
STUDIA UNIV. BABE^-BOLYAI, INFORMATICA, VOUME II, NUMBER 1, 1997

sPECIFICATION OF ACTIVE OBJECTS BEHAVIOUR
USING STATECIARTS

VASILE MARIAN SCUTURICI IULIAN OBER

MIHAELA SCUTURICI DAN MIRCEA SUCIU

Abstract. Object oriented concurrent programming is a methodology that seems to

satisty nowadays requirements for
multiprocessor architectures. The fundamental abstractions used in this methodology
are active objects and protocols for passing messages between them. The field of

objcct oriented concurrent applications analysis and design and also the development
of CASE (Computer Aided Software Engineering) tools that assists designers of this
kind of applications are current research issues. In this context, statecharts scem to be

one of the most appropriate ways of modelling the behaviour of active objects.
Therefore, we developed an implementation model of statecharts in an object oriented

programming language (C++). This model simplifies the implementation of active

objects and it can be integrated into an automatic code generation tool from a

specification or design model.

complex application development on

1. Introduction 1.

Concurrent object oriented programming is a promising methodology.! It allows us
to describe problems using collections of entities (called objects) that embed some

properties, perform computations and concurently interact through a unified

communication protocol (called message passing). This methodology represents an

excellent basis for program decomposition and efficient execution of them on multi-

processor architectures.
Concurrent object oriented programming is applied in many fields. There are

applications developed in the following fields:

distributed operating systems
distributed artificial intelligence
distributed simulation
distributed data bases

real-time systems and the control of distributed processes
Significant results were also obtained in computer-aided text and music processing

Concurrent object oriented programming has an important impact on multi-processor

architectures design.

Received by the editoS: November 25, 1997.

1991 Mathematics Subjeci Clussification. 68Q10, 68Q90, 68Q05.
1991 CR Categories and Descriptors. D.1.3 [Programming Techniques: Concurrent Programming; D.l.5
Programming Techniques): Object-oriented Programming, D.2.2 [Sottware Engineering|: Tools and

Techniques Computer-aided software engineering (CASE), Sofiware libraries.

V.M. SCUTURICI, I. OBER, M. ScUTURICI AND D.M. SUCIU

In section one we present the main concepts related to concurrent object oriens.

programming and we define the active object concept.

Section two contains the presentation of statecharts and the advantage

describing object behaviour (including the active ones) and for facilitating source co

generation process.

Section three prescnts an implementation modcl used for active object descri iption

using statecharts. Is also presented a way for using this model in C++

The remarks in section four establish the advantages and drawbacks of modellin

active object behaviour using statecharts and suggest füture research directions in thi

field.

ted

for
le

2 2. Active objects

Concurrent object oriented programming is based on object oriented programming

methodology which is known at this moment as a top methodology for developing

applications with and for reuse. This methodology is conceptually simple and wide

applicable. It is based on two fundamental concepts
objects

that identify knowledge (represented by information and services),

and

an unified protocol for activating and communicating between objects, called

message passing
Objects represeni entities and concepts that form the problem domain.

Applications developed in an object-oriented way have no global algorithm, but rather

they are composed of a set of objects. Objects cooperate by sending each other requests

and exchanging information. They are animated like in a simulation. Other fundamental

concepts, intimately related to object oriented programming, are abstraction (the class

concept) and inheritance (the subclass concept) which allow specification, classification

and reuse of object descriptions.
The first programming language based on these concepts, Simula67 appeared at

the end of 60's. Initially, concepts were descending from a simulation language in a

general programming environment. Programming is regarded as a simulation of the real
world. The concepts evolved since then but even in its rough form from Simulaó7,
object oriented programming was regarded as a significant improvement in software
development and a rise in quality, robustness, reusability, extensibility.

Due to the sequential nature of conventional programs and processors, the

autonomous activities of each object - that, naturally, led to simultaneous activities

has not been treated by object oriented programming systems in the native parallel way
Therefore, in most cases the programming languages were and continue to be

sequential. This means that, at a moment in time, only one object is active and this
activity is passed from an object to another by synchronous messages.

On the other side, the ability to express the potential parallelism of activities
through concurrent programs became a research subject for the next generation
systems. These are only some aspects that suggest the importance of this tendency "

programming:

of

The development of supercomputers that allow parallel execution of multipic

threads, increasing programs' efficiency

20

SPECIFICATION OF ACTIVE OBJECTS BEHAVIOUR USING STATECHARTS

The distribution of information through a computer network
The existence of multiple interaction inside some large interactive programs
(like processes control, where the iputs and the control have to be multiple

and distributed)
The natural way of expressing certain applications using concurrency and

activity co-ordination mechanisns
Considering the above assertions, the idea of building a programming language

that can integrate the object oricnted programming mechanisms with concurrency
mechanisms is very attractive. To achieve an optimal integration of these mechanisms is

very useful to identify objects as activity units and to associate synchronising code at the
message passing level. These active objects are often called actors. The result of this

unification is the integration of all the object oriented programming and concurrency
concepts and it allows the programmer not to be explicitly involved in establishing the
synchronisation discipline. It also maintains the modularity and simplicity that is typical
for the object-oriented programming, and respects object's embedding and autonomy.

This integration represents a natural generalisation of object
programming, giving a greater autonomy to the objects. In [2] J. Brriot says that object

oriented programming is a technological restriction of the more general concept of
concurrent object oriented programming.

In concurrent object oriented programming the concurrency can be modelled at

two levels:

oriented

Inter-object concurrency - that means parallel execution of autonomous activities

by more than one object.

Intra-object concurrency
the possibility of treating concurrently more messages on the same object.
Message passing is the co-ordination and interaction mechanism between objects.

All interaction types, from information extracting to requiring an object to perform
some computation, are covered by the message passing concept. A message passed to an
object determines the activation of a method (an operation associated with a message
pattern) of the receiving object with the arguments contained in message.

Due to the potential competitions between source object activities and those of the

receiving object, it is useful to store the messages in a waiting queue for managing
communication speed differences between the receiver and the source and also for
releasing the source object when a response is not necessary.

that takes the concurrency at the object level by giving

2.1. Statecharts

Statecharts are used for specifying objects in designing compleX systems.
Statecharts constitute a visual formalism for describing states and transitions in a
modular fashion, enabling clustering, orthogonality and refinement. In statecharts we
use the elementary notions of state and event. A state expresses a certain condition that
an object satisfies or a conjuncture that it is in. At different moments in time an object
can be in many states. An object can receive (observe) events regardless of the state it is
in, but it usually responds to them only when it is in an appropriate state. The response to an event is drawn on the statechart by a transition that links a state in which the object responds to that event and the state reached by the object as the result of responding to

21

V.M.
SCuTURICI,

I. OBER,
M.

SCUTURICI
AND D.M. SUCU

the event. If the
occurrence

of the event
does not change th

autotransition (the final state is the same
with the initial one).

the state of the object, it is an

B

A eC

Figure 1: when event e occurs in state A, if condition C is true at the timo

the system
transf�rs to state B

ime,

B

D1

A

D2

Figure 2: Nested states in a statechart

In this way we can build a graph with nodes representing states and labeled arows

representing transitions. This graph is a transition diagram between states (a finite state

machine). For avoiding the growth of the number of transitions, we can use nested

states.

For avoiding the exponential growth of the number of object states generally due

to the fact that certain objects have independent subparts that function each as a state

machine, we can use orthogonal state machines. An example is given in a later section.

For details see: [1], [6], [7]. 18], [9]. [10].
The problems that appear are related to statechart modelling in object orienteu

programming languages. In this article, we will present a possibility for modelnng

active objects with statecharts in a language that does not support them natively, (CT

2.2 Using statecharts for active object description
Reactive objects in an application can be described using statecharts. Howe ve. *

object oriented programming languages (like Ct+, Smalltalk, etc.), the notionsr 1
and event, as we understand them here, do not exist. We established that in oaf

substitute these lacks we had to develop an implementation model like an exI

the C++ programming language.
In order to have a sufficiently general model, we supposed that

potentially active objects. Similarly, all existent objects may receive the events,

some of them will respond to them, generally by calling a method.
An object created within our model will contain the attributes and uc

defined in its class and also an extension that will allow it to use statecharts.

n

state

r to

that all objects
only

are

thods

22

SPECIFICATION OF ACTIVE OBJECTS BEHAVIOUR USING STATECHARTs
The extension will be creatcd automatically. The new object has all the features of the old object, further allowing some additional behaviour.

Object A
Object A

,ObjectA extension,

Figure 3

We will present here the extension of an object (extension whose implementation
is hidden, but is useful for the understanding of the model).

Object A

Stare

Events ***** ** ********* ***** ***** ***.
State predicate

manager
Events table

***** ***** ******** ** ***** ***** *"

Object A extension

Figure 4

The new object will contain:

The initial object: all its attributes and methods.

A number of state objects. These are data records containing infornmation
related to the states defined in the statechart. They contain the state invariant

which describes the condition or conjuncture modelled by the state. This

invariant is used in order to check whether the object is in a certain state or not

(the object is in the states for which the invariant holds true). They contain also
an associative table. Each element in this table will be a tuple (event, method,

23

V.M. SCUTURICI, I. OBER, M. SCUTURICI AND D.M. SUCIU

an object precondition, postaction) and it means that when the event occurs

that precondi
for

is that is in that state, the method will be called (just in case

true). After the method execution the postaction will be executed

Events manager. The events manager i an intertace of the new obiect e.

application event flow.
the

Object A
Ob ject B

Evens manager
Events manager

Object C
Global evens

manager
Events manager

Figure 5

The application will contain a global event manager. That is an object that
manages all the events that circulate between the application objects. It allows

communication between applications by events, in a way that will be presented below.
Thus, an object can send an event to any other object using his event manager. This event will be received by all objects that have the event managers connected to ue

global event manager (if a destination is not specified). The working mechanism will be the following: An object sends an event through its manager to the global event manager The global event manager sends the event to each object event mau connected to it
nager

Each event manager finds out which are the current states of the corre nal object (there can be more valid states at a moment if we have an diagram).
Inside that state it searches all the entries in the events

thogona

events table, entrie the same name as the received event (there can be more than one enu of the preconditions). If such an entry does not exists that means tnd does not know or want to respond to that event. If the entry exist

becau

bject
the

precondition is satisfied, the corresponding method is called.

and

24

SPECIFICATION OF ACTIVE OBJECTS BEHAVIOUR USING STATECHARTS

2.2.1. States organization

Inside an object the states (as objects) are organized as a tree, allowing the
modelling of nesting and orthogonality and, also, a better treating of the events between

them.

Type1

State3 :[State4

State5
State1

State7 State6
State2

Figure 6
For this statechart, the representation of the states inside the object will be the

following:
Type1
Di I D2.

State 5

D1 I D2
State 1) State 2) (Srate3 State 4

State Stare6

Figure 7

When an event appears in the root, it is sent to all the subtrees. Inside a node, an

event is sent to all the composite states of the node.

2.3. The C++ implementation of the presented model

We will see now the way that we implemented the presented model in C++. We
will take the following example that describes an active object class. An object of this

25

V.M. SCUTURICI, I. OBER, M. ScUTURICI AND D.M. SUCIU

class can be created, can be started for continuously executing an activity (a step) after

that it will be stopped.

ActiveObject
active

running

id le step) stopped
stop)

start)
resumel)

pause
paused

Figure 8

At the moment of creation, the object is in the idle state. When it receives the start
event, the object passes in the running state. Here it may receive the step event
remaining in the same state and executing the Step) method. When it receives the pause
event, the object will pass from running into paused from where it may return at the
receiving of the resunme event. The activity of the object ends when it receives the stop
event when it is in the active state (that means one of the running or paused states)

The implementation in Visual C++ for this class using our framework:

class ActiveObject: public FSM

CString m_state;
CWinThread* m_runningThread,

public:
ActiveObject();
ActiveObject();
virtual void Step(); // method called at the receiving of step
void StartObject(); / starts an execution thread inside the object which sends

/all the time the step event to the current object void StopObject();
protected:

/ the associated statechart...

DECLARE_FSM
STATE(idle, ROOT, 0, m_state == "idle")
STATE(active, ROOT, 0, (m_state="running")|(m_state == "paused")) STATE(stopped, ROOT, 0, m_state== "stopped") STATE(running, active, 0, m_state =
STATE(paused, active, 0, m_state == "paused") TRANSITION(start, idle, active, startObject, TRUE, m_state = "running") TRANSITION(stop, active, stopped, StopObject, TRUE, m_state = "stopped")

"running")

26

SPECIFICATON OF ACTIVE OBJECTS BEHAVIOUR USING STATECHARTS

TRANSITION(pause, running, paused, NULL, TRUE, m_ state = "paused")

TRANSITION(resunme, paused, running, NULL, TRUE, m_state = "running")

TRANSITION(step, running, running, Step, TRUE, NULL)
END DECLARE FSM

If we want the objects of a class to be able to work as state machines, it is
necessary to derive the class (directly or indirectly) from our FSM class, that is a part of

our framework.
The description of the statechart is made in the following section of the class

definition:

DECLARE_FSM
li statechart section

END_DECLARE_FSM

The macros used are:

STATE(newState, parentState, stateDiagram, state Definition)

where:
newState: is a new state that will be added to the class's statechart

parentState: the parent state in which the newState is introduced; it may be

ROOT (in which case it does not have a parent

stateDiagram: the number of the orthogonal state machine of the parent state

where it will be added; it will be 0 if we do not have orthogonal states;

stateDefinition: a Boolean expression that will be evaluated each time the event

manager wants to determine whether the object is in a certain state or not; this

is the state predicate

TRANSITION(event, currentState, newState, method, precondition, postaction)

where:
event: the name of the event that triggers the transition

currentState: the source state of the transition
newState: the state in which the object will have to be after the receiving of the

event
method: the name of the method that will be called when the event occurs; it

can be NULL, in which case nothing will be executed;

precondition: a Boolean expression that will be evaluated first of all; only if
this is TRUE, the object will begin the execution of method; if it is FALSE the

transition will not be executed;

postaction: a sequence of instructions that will be executed after the execution

of method

2.3.1. The Inheritance of the Statecharts

With simple inheritance, when B inherits from A, if A has defined a statechart and
B defines other states, these will be taken as a supplement of those that are in A (which
will be found in B too). With multiple inheritance, the class that inherits from other
classes inherits the statecharts too. The statecharts of the parent classes will be found as

27

V.M. SCUTURICI, I. OBER, M. ScUTURICI AND D.M. SUCIU

orthogonal diagrams of the heir class. The statechart of the new class will comnlat.

diagram of the first class in the parents chain.
lete the

2.3.2 Concurrency support
In the FSM class there are many methods that can be used for modeli.

concurrency. One method that verify if the object is in the state named stateName i.

BOOL AtState(CString stateName),

al We remember that an object may be in more than one state if it has orthogonal

machines.
The method that is called when receiving an event is

void ReceiveBvent(CString eventName);

Normally this is used by the global event manager.
The method that sends an event using the principle "who has ears to hear let it

hear"

void SendEvent(CString eventName)

When this method is called, the current thread is locked until all the objects that know
how to respond to this event respond to it.

Another method that implement the same mechanism as the one above, with the
difference that an asynchronous event is sent is:

void ASend�vent(CString eventName)

This means that it will not wait until the sent event finishes the execution, it will
continue concurrently:

The method that causes the stop of the current thread until pObject arrives in the
stateName: state:

virtual void WaitUntilObjectAtState(FSM* pObject, CString stateName):

There are also methods for modifying the statechart at runtime. One can: add
states, add transitions, modify them.

2.3.3. Support for working ina distributed environment

For allowing the interaction between applications that are running on many computers, we can use the extension of the implementation of statecharts. How will n

work?

The global event managers are connected with each other and the events
circulating inside an application will arrive also in the applications that have the global manager connected to the former one.

The methods that allow connecting the global events managers betweeu applications are:

BOOL InitServer(int nPort);
BOOL ConnectToServer(int nPort, CString serverName);

nPort is the TCP port number on which the applications will communicate
28

SPECIFICATION OF ACTIVE OBJECTS BEHAVIOUR USING STATECHARTS

serverName is the server name to which the connection is attempted (internet
name or address).

For instance, if we want to use synchronisation between an application that has an
AVIPlayer object and another application that has a Timer object (these classes are
descendants of FSM), we will do it this way:

Application A
Application B

Evens
manager Events

manager

Application C

Events
manager

Figure 9

In the application that contains CAVIPlayer we will introduce the following code:

CAVIPlayer* pPlayer = new CAVIPlayer("clock.avi");

pPlayer->InitServer(71 1);

If we have already created the object that will display a clock on the monitor and
when receiving a FSM_TIMER event, it will advance one position, and we have
initialised the server on the port 711 (we work on the machine with the IP address
apollo2.cs.ubbcluyj.ro), inside the application whose global manager will be connected to

the previous one we will put:

Timer* pTimer = new Timer(1000);

pTimer->ConnectToServer(711, "apollo2.cs.ubbcluj.ro");
plimer->startObject()
It has been created a Timer object which send the FSM_ TIMER message at one

second; connected to the application on the apollo2.cs.ubbcluj.ro will start to display the
movement of the clock arrows which advance at each second, as a response to the

received event.

3. Conclusions

The most important benefit of this model is that it allows using statecharts into

object oriented programming languages.

29

V.M. SCUTURICI, 1. OBER, M. SCUTURICI AND D.M. SUCIu

The statecharts of an object are initialised with thc class pattern, after that they can

change their contfiguration during the execution; in other words, the structure of

statecharts can be dynanmically modificd for eaclh object; this is not specified in object

oricnted analysis and design nmethods.

Because the mechanism of working with macros for the statechart description is

rather diflicult (but viable!), it is useful to use a CASE tool for automatic code

gencration for the statecharts; this should not be manually modified, or completed.

Working with this implementation of statecharts is uscful in case we can describe a

class using a statechart. If all the classes of an application can be described this way,

then we can speak about 100% generated code (not only 100% correct but also 100%

complete)
Some problems that appear are related to statecharts inheritance. Here we have just

an approach, but it does not solve all the problems.

REFERENCES

David Harel, Statecharts: A Visual Formalism for Complex Systems, Science

of Computer Programming, North-Holland, 1986

Jean-Piere Briot. Object-Oriented Concurrent Programming: Introducing a

New Programming Methodology,. Proceeding of the 7th International Meeting

of Young Computer Scientists (IMYCS'92), Topics in Computer Science

Series, Gordon & Breach, 1993

Michael Papathomas, Behaviour Compatibility and Specification for Active

Objects, Pattern Languages of Programming conference in Monticello0,

Illinois, September 6-8, 1995

Lavender R. G., Schmidt D. C., Active Object, an Object Behavioral Pattern

for Concurrent Programing, Object Frameworks, D.Tsichritzis eds. Centre

Universitaire d'Informatique, University of Geneva, 1992
Michael Papathomas, G. S. Blair and G. Coulson, A model for Active Object

Coordination and its use for Distributed Multimedia Applications, ECOOP 94

Workshop on Coordination Models and Languages for Parallelism and

Distribution, Bologna, Italy, July 1994
James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

William Lorensen, Object-Oriented Modelling and Design, Prentice Hal,

[21

41

[5]

[6]

1991

17
James Rumbaugh, Modeling & Design, Journal of Object Oriented

Programming, 1993-1995
Sally Shlaer & Stephen Mellor, A Deeper Look, Journal of Object Oriented
Programming, 1993-1995

Sally Shlaer & Stephen Mellor, Ohject Lifecycles. Modeling the World
States, Prentice Hal1, 1992

[10] Steve Cook, Ohject Oriented Design with Syntropy, Prentice Hall, 1994

[8

[9

Babey-Bolyai University, F'uculty of Mathematics and Informatics, RO 3400 Cluj-Napoca, S.

Kogalniceanu 1, România.

E-mall address: Bcuty, iulian, nihaelas, tzut zu)@cs.ubbcluj.ro

30

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

