
STUDIA UNIV. BABE_-BOLYAI, INFORMATICA, VOLUME II, NUMBER I, 1997

TREE GRAMMARS AND TREE DESCRIPTION GRAMMARS

VASILE PREJMEREAN SIMONA MOTOGNA

Abstract. Considering the disadvantages of the tree grammars, we introduce another
class of grammars: trec description grammars, which are string grammars. We present
some of their properties and, in the end, we state the conditions in which they are
equivalent with the tree grammers, and prove this equivalence.

1. Introduction

In the theory of solid constructive geometry, different corps and figures can be

described through strings (expressions corresponding to binary trees) or directly through
rees [2,9].

In the case of description through strings, we can observe only the concatenation of
figures, loosing various details [4,6].

In the case of description through trees we obtain a hierarchical structure 5,8],
which emphasizes also the relations between component subcorps of a certain corp 3,7].

In order to specify the description through trees, the tree grammars have been
introduced [7], whose production rules are defined (easier) graphically. These grammars
define trees through trees, and that's why these grammars cannot be classified in the

usual types of grammars from the formal languages theory [1].

Considering these reasons, we have considered that if we will manage to describe
these trees through simpler grammars (the production rules to be of a known type) then
the properties of such grammars will be easier to be stated. Another point of view which

was taken into consideration was the remark that in fact we don't need the tree itselí,
only the way in which the corp or figure description tree is described.

This situation has the advantage that in pattern recognition [5,8] we can apply

existing parsing algorithms [1).
the The paper is structured as follows: in the first paragraph we will present

definition of the tree grammar, and in the next paragraph we will introduce the tree

description grammar and we will prove some of its properties. A last paragraph will

study the differences between these two types of grammars.

Received by the editors: July 15, 1998.
1991 Mathematics Subject Classification. 68Q45, 68Q50.

1991 CR Categories and Descriptors. F.4.3 [Mathematical Logic And Formal Languages]: Formal

languages- Classes defined by graummars or automata.

V. PREJMEREAN AND S. MOTOGNA

2. Tree-grammars

Definition 2.1. [7] A tree-grammar G has the following form G = (N, T, r, P, S where:

NUTis the alphabet, containing the terminal and nonterminal symbols,
r: NUT->N, r(r) represents the number of successors for x,
P is the set of productions rules, of the following form A1A2 (where A, and 4, are subtrees), and

Sis the start synmbol.

-A r(a)-2
A

BC b C B C

B b r(b)=0
C r(c=0 B b b C

Figure 2.1.a.
Figure 2.1.b.

S A a

A
a

W a
BA

A

BBA

A

B
B rlud

Figure 2.2.

The production rules can be defined graphically easier, since there can productions which do not preserve the structure, as in example from figure 2.1.0. derivation of the form A4 Ap, assumes that there is a production A, > A; throug" which the subtree A, (from A) is replaced by A, obtaining the tree Ag.
48

TREE GRAMMARS AND TREE DESCRIPTION GRAMMARS

Dofinition 2.2. [7] The language generated by a tree grammar G is defined as:
LIG) ={A/S>AJ.

Evample 2.1. Figure 2.2 shows a grammar which generates a description tree for a 2-
O traiectory. The production rules are written in the left side, and the right side contains the generated tree and the trajectory described by this tree.

We can notice that such a grammar (of a tree-type) allows a more general description
than a string grammar, although uses only four terminals, corresponding to the four
directions r,u,l,d:

r= ("right"),
(up"),

= ("left")
d ("down").

3. Tree description grammars and their properties
In order to emphasize the difference between a tree grammar and a tree description grammar we will define such a grammar. The grammars to be used will be context-free,

and the production rules will have the right-side starting with a terminal, namely the
form A->aa, ae(NUT) , and the words (the language elements generated by these
grammars) will be derivation trees (parsing trees) as presented in [1]. If in string
languages, the language elements are formed only considering the derivation tree front
(concatenating the tree leaves), in a tree description grammar the words will be the
derivation tree (considered as a whole).

simpler a d-grammar, Definition 3.1. A tree description grammar, or
7PS)is defined as a string grammar ([1]), modifying only the meaning of the
production rules (and implicitly the meaning of the derivation) as follows:

N and T are labels (values) for tree nodes,
Is the label of the starting tree which has only one node:

Aaa/AEN, aET and ae(NUT) }U {A>B/A,B EN };

ng, n a derivation, a nule of the form A>aa we will achieve the

transformation of
ENUT, ISsisn) as depicted above form, we

of the leaf A in the subtree with the root a and successors X

iepicted in figure 3.1. In addition to the production rules of the

a

not change the structure at all, and only relabel the nodes.
Dot cha we can admit in a d-grammar rules of the form 4->B (4, BEN), which do

SOS) are from the set M. The set of all the final trees relatively to a Set M

will be denoted by AM

lou 3.2. A tree A is final relatively to a set M if all the terminal nodes

49

V. PREJMEREAN AND S. MOTOGNA

(A

o=X. X2
Figure 3.1.

Definition 3.3. The language generated by a d-grammar G =(N, T, P, S) is defined
as follows:

LIG)= {Ae Ar/S>A).
In regards to the above definitions we can notice that starting from the root (the

initial symbol S) we apply the production rules only for nonterminal leaves (EM), and
when all the leaves are terminals, in other words the tree is final relatively to 7, the
derivation ends.

Remark 3.1. If all the production rules have jal = n e f0, 2}, in the right side they

have either one terminal symbol (n = 0) or three symbols (= 2), then the generated tres

will be binary trees. We have eliminated the case n=/, namely the rules of the fom
A ab/aB, because these rules do not define the subtree position (left or right), being in
fact a single one. If we wish to generate binary trees with rules having n 2, a convention
will be necessary for the rules mentioned above (case n = 1). We have considered here that

a binary tree is formed fiom left subtree, root and right subtree. If, in case of solving certain
problems, we will consider that a binary tree is a tree with at most two successors, then we
can give up the restriction n * 1.

In conclusion, we can state that if all the production rules of a d-grammar have the
property l 2 then the grammar describes binary trees and we say that it is d-linear

Example 3.1. The tree description grammar

G-((S, A, B, C}, {a, r, u, 1, d}, P, S),.

with the production rules:

P = {S->A, A->aBA /aCBA /aB, B->r/u/l/d, Cr/u/l/d}
is equivalent with the tree grammar in example 2.1, which generates trees as in figure 2.2.

We can notice that this d-grammar can be reduced, obtaining a simplified d-gramma
G', equivalent with the d-grammar G (L(G)=L(G')). The new reduced grammar G° is:

G'-((S, B}, fa, r, u, 1, d}, P, S),
with

P'-{S> aBS/aBBS/aB, B> r/uld}
which can generate the tree from figure 3.2. We have numbered the rules of P' froml to
so we could be able to refer the production used in a derivation.

50

TREE GRAMMARS AND TREE DESCRIPTION GRAMMARS

a 4,7,5.4,7, a S
a (B a

B

B

Ba a d

DDS BDa (BBa Ua)
a

Figure 3.2.

Theorem 3.1. Let G=(N,T,P,S) be a d-grammar and LG) be the tree family
described by G. Any tree AeL{G) has all the node labels (internal nodes and leaves) from

the terminal alphabet T(if we denote by V the vertex set of A, then VON=Øor Vc).

Proof. Since the production rules have the form A-aa (definition 3.1.), this means

that when a nonterminal node (A eM) is transformed it becomes an internal node, which is
in T, so any internal node is from the terminal alphabet. On the other hand if AeL(G) it

means that AeAr (LG) gAr, from definition 3.2.), so it has the front formed from

symbols which belongs to the teminal alphabet T (definition 3.1). Even if we use rules

such as A->B, these do not change at all the above situation, since from this poit of view
the tree structure remains unchanged in a derivation which involves such a rule.

Lemma 3.1. For any tree A, which has the nodes labeled with values from a set T,
there exists a tree description grammar G=(N,T,P,S) which will generate this tree

(AeLG).
Proof: Since the proof is constructive, we will explain the algorithm which builds the

d-grammar G=(N.TP.S), starting from G-(S),T,Ø,5) until we reach the required final
form, transforming the tree A, which will be reduced until it will have only one node

labeled with S. The nonterminals X will be chosen from the capital letters set (4,

B-Succ(A), C= Succ(B), ...).
The algorithm is:

Initially N-(S}, P=®, X.=A;
While A is a tree of depth> 1 do

For each subtree of depth 1 (has only the root=a and front = a)

Replace the subtree witha node labeled with X,
If there isn't any rule in P which contains aa in the right side then

N:-NU{X}; P:=PU{X->aa}; X:=Succ(). ()
A (which now is a tree of depth 1, with root a and front a) is replaced

by and P:-PU{S->au.

OTECA FAC 51

CLUJ-NAPOCA

MATEMATICAA

V. PREJMEREAN AND S. MOTOGNA

It can be observed that the d-grammar builds the tree applying the
derivations and that this d-grammar generates only one tree (|L(G)| = 1/).

Considering the tree from figure 3.2, the d-grammar will be:

reverse

G-((S.A.BcD}.fa.r,u.l,.d}, {S-arD, D->adc, CaurB, B-adA, A->ad), S)

still
Although the algorithm tries to reduce the repeated production rules (*), we

a
face the problem of reducing this d-grammar (to a simpler d-grammar G) such

L(G)CL{G) For the d-grammar which we have built the rule D->adC is almo

identical with the rule B-adA, which leads us to the idea of unifying them, changing p
with B. The reduced d-grammar G will be:

G-(S,A,B,C}, {a.r,u,.,.d), {S->arB, B->adC, C->aurB, B->adA, A->ad), S)

In this d-grammar G' the nonterminal C cannot be eliminated. If in the case of
traditional string grammar, applying this elimination we will obtain the grammar

G"-((S.A,B}. {a,,u,l,d}. {S->arB, B->adaurB, B->adA, A>ad), S) equivalent to G
(LG)=L(G), in the case of tree description grammars this situation is no longer
possibie, because two trees with the same front may not be necessary 1dentical.

The new d-grammar G' describes now a tree family, including the tree described by
the d-grammar G (if in a derivation we use all the rules from P in the order given above).
If in a derivation we use only the rules S->arB, B->adA and A>ad (1,4, and 5 fromnP)
we will obtain the tree from the figure 3.3.

a

Figure 3.3.

Definition 3.4.

A set of trees with nodes labeled is called d-language,
A d-language L where the labels are from a set T, will be denoted Lr.

Theorem 3.2. For any finite d-language L7, there exists (it can be constructeu
d-grammar G=(N, T,P,S) such that Lr=L(G).

The proof is based on lemma 3.1., which for any tree A e LT provides a grama
G-(N, T,PS) which will generate it (/Sisn-|Lr|). Replacing all the rules S-a
Sa,a we obtain the desired d-grammar G=(Nu..UN, T, Pu..UP»S).

nonterminals , will be denoted (in the construction of the grammar G,) by A, B, C

vith

The

52

TREE GRAMMARS AND TREE DESCRIPTION GRAMMARS

Definition 3.5. A d-language is context-frce, linear or regular if there is a d-
grammar context-free, d-linear or regular, respectively, which will generate it.

Lemma 3.2. The following statements are true:
a family of chained lists is a regular d-language,

a family of binary trees is a lincar d-language, and

a family of (n-ary) trees is a context-frece d-language.

Proof: We will take into consideration the length of the a sequence, from a

production ule 4 aa (Definition 3.1):

If al s 1, then the d-language is regular, and describes chained lists. If la| s 2, then

then the d-language is linear, and describes binary trees (see also the Remark 3.1). If a
2, then then the d-language is context-free, and describes n-ary trees.

Theorem 3.3. LReg c LinC Lcr, where LReg Ltin and Lcr represent the
coresponding classes of d-languages.

The proof is obvious either from formal languages point of view (Chomsky
hierarchy [1]), or directly through data structures referred in lemma 3.2.

4. Comparing tree grammars and tree description grammars

We will start giving another definition to the tree description grammars, which is
more general, and we will prove that if a tree grammar is context-free then there is an

equivalence between them and d-grammars. This result has its own importance, since, so
far, only tree grammars have been used in this domain, and we can use their properties for our d-grammars. However, we have proved that d-grammars are easier to use,
because they are string grammars and we can follow traditional parsing algorithm in

pattern recognition.

Definition 4.1. A tree description grammar, or simpler d-grammar, G-(, T,PS)
is defined as a context-free string grammar [1], with the remark that the production rules
meaning (and implicitly the derivation meaning) is as follows:
a Nand T'are labels (values) of the tree nodes
b) Sis the label of the starting (initial) tree, which has only one node: (S)
C)P consists of production rules of the second type (P = {4>a| AEN and

aE(NUT) }).
Remark 4.1.

The condition c) assures that the grammar is context free.
n order to make a clear distinction between the two definitions given for tree

description grammars (definition 3.1. and definition 4.1), we will denote the
grammar from the last definition by d*-grammar.
Iwe call in a derivation a rule of the form A->a (a=XotX..Xywe achieve the

ransformation of the leaf A in the subtree with the root Xo and successors xA3.X
MENUT, 0Sisn), as showm in figure 4.1. If we apply a rule of the form 4->Ba then a

53

V. PREJMEREAN AND S. MOTOGNA

rule of the form B-a must exist and must be applied in the derivation. Such a rule does
not change at all the tree structure, only relabels a node, such that the described tres

would be final (definition 3.2.).
ee

A)

X) (X

Figure 4.1.

Definition 4.2. The language generated by a d*-grammar G= (N, T,P,S) is defined

analogous (Definition 3.3):
L(G) = {A eAr/S A).

Remark 4.2. All the previous results presented for d-grammars are valid for d.

grammars, since d*-grammars can be viewed as a generalization of d-grammars.

Theorem 4.1. La=Li»

Proof.

a) The inclusion g is obvious.

b) In order to prove the inclusion we proceed as follows.

For any language, there exists a d*-grammar, such that we can built a d-grammar
equivalent with it, in the folowing way:

if Ga(Na, Ti», Pa, Sa)

then Ga= (Na, Ti», Pa. Si)

(the alphabet and the start symbol of the two grammars are identical, only the set

of the production rules are different)

For any A>BaePi- there is B->a ePi», such that

Pa= {A-ua/ A >Ba and B->a ePi} U{A->aa/ Aaa ePa}

Lemma 4.1. Let G, be a context-free tree grammar. We denote by L, the tree

family generated by this grammar. Then there exists (it can be built) a d-granunar
equivalent to G.

54

TREE GRAMMARS AND TREE DESCRIPTION GRAMMARS

Proof.

a) G Ga

Tree grammars are defined in paragraph 2 (Definition 2.1.). A context-free tree
grammar will have to obey the following condition: the left side of a production rule

must be a nonterminal symbol. Therefore, the rules will be only of the form from figure 2.1.b (such rules as in figure 2.1.a don't respect this condition).

The proof is constructive. Figure 4.2 shows how the equivalent production rules
are built for A>a, =xota2., X;ENUT, Osisn.

X
A

A XoX1 X2 .. Xn

X

Figure 4.2

b) Ga G, - obviously, if we represent the production rules graphically.

Theorem 4.2.

where L cr represents the class of context-free tree languages.

The proof is obvious using lemma 4.1 and theorem 4.1.

REFERENCES

Aho, J.D. Ullman, 7he Theory of Parsing, Translation and Compiling, Prentice-Hal, 1972.

4D. Foley, A.V. Dam, Fundamentals of Interactive Computer Graphics, Addison Wesley, Londra,
1982.

D
S.

lree Languages and Syntactic Pattern Recognition and Artificial Intelligence, Academic

Press, New York,1976.
13)

A. Maurer, G. Rozenberg, E. Welzl, Using String Languages to Describe Picture Languages,

ngormation and Control, Vol.54, Nr.3, 1982, pp. 115-185.

4 H.

. Pavlidis, Structural Pattern Recognition, Academic Press, New York, 1972.

Kosenfeld, Picture Languages - Formal Model's for Picture Recognitions, Academic Press, 1979.

55

V. PREJMEREAN AND S. MOTOGNA

17] R.J. Schakoff, Pattern Recognition: Statistical, Structural and Neural Approaches, (Part.3 Sntaes.
Patterm Recognition), John Wiley & Sons, Inc., New York, 1992. tactic

Acaderniei, [8] R. Vancea, S. Holban, D. Ciubotariu, Recunoasterea Formelor, Aplicati, Editura
Bucuresti 1989.

(9 Watt, 3D Computer Graphics, Addison-Wesley, Great Britain, 1993.

Babe_-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, st
Kogalniceanu 1, România.

E-mail address: {per, mot ogna) @cs.ubbcluj.ro

56

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

