.
Call by value means just transmitting the required valuc of the type involved in the

transmission. Call by reference is equivalent to the transmission ofa parameter of tyne

ref . Call by nanne is equivalent to the transmission of a parameter of type void -->t

where void can be defined by an empty tuple.
We first define two procedures which will help us further. Rep_value generates

procedures that compute valucs of an object called recipe, which is an object of type ref

union ,void--> t).

rep_value - proc parform["r", type]:

proe parform["r", ref union[t, void ->]]:
case x^ in

parform["y", t]:y,
parform["", void -> t: (x:S; x)

x denotes the contents of the cell pointed by x. The other procedure, repdefs, just
generates two shorthand notations, rcp and u. By new t y we denote the action of
allocation of a new cell of type t and the returning a pointer to that cell in y.

repdefs proc parform["", type]
env("rcp" = ref union [t, void -> t]

"u" = union [t, void-->t, reft, rcp})
Following this definition, rep represents the type union of the type denoted by t

with the type of all functions without parameters which returnt type values. The idea of
defining functions without parameters to be used in expressions or parameterIS
evaluation is due to Ingerman [1] which promoted the concept of thunk, used in the
implementation of call_by_name.

Call by value, name and reference can now be defined with the following

procedures.
value proc (parform["id", string), parform|"", ype]):

eval{
proc parfom|"r", u]:

env(id =

case x in

parform "y", t]:y,
parform"p", ref t: p^
parform["', void --> t]:S1).
parform"", rcp]: rep_value t r)

using rcpdefs t;
In this call_by value deseription, id represents the formal parameter precisely, parform|"id", string), parform["t", typel declares that id and t wi identifiers of the specified types in the description of the procedure body) anu represents the actual parameter. Upon the type value of u, the case clause will chou

re

60

MoDELLING AND IMPLEMENTING PARAMETER PASSING METHODS

the oroper actions (namely the correct evaluations and the quantities to be transmitted) s he nerformed in the CALL and ENTRY phase (see [|] for details). Let's notice that value is obtlained as the application of a higher order function.
This higher order function de **ribes the body of the EVP which has to bc applied in the
nrocess of parameter fransn1Ssion. T he same observation holds for the procedures name
and reference.

name = proc (partorni| "id", string), parform|"/", type)
eval{
proc parform["r", u]:

env(id=
case x un

parform["y", 11:(proe env):y),
parform"p", ref t|: (proc env():p),
parform["f", void -> 1]:,
parform["*", rcp]:
proc env(): rep_value t r)} using rcpdefs t

reference proc (parform|"id", string), parform["", ype]): eval{
proc parform["x", u] :

env(id=
case x in

parform["y", t]: new rep y,
parform["p", ref ?]: new rcp (p^),
parform"", void -->1:new rcp f,

parform"", rep]:r)
using repdefs t

Such abstractions can be useful in expressing and solving all the situations in which we can be at the moment of the parameters transmission. The completion of the PAR stage [2] means essentially the action of the appropriate procedure, namely one rom above, depending on the actually choosed method.

4 Conclusions

One of the most problematic situation that appears in the parameters transmission
POCESs is the case when we have functional parameters as formals. Solutions to the

entation of such transmissions can be found in [2]. The advantage of PARTRAN
nat it could model such cases by means of higher order functions which generate and

escribe the behaviour of functional parameters transmission twould be interesting in the next intended step to include these facilities into an

mental compiler for a subset of a programming language, to be able to evaluate
C practical results at which we could aim [5]. These are mainly two:

an efficient implementation of the required parameter passing technique,

61

A. VANCEA AND M. VANCEA

- the possibility offered to the programmer to interfere with the compiler and to

specify some needed actions based on the platform offered by the modelling language

presented here;
The practical effects are still to study.

REFERENCES

1 Horowitz E., Fundamentals of Programming Languages, Springer Verlag, 1983

21 MaclLennan B., Principles of Programming Languages. Design, Evaluation and Implementation, CBS

College Publishing, 1983.

3 Gelernter D. et al., Environments as first class objecis, in Proccedings of the 14th Conference on

Principles of Programming languages, pp.98-110, 1987.

141 Jokinen M., Parameter Transmission Abstractions, in The Computer Journal, vol.33, no.2, 1990, pp.133.

139.

IS] Tai Kuo-Chung, Comments on Parameter Passing Techniques in Programming Languages, ACM

Sigplan Notices, 17, 2, 1982.

Babe_-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, str.

Kogalniceanu 1, România.

E-mail address: vancea@cs . ubbcluj.ro
Babes-Bolyai University, Faculty of Economics, RO 3400 Cluj-Napoca, str. Kogalniceanu 1, România.

E-mail address: vancea@econ.ubbcluj.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

