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Abstract. Object oriented concurrent programming is a methodology that seems to 

satisty nowadays requirements for 
multiprocessor architectures. The fundamental abstractions used in this methodology 
are active objects and protocols for passing messages between them. The field of 

objcct oriented concurrent applications analysis and design and also the development 
of CASE (Computer Aided Software Engineering) tools that assists designers of this 
kind of applications are current research issues. In this context, statecharts scem to be 

one of the most appropriate ways of modelling the behaviour of active objects. 
Therefore, we developed an implementation model of statecharts in an object oriented 

programming language (C++). This model simplifies the implementation of active 

objects and it can be integrated into an automatic code generation tool from a 

specification or design model. 

complex application development on 

1. Introduction 1. 

Concurrent object oriented programming is a promising methodology.! It allows us 
to describe problems using collections of entities (called objects) that embed some 

properties, perform computations and concurently interact through a unified 

communication protocol (called message passing). This methodology represents an 

excellent basis for program decomposition and efficient execution of them on multi- 

processor architectures. 
Concurrent object oriented programming is applied in many fields. There are 

applications developed in the following fields: 

distributed operating systems 
distributed artificial intelligence 
distributed simulation 
distributed data bases 

real-time systems and the control of distributed processes 
Significant results were also obtained in computer-aided text and music processing 

Concurrent object oriented programming has an important impact on multi-processor 

architectures design. 
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In section one we present the main concepts related to concurrent object oriens. 

programming and we define the active object concept. 

Section two contains the presentation of statecharts and the advantage 

describing object behaviour (including the active ones) and for facilitating source co 

generation process.

Section three prescnts an implementation modcl used for active object descri iption 

using statecharts. Is also presented a way for using this model in C++ 

The remarks in section four establish the advantages and drawbacks of modellin 

active object behaviour using statecharts and suggest füture research directions in thi 

field. 

ted 

for 
le 

2 2. Active objects 

Concurrent object oriented programming is based on object oriented programming 

methodology which is known at this moment as a top methodology for developing 

applications with and for reuse. This methodology is conceptually simple and wide 

applicable. It is based on two fundamental concepts 
objects 

that identify knowledge (represented by information and services), 

and 

an unified protocol for activating and communicating between objects, called 

message passing 
Objects represeni entities and concepts that form the problem domain. 

Applications developed in an object-oriented way have no global algorithm, but rather 

they are composed of a set of objects. Objects cooperate by sending each other requests 

and exchanging information. They are animated like in a simulation. Other fundamental 

concepts, intimately related to object oriented programming, are abstraction (the class 

concept) and inheritance (the subclass concept) which allow specification, classification 

and reuse of object descriptions. 
The first programming language based on these concepts, Simula67 appeared at 

the end of 60's. Initially, concepts were descending from a simulation language in a 

general programming environment. Programming is regarded as a simulation of the real 
world. The concepts evolved since then but even in its rough form from Simulaó7, 
object oriented programming was regarded as a significant improvement in software 
development and a rise in quality, robustness, reusability, extensibility. 

Due to the sequential nature of conventional programs and processors, the 

autonomous activities of each object - that, naturally, led to simultaneous activities 

has not been treated by object oriented programming systems in the native parallel way
Therefore, in most cases the programming languages were and continue to be 

sequential. This means that, at a moment in time, only one object is active and this 
activity is passed from an object to another by synchronous messages. 

On the other side, the ability to express the potential parallelism of activities 
through concurrent programs became a research subject for the next generation 
systems. These are only some aspects that suggest the importance of this tendency " 

programming: 

of 

The development of supercomputers that allow parallel execution of multipic 

threads, increasing programs' efficiency 
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The distribution of information through a computer network 
The existence of multiple interaction inside some large interactive programs 
(like processes control, where the iputs and the control have to be multiple 

and distributed) 
The natural way of expressing certain applications using concurrency and 

activity co-ordination mechanisns 
Considering the above assertions, the idea of building a programming language 

that can integrate the object oricnted programming mechanisms with concurrency 
mechanisms is very attractive. To achieve an optimal integration of these mechanisms is 

very useful to identify objects as activity units and to associate synchronising code at the 
message passing level. These active objects are often called actors. The result of this 

unification is the integration of all the object oriented programming and concurrency 
concepts and it allows the programmer not to be explicitly involved in establishing the 
synchronisation discipline. It also maintains the modularity and simplicity that is typical 
for the object-oriented programming, and respects object's embedding and autonomy. 

This integration represents a natural generalisation of object 
programming, giving a greater autonomy to the objects. In [2] J. Brriot says that object 

oriented programming is a technological restriction of the more general concept of 
concurrent object oriented programming. 

In concurrent object oriented programming the concurrency can be modelled at 

two levels: 

oriented 

Inter-object concurrency - that means parallel execution of autonomous activities 

by more than one object. 

Intra-object concurrency 
the possibility of treating concurrently more messages on the same object. 
Message passing is the co-ordination and interaction mechanism between objects. 

All interaction types, from information extracting to requiring an object to perform 
some computation, are covered by the message passing concept. A message passed to an 
object determines the activation of a method (an operation associated with a message 
pattern) of the receiving object with the arguments contained in message. 

Due to the potential competitions between source object activities and those of the 

receiving object, it is useful to store the messages in a waiting queue for managing 
communication speed differences between the receiver and the source and also for 
releasing the source object when a response is not necessary. 

that takes the concurrency at the object level by giving 

2.1. Statecharts 

Statecharts are used for specifying objects in designing compleX systems. 
Statecharts constitute a visual formalism for describing states and transitions in a 
modular fashion, enabling clustering, orthogonality and refinement. In statecharts we 
use the elementary notions of state and event. A state expresses a certain condition that 
an object satisfies or a conjuncture that it is in. At different moments in time an object 
can be in many states. An object can receive (observe) events regardless of the state it is 
in, but it usually responds to them only when it is in an appropriate state. The response to an event is drawn on the statechart by a transition that links a state in which the object responds to that event and the state reached by the object as the result of responding to 
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the event. If the 
occurrence 

of the event 
does not change th 

autotransition (the final state is the same 
with the initial one). 

the state of the object, it is an 

B 

A eC 

Figure 1: when event e occurs in state A, if condition C is true at the timo 

the system 
transf�rs to state B 

ime, 

B 

D1 

A 

D2 

Figure 2: Nested states in a statechart 

In this way we can build a graph with nodes representing states and labeled arows 

representing transitions. This graph is a transition diagram between states (a finite state 

machine). For avoiding the growth of the number of transitions, we can use nested 

states. 

For avoiding the exponential growth of the number of object states generally due 

to the fact that certain objects have independent subparts that function each as a state 

machine, we can use orthogonal state machines. An example is given in a later section. 

For details see: [1], [6], [7]. 18], [9]. [10]. 
The problems that appear are related to statechart modelling in object orienteu 

programming languages. In this article, we will present a possibility for modelnng 

active objects with statecharts in a language that does not support them natively, (CT 

2.2 Using statecharts for active object description 
Reactive objects in an application can be described using statecharts. Howe ve. * 

object oriented programming languages (like Ct+, Smalltalk, etc.), the notionsr 1 
and event, as we understand them here, do not exist. We established that in oaf 

substitute these lacks we had to develop an implementation model like an exI

the C++ programming language. 
In order to have a sufficiently general model, we supposed that 

potentially active objects. Similarly, all existent objects may receive the events, 

some of them will respond to them, generally by calling a method. 
An object created within our model will contain the attributes and uc 

defined in its class and also an extension that will allow it to use statecharts. 

n 

state 

r to 

that all objects 
only 

are 

thods 
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The extension will be creatcd automatically. The new object has all the features of the old object, further allowing some additional behaviour. 

Object A 
Object A 

,ObjectA extension, 

Figure 3 

We will present here the extension of an object (extension whose implementation 
is hidden, but is useful for the understanding of the model). 

Object A 

Stare 

Events ***** ** ********* ***** ***** ***. 
State predicate 

manager
Events table 

***** ***** ******** ** ***** ***** *" 

Object A extension 

Figure 4 

The new object will contain: 

The initial object: all its attributes and methods. 

A number of state objects. These are data records containing infornmation 
related to the states defined in the statechart. They contain the state invariant 

which describes the condition or conjuncture modelled by the state. This 

invariant is used in order to check whether the object is in a certain state or not 

(the object is in the states for which the invariant holds true). They contain also 
an associative table. Each element in this table will be a tuple (event, method, 
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an object precondition, postaction) and it means that when the event occurs 

that precondi 
for 

is that is in that state, the method will be called (just in case 

true). After the method execution the postaction will be executed 

Events manager. The events manager i an intertace of the new obiect e. 

application event flow. 
the 

Object A 
Ob ject B 

Evens manager 
Events manager 

Object C 
Global evens 

manager 
Events manager 

Figure 5 

The application will contain a global event manager. That is an object that 
manages all the events that circulate between the application objects. It allows 

communication between applications by events, in a way that will be presented below. 
Thus, an object can send an event to any other object using his event manager. This event will be received by all objects that have the event managers connected to ue 

global event manager (if a destination is not specified). The working mechanism will be the following: An object sends an event through its manager to the global event manager The global event manager sends the event to each object event mau connected to it 
nager 

Each event manager finds out which are the current states of the corre nal object (there can be more valid states at a moment if we have an diagram). 
Inside that state it searches all the entries in the events 

thogona

events table, entrie the same name as the received event (there can be more than one enu of the preconditions). If such an entry does not exists that means tnd does not know or want to respond to that event. If the entry exist 

becau 

bject 
the 

precondition is satisfied, the corresponding method is called. 

and 
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2.2.1. States organization 

Inside an object the states (as objects) are organized as a tree, allowing the 
modelling of nesting and orthogonality and, also, a better treating of the events between 

them. 

Type1 

State3 :[ State4 

State5 
State1 

State7 State6 
State2 

Figure 6 
For this statechart, the representation of the states inside the object will be the 

following: 
Type1 
Di I D2. 

State 5 

D1 I D2 
State 1) State 2) ( Srate3 State 4 

State Stare6 

Figure 7 

When an event appears in the root, it is sent to all the subtrees. Inside a node, an 

event is sent to all the composite states of the node. 

2.3. The C++ implementation of the presented model 

We will see now the way that we implemented the presented model in C++. We 
will take the following example that describes an active object class. An object of this 
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class can be created, can be started for continuously executing an activity (a step) after 

that it will be stopped. 

ActiveObject 
active 

running 

id le step) stopped 
stop) 

start) 
resumel)

pause 
paused 

Figure 8 

At the moment of creation, the object is in the idle state. When it receives the start 
event, the object passes in the running state. Here it may receive the step event 
remaining in the same state and executing the Step) method. When it receives the pause 
event, the object will pass from running into paused from where it may return at the 
receiving of the resunme event. The activity of the object ends when it receives the stop 
event when it is in the active state (that means one of the running or paused states) 

The implementation in Visual C++ for this class using our framework: 

class ActiveObject: public FSM 

CString m_state; 
CWinThread* m_runningThread, 

public: 
ActiveObject(); 
ActiveObject(); 
virtual void Step(); // method called at the receiving of step 
void StartObject(); / starts an execution thread inside the object which sends 

/all the time the step event to the current object void StopObject(); 
protected: 

/ the associated statechart... 

DECLARE_FSM 
STATE(idle, ROOT, 0, m_state == "idle") 
STATE(active, ROOT, 0, (m_state="running")|( m_state == "paused")) STATE(stopped, ROOT, 0, m_state== "stopped") STATE(running, active, 0, m_state = 
STATE(paused, active, 0, m_state == "paused") TRANSITION(start, idle, active, startObject, TRUE, m_state = "running") TRANSITION(stop, active, stopped, StopObject, TRUE, m_state = "stopped") 

"running") 
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TRANSITION(pause, running, paused, NULL, TRUE, m_ state = "paused") 

TRANSITION(resunme, paused, running, NULL, TRUE, m_state = "running") 

TRANSITION(step, running, running, Step, TRUE, NULL) 
END DECLARE FSM 

If we want the objects of a class to be able to work as state machines, it is 
necessary to derive the class (directly or indirectly) from our FSM class, that is a part of 

our framework. 
The description of the statechart is made in the following section of the class 

definition: 

DECLARE_FSM 
li statechart section 

END_DECLARE_FSM 

The macros used are: 

STATE(newState, parentState, stateDiagram, state Definition) 

where: 
newState: is a new state that will be added to the class's statechart 

parentState: the parent state in which the newState is introduced; it may be 

ROOT (in which case it does not have a parent 

stateDiagram: the number of the orthogonal state machine of the parent state 

where it will be added; it will be 0 if we do not have orthogonal states; 

stateDefinition: a Boolean expression that will be evaluated each time the event 

manager wants to determine whether the object is in a certain state or not; this 

is the state predicate 

TRANSITION(event, currentState, newState, method, precondition, postaction) 

where: 
event: the name of the event that triggers the transition 

currentState: the source state of the transition 
newState: the state in which the object will have to be after the receiving of the 

event 
method: the name of the method that will be called when the event occurs; it 

can be NULL, in which case nothing will be executed; 

precondition: a Boolean expression that will be evaluated first of all; only if 
this is TRUE, the object will begin the execution of method; if it is FALSE the 

transition will not be executed; 

postaction: a sequence of instructions that will be executed after the execution 

of method 

2.3.1. The Inheritance of the Statecharts 

With simple inheritance, when B inherits from A, if A has defined a statechart and 
B defines other states, these will be taken as a supplement of those that are in A (which 
will be found in B too). With multiple inheritance, the class that inherits from other 
classes inherits the statecharts too. The statecharts of the parent classes will be found as 
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orthogonal diagrams of the heir class. The statechart of the new class will comnlat. 

diagram of the first class in the parents chain. 
lete the 

2.3.2 Concurrency support 
In the FSM class there are many methods that can be used for modeli. 

concurrency. One method that verify if the object is in the state named stateName i. 

BOOL AtState(CString stateName), 

al We remember that an object may be in more than one state if it has orthogonal 

machines. 
The method that is called when receiving an event is 

void ReceiveBvent(CString eventName); 

Normally this is used by the global event manager. 
The method that sends an event using the principle "who has ears to hear let it 

hear" 

void SendEvent(CString eventName) 

When this method is called, the current thread is locked until all the objects that know 
how to respond to this event respond to it. 

Another method that implement the same mechanism as the one above, with the 
difference that an asynchronous event is sent is: 

void ASend�vent(CString eventName) 

This means that it will not wait until the sent event finishes the execution, it will 
continue concurrently: 

The method that causes the stop of the current thread until pObject arrives in the 
stateName: state: 

virtual void WaitUntilObjectAtState(FSM* pObject, CString stateName): 

There are also methods for modifying the statechart at runtime. One can: add 
states, add transitions, modify them. 

2.3.3. Support for working ina distributed environment 

For allowing the interaction between applications that are running on many computers, we can use the extension of the implementation of statecharts. How will n 

work? 

The global event managers are connected with each other and the events 
circulating inside an application will arrive also in the applications that have the global manager connected to the former one. 

The methods that allow connecting the global events managers betweeu applications are: 

BOOL InitServer(int nPort); 
BOOL ConnectToServer(int nPort, CString serverName); 

nPort is the TCP port number on which the applications will communicate
28 
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serverName is the server name to which the connection is attempted (internet 
name or address). 

For instance, if we want to use synchronisation between an application that has an 
AVIPlayer object and another application that has a Timer object (these classes are 
descendants of FSM), we will do it this way: 

Application A 
Application B 

Evens 
manager Events 

manager 

Application C 

Events 
manager 

Figure 9 

In the application that contains CAVIPlayer we will introduce the following code: 

CAVIPlayer* pPlayer = new CAVIPlayer("clock.avi"); 

pPlayer->InitServer(71 1); 

If we have already created the object that will display a clock on the monitor and 
when receiving a FSM_TIMER event, it will advance one position, and we have 
initialised the server on the port 711 (we work on the machine with the IP address 
apollo2.cs.ubbcluyj.ro), inside the application whose global manager will be connected to 

the previous one we will put: 

Timer* pTimer = new Timer(1000); 

pTimer->ConnectToServer(711, "apollo2.cs.ubbcluj.ro"); 
plimer->startObject() 
It has been created a Timer object which send the FSM_ TIMER message at one 

second; connected to the application on the apollo2.cs.ubbcluj.ro will start to display the 
movement of the clock arrows which advance at each second, as a response to the 

received event. 

3. Conclusions 

The most important benefit of this model is that it allows using statecharts into 

object oriented programming languages. 
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The statecharts of an object are initialised with thc class pattern, after that they can 

change their contfiguration during the execution; in other words, the structure of 

statecharts can be dynanmically modificd for eaclh object; this is not specified in object 

oricnted analysis and design nmethods. 

Because the mechanism of working with macros for the statechart description is 

rather diflicult (but viable!), it is useful to use a CASE tool for automatic code 

gencration for the statecharts; this should not be manually modified, or completed. 

Working with this implementation of statecharts is uscful in case we can describe a 

class using a statechart. If all the classes of an application can be described this way, 

then we can speak about 100% generated code (not only 100% correct but also 100% 

complete) 
Some problems that appear are related to statecharts inheritance. Here we have just 

an approach, but it does not solve all the problems. 
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