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TREE GRAMMARS AND TREE DESCRIPTION GRAMMARS 

VASILE PREJMEREAN SIMONA MOTOGNA 

Abstract. Considering the disadvantages of the tree grammars, we introduce another 
class of grammars: trec description grammars, which are string grammars. We present 
some of their properties and, in the end, we state the conditions in which they are 
equivalent with the tree grammers, and prove this equivalence. 

1. Introduction 

In the theory of solid constructive geometry, different corps and figures can be 

described through strings (expressions corresponding to binary trees) or directly through 
rees [2,9]. 

In the case of description through strings, we can observe only the concatenation of 
figures, loosing various details [4,6]. 

In the case of description through trees we obtain a hierarchical structure 5,8], 
which emphasizes also the relations between component subcorps of a certain corp 3,7]. 

In order to specify the description through trees, the tree grammars have been 
introduced [7], whose production rules are defined (easier) graphically. These grammars 
define trees through trees, and that's why these grammars cannot be classified in the 

usual types of grammars from the formal languages theory [1]. 

Considering these reasons, we have considered that if we will manage to describe 
these trees through simpler grammars (the production rules to be of a known type) then 
the properties of such grammars will be easier to be stated. Another point of view which 

was taken into consideration was the remark that in fact we don't need the tree itselí, 
only the way in which the corp or figure description tree is described. 

This situation has the advantage that in pattern recognition [5,8] we can apply 

existing parsing algorithms [1). 
the The paper is structured as follows: in the first paragraph we will present 

definition of the tree grammar, and in the next paragraph we will introduce the tree 

description grammar and we will prove some of its properties. A last paragraph will 

study the differences between these two types of grammars. 
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2. Tree-grammars 

Definition 2.1. [7] A tree-grammar G has the following form G = (N, T, r, P, S where: 

NUTis the alphabet, containing the terminal and nonterminal symbols, 
r: NUT->N, r(r) represents the number of successors for x, 
P is the set of productions rules, of the following form A1A2 (where A, and 4, are subtrees), and 

Sis the start synmbol. 
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Figure 2.2. 

The production rules can be defined graphically easier, since there can productions which do not preserve the structure, as in example from figure 2.1.0. derivation of the form A4 Ap, assumes that there is a production A, > A; throug" which the subtree A, (from A) is replaced by A, obtaining the tree Ag. 
48 
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Dofinition 2.2. [7] The language generated by a tree grammar G is defined as: 
LIG) ={A/S>AJ. 

Evample 2.1. Figure 2.2 shows a grammar which generates a description tree for a 2- 
O traiectory. The production rules are written in the left side, and the right side contains the generated tree and the trajectory described by this tree. 

We can notice that such a grammar (of a tree-type) allows a more general description 
than a string grammar, although uses only four terminals, corresponding to the four 
directions r,u,l,d: 

r= ("right"), 
(up"), 

= ("left") 
d ("down"). 

3. Tree description grammars and their properties
In order to emphasize the difference between a tree grammar and a tree description grammar we will define such a grammar. The grammars to be used will be context-free, 

and the production rules will have the right-side starting with a terminal, namely the 
form A->aa, ae(NUT) , and the words (the language elements generated by these 
grammars) will be derivation trees (parsing trees) as presented in [1]. If in string 
languages, the language elements are formed only considering the derivation tree front 
(concatenating the tree leaves), in a tree description grammar the words will be the 
derivation tree (considered as a whole). 

simpler a d-grammar, Definition 3.1. A tree description grammar, or 
7PS)is defined as a string grammar ([1]), modifying only the meaning of the 
production rules (and implicitly the meaning of the derivation) as follows: 

N and T are labels (values) for tree nodes, 
Is the label of the starting tree which has only one node: 

Aaa/AEN, aET and ae(NUT) }U {A>B/A,B EN }; 

ng, n a derivation, a nule of the form A>aa we will achieve the 

transformation of 
ENUT, ISsisn) as depicted above form, we 

of the leaf A in the subtree with the root a and successors X 

iepicted in figure 3.1. In addition to the production rules of the 

a 

not change the structure at all, and only relabel the nodes. 
Dot cha we can admit in a d-grammar rules of the form 4->B (4, BEN), which do 

SOS) are from the set M. The set of all the final trees relatively to a Set M 

will be denoted by AM 

lou 3.2. A tree A is final relatively to a set M if all the terminal nodes 
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(A 

o=X. X2 
Figure 3.1. 

Definition 3.3. The language generated by a d-grammar G =(N, T, P, S) is defined 
as follows: 

LIG)= {Ae Ar/S>A). 
In regards to the above definitions we can notice that starting from the root (the 

initial symbol S) we apply the production rules only for nonterminal leaves (EM), and 
when all the leaves are terminals, in other words the tree is final relatively to 7, the 
derivation ends. 

Remark 3.1. If all the production rules have jal = n e f0, 2}, in the right side they 

have either one terminal symbol (n = 0) or three symbols ( = 2), then the generated tres 

will be binary trees. We have eliminated the case n=/, namely the rules of the fom 
A ab/aB, because these rules do not define the subtree position (left or right), being in 
fact a single one. If we wish to generate binary trees with rules having n 2, a convention 
will be necessary for the rules mentioned above (case n = 1). We have considered here that 

a binary tree is formed fiom left subtree, root and right subtree. If, in case of solving certain 
problems, we will consider that a binary tree is a tree with at most two successors, then we 
can give up the restriction n * 1. 

In conclusion, we can state that if all the production rules of a d-grammar have the
property l 2 then the grammar describes binary trees and we say that it is d-linear 

Example 3.1. The tree description grammar 

G-((S, A, B, C}, {a, r, u, 1, d}, P, S),. 

with the production rules: 

P = {S->A, A->aBA /aCBA /aB, B->r/u/l/d, Cr/u/l/d} 
is equivalent with the tree grammar in example 2.1, which generates trees as in figure 2.2. 

We can notice that this d-grammar can be reduced, obtaining a simplified d-gramma 
G', equivalent with the d-grammar G (L(G)=L(G')). The new reduced grammar G° is: 

G'-((S, B}, fa, r, u, 1, d}, P, S), 
with 

P'-{S> aBS/aBBS/aB, B> r/uld} 
which can generate the tree from figure 3.2. We have numbered the rules of P' froml to 
so we could be able to refer the production used in a derivation. 
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Figure 3.2. 

Theorem 3.1. Let G=(N,T,P,S) be a d-grammar and LG) be the tree family 
described by G. Any tree AeL{G) has all the node labels (internal nodes and leaves) from 

the terminal alphabet T(if we denote by V the vertex set of A, then VON=Øor Vc ). 

Proof. Since the production rules have the form A-aa (definition 3.1.), this means 

that when a nonterminal node (A eM) is transformed it becomes an internal node, which is 
in T, so any internal node is from the terminal alphabet. On the other hand if AeL(G) it 

means that AeAr (LG) gAr, from definition 3.2.), so it has the front formed from 

symbols which belongs to the teminal alphabet T (definition 3.1). Even if we use rules 

such as A->B, these do not change at all the above situation, since from this poit of view 
the tree structure remains unchanged in a derivation which involves such a rule. 

Lemma 3.1. For any tree A, which has the nodes labeled with values from a set T, 
there exists a tree description grammar G=(N,T,P,S) which will generate this tree 

(AeLG). 
Proof: Since the proof is constructive, we will explain the algorithm which builds the 

d-grammar G=(N.TP.S), starting from G-(S),T,Ø,5) until we reach the required final 
form, transforming the tree A, which will be reduced until it will have only one node 

labeled with S. The nonterminals X will be chosen from the capital letters set (4, 

B-Succ(A), C= Succ(B), ...). 
The algorithm is: 

Initially N-(S}, P=®, X.=A; 
While A is a tree of depth> 1 do 

For each subtree of depth 1 (has only the root=a and front = a) 

Replace the subtree witha node labeled with X, 
If there isn't any rule in P which contains aa in the right side then 

N:-NU{X}; P:=PU{X->aa}; X:=Succ(). () 
A (which now is a tree of depth 1, with root a and front a) is replaced 

by and P:-PU{S->au. 
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It can be observed that the d-grammar builds the tree applying the 
derivations and that this d-grammar generates only one tree (|L(G)| = 1/). 

Considering the tree from figure 3.2, the d-grammar will be: 

reverse 

G-((S.A.BcD}.fa.r,u.l,.d}, {S-arD, D->adc, CaurB, B-adA, A->ad), S) 

still 
Although the algorithm tries to reduce the repeated production rules (*), we 

a 
face the problem of reducing this d-grammar (to a simpler d-grammar G) such 

L(G)CL{G) For the d-grammar which we have built the rule D->adC is almo 

identical with the rule B-adA, which leads us to the idea of unifying them, changing p 
with B. The reduced d-grammar G will be: 

G-(S,A,B,C}, {a.r,u,.,.d), {S->arB, B->adC, C->aurB, B->adA, A->ad), S) 

In this d-grammar G' the nonterminal C cannot be eliminated. If in the case of 
traditional string grammar, applying this elimination we will obtain the grammar 

G"-((S.A,B}. {a,,u,l,d}. {S->arB, B->adaurB, B->adA, A>ad), S) equivalent to G 
(LG)=L(G), in the case of tree description grammars this situation is no longer 
possibie, because two trees with the same front may not be necessary 1dentical. 

The new d-grammar G' describes now a tree family, including the tree described by 
the d-grammar G (if in a derivation we use all the rules from P in the order given above). 
If in a derivation we use only the rules S->arB, B->adA and A>ad (1,4, and 5 fromnP) 
we will obtain the tree from the figure 3.3. 

a 

Figure 3.3. 

Definition 3.4. 

A set of trees with nodes labeled is called d-language, 
A d-language L where the labels are from a set T, will be denoted Lr. 

Theorem 3.2. For any finite d-language L7, there exists (it can be constructeu 
d-grammar G=(N, T,P,S) such that Lr=L(G). 

The proof is based on lemma 3.1., which for any tree A e LT provides a grama 
G-(N, T,PS) which will generate it (/Sisn-|Lr|). Replacing all the rules S-a 
Sa,a we obtain the desired d-grammar G=(Nu..UN, T, Pu..UP»S). 

nonterminals , will be denoted (in the construction of the grammar G,) by A, B, C 

vith 

The 
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Definition 3.5. A d-language is context-frce, linear or regular if there is a d- 
grammar context-free, d-linear or regular, respectively, which will generate it. 

Lemma 3.2. The following statements are true: 
a family of chained lists is a regular d-language, 

a family of binary trees is a lincar d-language, and 

a family of (n-ary) trees is a context-frece d-language. 

Proof: We will take into consideration the length of the a sequence, from a 

production ule 4 aa (Definition 3.1): 

If al s 1, then the d-language is regular, and describes chained lists. If la| s 2, then 

then the d-language is linear, and describes binary trees (see also the Remark 3.1). If a 
2, then then the d-language is context-free, and describes n-ary trees. 

Theorem 3.3. LReg c LinC Lcr, where LReg Ltin and Lcr represent the 
coresponding classes of d-languages. 

The proof is obvious either from formal languages point of view (Chomsky 
hierarchy [1]), or directly through data structures referred in lemma 3.2. 

4. Comparing tree grammars and tree description grammars 

We will start giving another definition to the tree description grammars, which is 
more general, and we will prove that if a tree grammar is context-free then there is an 

equivalence between them and d-grammars. This result has its own importance, since, so 
far, only tree grammars have been used in this domain, and we can use their properties for our d-grammars. However, we have proved that d-grammars are easier to use, 
because they are string grammars and we can follow traditional parsing algorithm in 

pattern recognition. 

Definition 4.1. A tree description grammar, or simpler d-grammar, G-(, T,PS) 
is defined as a context-free string grammar [1], with the remark that the production rules 
meaning (and implicitly the derivation meaning) is as follows: 
a Nand T'are labels (values) of the tree nodes 
b) Sis the label of the starting (initial) tree, which has only one node: (S) 
C)P consists of production rules of the second type (P = {4>a| AEN and 

aE(NUT) }). 
Remark 4.1. 

The condition c) assures that the grammar is context free. 
n order to make a clear distinction between the two definitions given for tree 

description grammars (definition 3.1. and definition 4.1), we will denote the 
grammar from the last definition by d*-grammar. 
Iwe call in a derivation a rule of the form A->a (a=XotX..Xywe achieve the 

ransformation of the leaf A in the subtree with the root Xo and successors xA3.X 
MENUT, 0Sisn), as showm in figure 4.1. If we apply a rule of the form 4->Ba then a 
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rule of the form B-a must exist and must be applied in the derivation. Such a rule does 
not change at all the tree structure, only relabels a node, such that the described tres 

would be final ( definition 3.2.). 
ee 

A) 

X ) (X 

Figure 4.1. 

Definition 4.2. The language generated by a d*-grammar G= (N, T,P,S) is defined 

analogous (Definition 3.3): 
L(G) = {A eAr/S A). 

Remark 4.2. All the previous results presented for d-grammars are valid for d. 

grammars, since d*-grammars can be viewed as a generalization of d-grammars. 

Theorem 4.1. La=Li» 

Proof. 

a) The inclusion g is obvious. 

b) In order to prove the inclusion we proceed as follows. 

For any language, there exists a d*-grammar, such that we can built a d-grammar 
equivalent with it, in the folowing way: 

if Ga(Na, Ti», Pa, Sa) 

then Ga= (Na, Ti», Pa. Si) 

(the alphabet and the start symbol of the two grammars are identical, only the set 

of the production rules are different) 

For any A>BaePi- there is B->a ePi», such that 

Pa= {A-ua/ A >Ba and B->a ePi} U{A->aa/ Aaa ePa} 

Lemma 4.1. Let G, be a context-free tree grammar. We denote by L, the tree 

family generated by this grammar. Then there exists (it can be built) a d-granunar 
equivalent to G. 
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Proof. 

a) G Ga 

Tree grammars are defined in paragraph 2 (Definition 2.1.). A context-free tree 
grammar will have to obey the following condition: the left side of a production rule 

must be a nonterminal symbol. Therefore, the rules will be only of the form from figure 2.1.b (such rules as in figure 2.1.a don't respect this condition). 

The proof is constructive. Figure 4.2 shows how the equivalent production rules 
are built for A>a, =xota2., X;ENUT, Osisn. 

X 
A 

A XoX1 X2 .. Xn 

X 

Figure 4.2 

b) Ga G, - obviously, if we represent the production rules graphically. 

Theorem 4.2. 

where L cr represents the class of context-free tree languages. 

The proof is obvious using lemma 4.1 and theorem 4.1. 
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