
STUDIA UNIV. BABE^-BOLYAI, INFORMATICA, VOLUME II, NUMBER 1, 1997 

DISTRIBUTED NETwORK MONITORING AND MANAGEMENT 

DRAGOS POP SIMONA IURIAN 
MARIUS IURIAN CRISTIAN MIHOC 

Abstract. In order to accomplish their tasks the network managerS need a network 
monitoring and management application which allow them to start and stop network 
components as needed, to monitor the network, and to extract and analyze 
information related to network traffic and network performance. NetMon is a 
distributed framework, specifically designed for the network monitoring and 
management. The newest version of NetMon extended the support for SNMP in order 
to be able to interact to critical server applications like Oracle Server or Microsoft 
sQL Server 6.5. One of the most important features added was the distribution of 
tasks so that NetMon provides also daemons applications for specific platphorms like 

Lotus Notes server for Windows NT. 

1. Introduetion 

NetMon have had three different stages in its evolution over time: 
1. The creation of the kernel of NetMon based on the fundamental notions of 

Console, Event and Alert and the support for the creation of automated procedures of 
management and monitoring. In this phase NetMon supported a few basic network 

protocols for communication and management [lurian 1995] 
2. The second phase was to extent the network protocols as it was the case of 

IPX/SPX and even the possibility to interact in a native way with Novell Netware 
servers. Also in this phase it was inserted the support for RMON in order to have 
greater flexibility and the possibility to manage wider networks and internetworks. The 
RMON was designed with the following goals in mind: 

Off-line operation, it means that the manager must poll the monitor 

asynchronously 
Preemptive monitoring, 
Problem detection and reporting, 
Value-added data, which means that the monitor use the collected data in 

specific analyses, 
Multiple managers. 

3. Until this phase NetMon relied in every case on predefined mechanisms existent 
on the managed servers or components - a Telnet server, an SNMP agent or server, a 

Received by the editors: October 30, 1997. 
1991 Mathematics Subject Classification. 68M 10, 68M20, 68N15. 
1991 CR Categories and Descriptors.C.2.3 [Computer-Communication Networks]: Network Operations 
Network management, Network monitoring: C.2.4 [Computer-Communication Networks] Distributed 

Systems-Distributed applications 



D. POP, S. IURIAN, M. IURIAN AND C. MIHOC 

Novell Nctware server. The newest version achieve distribution of services over t the 
network because it provide daemons (specialized servers) for applications for hich : 
finer tunned management was necessary. 1his extends the distribution of services whicl 

was first only amongst NetMon stations as prescnted in figure 1. 

All these features make NetMon compliant with ISO (International Organization for 

Standardization) who detined, as part of its specifications of OSI systems management 
the functional requirements of a network nanagement application [Stallings 19931: 

The facilities that enable the detection, isolation, and 
correction of abnormal operation of the OSI environment, 
The facilities that enable charges to be established for the 

Fault management 

Accounting management 
use of managed objects. 

name The facilities that exercise control over, identify, collect 
data from, and provide data to managed objects for 
assisting the continuous operation of interconnection 

Contiguration and 
management 

services. 

The facilities needed to evaluate the behavior of managed 
objects and the effectiveness of communication activities. 
The facilities which address those aspects of OSI security 
essential to operate OSI network management correctly 
and to protect managed objects. 

Performance management 

Security management 

2. The structure of NetMonn 

The application NetMon follows the client-server paradigm and has a hierarchical organization. A computer running NetMon can monitor one or more networks and one or more servers UNIX or Novell Netware. If such a system has the option Server Functions activated, it means that this system itself can be monitored by a system running a client NetMon. Components of NetMon as the daemon for Lotus Notes Server for Windows NT must be installed to run continously on these machines in order to allow a higher level of manageability. 
The internal structure of the NetMon application is presented in Figure 1. Netmon has two important layers: the Kernel layer and the User layer. The Kernel layer is composed of: 
a Thread Manager which can be called by an API very close (as functionality) to Mach's "C Threads" library. 
a TCP/IP kernel which implements IP, ARP, ICMP, UDP and TCP and can be called by BSD Sockets Interface. 
an IPX/SPX protocol stack and the basic interaction with the modules RSPX ana REMOTE from the Novell Netware server At the lower level this TCP/IP implementation is based on the Packet Driver interface. The use of Packet Driver Interface allow also the concurrent use or TCP/IP and IPX/SPX stacks of protocols. An Events and Alerts Manager responsible for the defining, treating and logging Or 
events and alerts in NetMon. 

40 



DiSTRIBUTED NETWORK MONITORING AND MANAGEMENT 

An interpreter for procedures written in NSL (NetMon Script Language). These 
procedures are used by the Events and Alerts Manager.

Graphical user interface 

U 
Consoles Protection and Security 

Supported types: NetMon, Telnet, 
SNMP, SNMP-Trap.

E 
R 

-Sockets interface-
K 

E TCP/IP TCP UDP Events and NSL 
R kernel IP ICMP ARP Alerts Interpreter 
N Packet Driver Interface Manager 
E 
L Thread Manager 

Figure 1. Internal structure of Netmon. 

The User layer is composed of 
a component which manages the Consoles defined in NetMon. The supported 
console types are: NetMon Client, Telnet, Novell RConsole, Lotus Notes Console 
or SNMP or SNMP Trap. This is the main component of the User layer, which uses 
the Thread Manager to create and associate a thread to each console, the TCP/IP 
kermel to establish connections with the managed servers, and the Events and Alerts 

Manager to monitor these servers. 

a component which allows the definition of two classes of users and their access 
rights. This component uses the Events and Alerts Manager to define the access 

rights of the users. 

the third component is the graphical user interface which is a Windows-like 

interface. 

3. The Kernel layer of NetMon. 

3.1 The Thread Manager 
As a tool for network monitoring and management, NetMon needs to be able to 

establish connection with several servers and to process data arriving concurrently from 
them. This is the reason for the implementation of a Thread Manager at the basic level 

of NetMon. NetMon Threads are "lightweight threads", because they are implemented 
outside the operating system's kernel. The API offered for the use of NetMon Threads 

consists of the following five calls: 
Procedure Attach(FarProc: Pointer, Creates a new thread. The first argument is the 

far address of the procedure whose code will be 

the thread code, the second is the amount (in 

bytes) of memory needed for the thread's own 

stack and the third an address (which can be nil) 

m: Integer, FarAddress: Pointer); 

41 



D. POP, S. IURIAN, M. IURIAN AND C. MIHOC 

for parameter's passing. 
Destroys the current 

occupied memory. 

Suspends the current 
thread's 

execution until the 

thread, releasing the 

Procedure Detach; 

Suspends the current thread's execution for the 

specified amount of milliseconds. 

The current thread is releasing the control of the 

Procedure Suspend; next time slice. 

procedure Tempo(time: integer); 

procedure Dispatch; 

The principle used in NetMon for the thread's execution is that each thread mus 

release the control as soon as possible. 

executio. 

3.2 The TCP/IP kermel. 

At it's basic level, the TCP/IP kernel uses the Packet Driver Interface, which means 

work with a network driver which follows the Packet Driver Interface 

Using Specification. This offers a great portability because the collection of packet drivers 

from Clarkson University is very large, covering the most used network cards. 

Clarkson's packet drivers collection allowed NetMon to work with Ethernet and Token- 

Ring (using a modified version of the IBMTOKEN packet driver) cards and also with 

serial lines (using the SLIP8250 packet driver). 
The TCP/P stack of protocols is implemented following the well-known Internet 

standards and the API offered for building applications based on this stack is the BSD 

Sockets interface. There are two versions of this TCP/IP kernel: one that is written as a 

that it can 

collection of units used by the DPMI version of NetMon and the other written as a DLL 

for the Windows version of NetMon. The first version uses intensively the Thread 

Manager to be able to obtain a very good performance. 
Windows mechanisms for concurrency in order to obtain the same level of performance 

The second version uses 

as the DPMI version. 

3.3. The IPX/SPX protocol stack 

The IPX/SPX stack of protocols is implemented following the Novell Netware 
specifications and by using the Packet Driver Interface Specification it was possible to 
make IPX/SPX coexist gracefully with TCP/IP. The main difference with NetMon 1.0 
is that the support for IPXISPX is offered only for the DPMI version of NetMon and not for the W indows version. The support for IPX/SPX in the Windows version will be added later. 

The Events and Alerts Manager 
An Event for NetMon, or an awaited event it is the apparition of a certa message on one of the consoles. An event is in fact an awaited event because is defineo 

as the apparition of a message until a given time (indicated as day of the week, hours, 
minutes and seconds). There are two possible situations: the awaited event is produced 

3.4 

or it is not. 



DISTRIBUTED NETwORK MONITORING AND MANAGEMENT 

In the first ase it is possible to define a response to this event, which (in most 

cases) can be the "execution" of a procedure written in NSL (NetMon Script Language). 
In fact, the procedure is just interpreted and not executed, NetMon having an interpreter 

for this script language. 
In the second case an alert is issued. An alert can be generated not only by the fact 

that an awaited event is not produced, it can also be generated by errors of the managed 
networks and servers, and violations of the access rights of the NetMon users, or by 
other procedures which are currently interpreted. 

The Events and Alerts Manager uses the Thread Manager for starting the 
interpretation of the response procedures and is used by the components of the User 

layer of NetMon. 

4. The User layer of NetMon. 

4.1. Consoles 

The consoles are the main concept in NetMon, because all the monitoring and 
management activities are defined in relation with them. The internal structure of 

NetMon as depicted in Figure 2, present the two functional layers of the application. 
The application NetMon is written in Borland Pascal with Objects and the program 
structure is built around a hierarchy of classes. For a better understanding of the 
console's construction and their functionality, a part of the class hierarchy is presented in 

Figure 2. 

TObject 

|TDevice TPort TEmulation TConsole 

TTcpTUdp |TVTI0/ ATTn3270 TTelnetCon iNetMonClientCon 

TSnmpUI TSnmpTrapUI TSnmpCon TSnmp'Trap Con 
Figure 2. Class Hierarchy in NetMon (partial) 

Four classes (and many others which are irrelevant in the following discussion) 
derive from the root class TObject: TDevice, TPort, TEmulation and TConsole. 

The class TDevice represents the devices used for connecting NetMon applications 
to several types of networks and servers. These devices can be network cards (Ethernet 
or Token Ring) or serial ports. TDevice has also fields that describe the characteristics 

and their current settings. 
The class TPort represents an abstract class used by inheritance by the classes 

TTcp and TUdp. Each port of communication has an associated device an instance of 
the TDevice class. For example, a TCP port can use an Ethernet network card, but it can 

43 



D. POP, S. IURIAN, M. lURIAN AND C. MIHOC 

also use a serial port (COM2 for examplc) if it uses the SLIP8250 packet driver. A port 
has buffers for incoming packets, preinitialized packets to be sent, and other ficlds 
necessary for the implementation of the TCP and UDP protocols. 

The class TEmulation represents an abstract class used by inheritance by the fout 
classes TVTI00, TTn3270, TSnmpUl and TSnmpT rapUl 

There were derived further in this version classes for the emulations VT220 and 
TnS250 for connecting better with IBM mainframes or AS/400. 

The first two classes have a TCP port (an instance of TTcp) associated and the 
others have an UDP port associated. Practically, the packets received on a TCP or UDP 
port are passed forward to a filter that interprets the sequences of characters according to 
the type of connection and the desired emulation. 
TVTI00 the packets arrived on the associated TCP port are the input for the finite state 
machines that describe the TEILNET protocol and further for a translation according to 
the VT100 sequences of characters definition. The instances of TTn3270 are working in 
exactly the same way. For the TSnmpUI and TSnmpTrapUI instances the things are 
even simpler: the packets arrived for the associated UDP port are translated from the 
ASN.1 form to the intemal representation. 

The classes TTelnetCon, TNetMonClientCon, TSnmpCon and TSnmpTrapCon derive from TConsole to each one being associated an instance of the classes derived from TEmulation. In fact, these classes are the support for the types of consoles 
supported by NetMon: Telnet, NetMon Client, Snmp and Snmp Trap (see also Figure 2). Each console has a corresponding window in which the incoming data will be displayed. For the Telnet consoles the data supplied by the associated instance of TVT100 are dispiayed with no modification in the corresponding screen. For Snmp and Snmp Trap consoles the data supplied by the associated instances of TSnmpUI, and respectively TSnmpTrapUI, are displayed in a specific position of the corresponding windows, the specific arrangement on screen being carried out by the methods of the TSnmpCon and TSnmpTrapCon classes. In the newest version were added MIBs for server applications like Oracle server and Microsoft SQL Server. 

The protocol for the NetMon consoles is more complicated because a higher nance must be obtained. After the connection between a NetMon Client and a 

For example for an instance of 

perfo 
NetMon Server (this use a TCP connection) is established, the flow of data will consist of the contents of the open windows of the NetMon Server, at each opening of an administrative window, the needed information being sent. For performance reasons, after a modification in an open window of the server, only the modifications are sent to the client. 

4.2. The Lotus Notes daemon and Console 
The Lotus Notes daemon was written as an application for Windows NT using Lotus Notes API for C++. This API is a complex hierarchy of objects which permit to access the collections of Lotus Notes Databases. The Console Log of Notes is one special database in which there are stored all the events, alerts, system messages. The daemon retrieves information from this database and on a regular basis or on specific command of an NetMon server sends this information to NetMon. 

44 



DiSTRIBUTED NETwORK MONITORING AND MANAGEMENT 
The Console for Lotus Notes uns as a server accepting connections for multiple 

Lotus Notes daemons and present the information collected by them. It is possible from 
the Lotus Notes Console on NetMon to send commands supported by Lotus Notes 
Server console and to execute them remote or to store them in the special database. 

4.3. The Protection and Security in NetMon 

In NetMon there are two classes of users: the Supervisor and the Operators. The 
Supervisor has all the rights in the application, being able to accomplish all the 
administrative tasks: defining the awaited events, 
Operators and assigning them to specific tasks, 
establishing links with other NetMon servers. The Operators are generally assigned to a 
subset of events and alerts and are allowed to monitor just a subset of consoles. 

alerts and responses, creating the 
monitoring all the consoles, and 

4.4 The Graphical User Interface. 

The interface of NetMon is a Windows-like interface. In fact, the program uses a 
unique resource file, NETMON.RC, which describes all the windows, dialogs, icons and 
string tables. This common resource file make the two versions of NetMon (DPMI and 
Windows) fully compatible from the user's point of view. 

NetMon has a window for each console and a special window for displaying the 
log file NETMON.LOG. Dialog boxes are used for all the administrative tasks (defining 
events, alerts, responses, access rights, consoles) and for statistics display. 

5. Conclusions. 

NetMon has been developed in two versions, DPMI and Windows, which are fully 
compatible. It can monitor UNIX servers using Telnet connections (tests have been 
made with Linux and Sun) and any network component which has a SNMP server or 
agent (tests have been made with Novell Netware servers with the SNMP component 
loaded, with Windows NT Advanced Server and with PCs that have a SMC network 
card with the SNMP PC Agent loaded). The RMON support was tested with a Novell 
Netware network with NMS product installed on the server. NetMon allow also the 
direct monitoring of Novell Netware servers with the native Remote Console 
incorporated. The incorporated Novell RConsole was tested with Novell Netware 3.11, 
3.12 and4.01. The daemon for Lotus Notes was tested on Lotus Notes 4 on Windows 
NT 4.0 Advanced Server. 

REFERENCES 

Comer 1991] COMER D., STEVENS D., Internetworking with TCP/IP., Prentice Hall Intermational, 
1991. 

IURIAN M., IURIAN S., MIHOC C., POP D. An object oriented approach in the 
implementation of the Simple Network Management Protocol (SNMP), Preprint 5/1994, 
pag 11-20. 

[lurian 1994] 

Turian 1995] IURIAN M., POP D., IURIAN S., MIHOC C., NetMon a tool for Network Monitoring 

45 



D. POP, S. lURIAN, M. JURIAN AND C. MIHOC 

and Management, Proceedings of ROSE95, pag 32-39. 

MANSON C., HAUGHDAL S, Dynamic and Distributed, Byte 3/1991, pag. 167-172, 

MARTIN J., 1LEBEN I, DECnet Phase V. An OSI Implementation., Digital Press, 1992. 
MHOC C., POP D., URIAN S., IURIAN M., The implementation of the Virtual 
Terminal Protocol (Telnet) using an object oriented method, Preprint 5/1994, pag 1-10. 
Novell Netware 3.12. TCPP Supervisor's Guide, Novel Inc., 1993 

[Manson 1991] 
[Martin 19921 
[Mihoc 1994] 

Novell 1993] 

Ruder 1993] RUDER D., DLL Anatomy - What's a DLL Made Of, MDSG Technical Article, 1993. 

STALLINGS W., SNMP, SNMPv2 and CMIP. The practical guide to Network 
Management Standards, Addison-Wesley Publishing Company, 1993. 

Stallings 1993] 

Babes-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, str. 
Kogalniccanu 1, România. 

E-mail address: (dragos, siurian, miurian, cmihoc)@cs.ubbcluj.ro 

46 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

