
STUDIA UNIV. BABE^-BOLYAI, INFORMATICA, Volume II, Number 1, 1997 

DATA DEPENDENCE TESTING FOR AUTOMATIC 
PARALLELIZATION 

GRIGOR MOLDOVAN ALEXANDRU VANCEA 
MONICA VANCEA 

Abstract. In this paper we prove that automatic parallelization is the moment's most 
suited approach for large scale integration of parallel program versions resulted from 
the original sequential versions. This parallelism is of SIMD type, is loop structure 
oriented and offers the most substantial speedup relative to the sequential versions. 
Having as the main final purpose the construction of a restructuring compiler, we

focus here on the data dependence analysis phase of such a compiler. The paper 
makes a complete and up to date overview together with a critical analysis of the data 
dependence testing techniques and claims that symbolic analysis is also needed for 
better results in a more general framework. A substantial list of references is given 

which can constitute an excellent guidance for the reader interested in the topicCS. 

1. Introduction 

The trend towards parallel computing has become no more just an option, but a 

necessity. High performance computing has become vital for scientists. Much technical 
progress has been made in developing large scale parallel architectures composed of 

many powerful processors. 
The software transition to a novell way of programming and thinking has proved 

to be not so casy. Research upon the ways in which computer scientists can make this 

mandatory change emerged a long time ago [Allen69, Karp67, Kuck72, Love77 
Lamp74, Mura71]. In spite of its envisioned effectiveness, parallel programming could 
not impose itself during the years as the general and unanimously accepted method for 

designing, implementing and/or executing algorithms. 
The problems posed by a totally new software strategy proved to be extremely 

difficult to solve both at the level of the theoretical foundations and especially at the 
level of programmers' mentalities. Our inherent sequential life and way of thinking 

together with the already well learned and understood traditional sequential
programming made this transition to parallel programming very hard to accomplish.

Logically, there are two practical ways in which we could approach the transition 

from sequential programming to parallel programming.

Received by the editors: January 14, 1998. 
1991 Mathematics Subject Classification. 68NI5 
1991 CR Categories and Descriptors. D.1.3 [Programming Techniques: Concurrent Programming - parallel 

programming; D.2.8 |Software Engineering): Metrics performance measures, D.3.4 [Programming

Languages]: Processors optimization, compilers



GR. MOLDOVAN, A. VANCEA AND M. VANCEA 

One way is to build from scratch everything again, having in mind the paralle 
execution model. This way would have the advantage of being the most effective, beine 
oriented towards efficiently building parallel applications. New languages would have 
to be designed (actually there are already some [Van94)) which had to offer the whole 
methodology and constrnucts needed for such an action. Again, we have here two 
approaches if we want to build imperative language facilities for parallel programming 

The first approach augments an existing language with a set of directives. The 
programmer then becomes responsible for inserting these directives into strategic parts 
of the program, instructing thus the compiler on how to best perform the parallelization 

process 
The second approach incorporates parallel constructs directly into the language 

definition. Examples of this kind are seen in High Performance Fortran [HPF93] and 
TBM Parallel Fortran [Sark91], where language constructs such as PARALLEL DO and 
PARALLEL CASE are introduced. 

The other practical way is to pass the whole responsability of paralellization onto 
an automatic tool which extracts parallelism directly from the sequential program. This 
approach 1s extremely important for the actual moment because there are many code 

libraries in use which could thus maybe execute in parallel. Furthermore, the issues 
involved in parallelizing a sequential program subsumes many of the problems faced by 
compiler developers of other languages. The experience gained in developing a 
parallelizing compiler can therefore be applied to compilers for other languages with 
more explicit parallel constructs. Also, developing a parallelizing compiler for an 
imperative language allows a programmer to develop code for a massively parallel 
programming (MPP) architecture in a familiar language like C or FORTRAN. Such 
programs would also result in more portable code if effective compilers can be 
developed for the different classes of MPP architecture. 

These are in our opinion the main reasons for which we argue that (even if we 
think that in the near future the parallel applications will be build from scratch and with 
the help of new and specialized languages) the actual moment must accept as the main 
facility for building parallel programs the developing of parallelizing compilers. 

2. Data dependence 

A parallelizing compiler has to detect the possible instructions to execute in 
parallel. For this, it has to make a dependence analysis of the sequential programs to 
determine the data flow and their interactions. 

One of the main actions of a parallelizing compiler is the restructuring of the 
sequential program (thae's why they are sometimes called restructuring compilers). This 
Testructuring aimes to maintaining where necessary (that means where the data 
dependencies impose it) the order in which the instructions are executing. That's why 
data dependence represents the theoretical framework on which the restructuring 
methodology is based. 

It is important to note that this concept does not appear related only with parallel 
programming. Classic compiler optimizations make also use of it to accomplish their 
tasks [Aho86]. 

There are many good introductions to these topics and we refer the reader to 
[Bane88a] and [Bane88b], because the aim of this paper is not to be a tutorial on data 

4 



DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION 

dependence, but to overview the existing test methodologies and to claim that symbolic 

analysis is also needed for practical application. 
The following sections review the most important data dependence analysis 

methods proposed in the literature and makes a critical arnalysis of their strengths and 

weaknesses. 

3. Data dependence tests and their effectiveness 

The main aim for an automatic parallelizer are loops and inside them the analysis 

is mostly concerned with array elements. We can classify data dependence tests based 

on the appeareance of the array subscripts. 

Definition. An array variable has coupled subscripts if there exists some index 

variable which appears in two or more subscript expression fields. 

For example, the array variable A[x+y,x] is said to have coupled subscripts, but 

Aly.x/ no (so we term them uncoupled subscripts). 

3.1. Uncoupled index subseript analysis methods 

We present further a class of data flow analysis strategies which attempt to analyse 
the array subscript expressions directly. For example, in the code fragment 

for i=l to n step 2 do 

dl a[2*i)= 
d2 .a[2 *i + 7 

end for 

many schemes will attempt to solve the dependence equation 

(1) 
2i = 2i2 +I or 2i-2i1 

with i, i2 Sn. 
If a solution exist for equation (1), we deduce a dependence when a value defined 

in variable a, in statement dl, is referenced in statement d2. This information is 

important because statements in a loop kernel which are deduced to be data independent 
can then be executed in parallel. 

3.1.1. The GCD-Banerjee test 

The expression in equation (1) is known as a linear diophantine equation in two 

variables. From the GCD theorem in Number Theory, equation (1) has an integer 

solution if and only if the greatest common divisor (GCD) of the coefficients in the lett 

hand side (LHS) exactly divides the constant term in the right hand side (RHS). Thus, 

for dependence equation (1), the GCD of the coefficients on the LHS, GCD(2,2) = 2, 

does not exactly divide the constant term on the RHS. Hence we can deduce no data 

dependence. This test is known as the GCD test and it was first introduced by Utpal 

Banerjee [Bane88a]. 
The major disadvantage of the GCD test is that it only predicts the existence of an 

unconstrained integer solution. Where an integer solution exists which does not satisfy 

the bound inequalities constraint, i.e. 1 i, i, S n, the GCD test will predict a data 

dependence when none exist. 



GR. MOLDOVAN, A. VANCEA AND M. VANCEA 

the Another test which takes the bound constraints into consideration uses 
the 

intermediate value theorem. A real solution exists if the RHIS is found to lie withis 

hinimum and maximum vallues which the LHS can take. Therefore for dependen 

equation (), min(2i -2 2)2- 2n and max(21-2i")= 2n 2.If 2-2nIs 

2n 2, equation (1) has a real solution within the bound constraints, otherwise 

sah1tion does not exist. The bounds test is commonly referred to as the Banerjee test » 

it was also first introduced by Ufpal Banerjee [|Banc88a|. Note that the Baneriee teo 

only decides it a constrained real solution exists. 

An aray subscript analysis Scheme can be generalized for a pair of def-ref. 

dimensional array variables illustrated by the code fragment shown below: 

a real 

m- 

for xL, to U, do 

for x,=L, to U, do 

dl A (A),..S X]:=.. 

. =AU(),..S()) 

end for 

end for 

where X is the index set f,..,Xnand f (X) and f (X) are linear functionalsin 

terms of X. A data dependence exists between dl and d2 if the system of diophantine 

equations, 

S" ()-f X) = a,X- b1,1 X t...+ a1,n-bi,n Xn 

f (X)-f (X) = am, 1X1-bm, Xt...tam,an-bm.nXnCm 
m 

or described more concisely 
S 1,1V t.. + a1,2nV2n C1 

(2) 
+a, 2nV2n 

has an integer solution subject to the following subscript constraint inequalities 
SmamV Cm 

Ly V, V2 U 
(3) 

L V2n-1,V2n SU, 
This problem is similar to integer programming where given the subscript equa 
represented by system (2) and the inequalities represented by system (3), an inte 

imize 

solution represented by the vector v = (V1,V2, .., V2) is required which will ma 
nly $ome cost function cost( V). Our data flow analysis problem is simpler in that we o 

determine if an integer solution exists, or in the case of a geometric interpretation, 
We 

aim to delermine if the hyperplanes described by the subscript equalities intersnit 
t S, 

within a region V bounded by the subscript constraint inequalities, with > coa 

some integer point. 

6 



DATA DEPENDENCE TESTING POR AUTOMATIC PARALLELIZATION 

3.1.2 The l-test 

The GCD-Banerjee test does not determine cxactly if a def-ref array variable pair 
is data independent. The reason for this is that it does not distinguish the case where the 
real solution satisties the bounds constraints (3) but the integer solution does not; both 
tests will determine a dependence. The 1-test proposed by Kong, Klappholz and Psarris 
Kong91], integrates the two tests and determines exactly whether an integer solution 
exists for each equation in the dependence system (2) restricted by the bounds 

constraints (3). 
The I-test poses the subscript cquality equations as interval equations of the form 

aX- b, X t...t d- binX L,U/ 

(4) 
am -,/ X t...t anr-bmn X, = [L Unl 

where for the " subscript equality, the interval equation 

(5) 
is checked for integer-solvability. If g is the GCD of the coefficients f4,,.., di,2n/, an 

a1Vt t aj2nVn [L, U 

integer solution exists if Li < g|L/g] < U. Each interval equation is then successively 
transformed through a series of variable elimination steps for which the step to eliminate 

V2n 1S shown below: 

a1Vt a,2n-1V2n-1 L-a/,2 Unta 2n U,-a2L2n ta2 U2r 

assuming l4; 2m Uzn-Lzn +l and 
ifa 20, 0 otherwise 
ifa 0, 0 otherwise 

a a 

a = a 

With each new interval equation generated the bounds test is performed. If the 

procedure encounters an equation which is inconsistent, the l-test concludes that the 
array variables concerned are independent. The I-test is an exact test for def-ref array 
variable pairs possessing uncoupled subscripts. Array variabies with coupled subscripts 
require more sophisticated techniques to disambiguate the array variable access patterns. 

3.2. Coupled index subscripts analysis methods 

We have until now avoided the complications involved in the analysis of coupled 
subscript expressions. For all the tests described so far multi-dimensional array 
variables are tested subscript-by-subscript. That is, the systems (2) and (3) are 

formulated and tested one array dimension at a time. 
As we mentioned before, an array variable has coupled subscripts if there exists 

some index variable x e X which appears in two or more subscript expression fields 

(the array variable A[r+y,x] is said to have coupled subscripts). For a def-ref array 
variable pair with coupled subscripts a subscript-by-subscript test will yield an over 
conservative estimate. For example, in the code fragment below a subscript-by-Subscript 
application of the GCD-Banerjee test will determine a data dependence when none 

exists. 
for i=/ to n do 

d1: Alit1,i+2}:=A[i,i) + 3; 
end for 

7 



GR. 
MOLDOVAN, 

A. VANCEA AND M. VANCEAA 

The Delta test proposed by Goff, Kennedy and Tseng [Goff91] accoun. 

first 
3.2.1. The Delta test 

ats tor 

coupled subscripts by using a consiram 
propagaling technique. Their sche 

involves partitioning the subscript equality expressions into coupled and 

groups, i.e. checking for separability. 
T hen they attempt to solve the subscrint epled 

A 
alities 
one. 

data independence test (i.e. the GCD-Banerjee 
Test as suggested by the authors) is t. 

e, 

in an order where an uncoupled subscript equality is favoured over a counled. 

performed and constraints are generated 11 the form of either a dependence hypernla 

here 
The generated constraints are propagated into the next subscript test uha 

independence is concluded when either the application of the data independence test 

determines so, or the set of constraints do not intersect. A simple example of the 

application of Delta test can be seen in conjunction with the code fragment above. The 

first subscrnipt dimension is checked where a data independence cannot be determined. A 

dependence distance constraint, c: i1 - ji =l, is generated. The second subscript 

dimension is then checked where again a data dependence cannot be determined. A 

second dependence distance constraint, c2: i1 -j1 =2, is generated. Since C N C = 0, we 

a dependence 
distance or a dependence point. 

conclude that the def-ref array variable pair is data independent. 

3.2.2. The A test 
The -test proposed by Li, Yew and Zhu [Li90] is an efficient data independence 

test for two multi-dimensional array variables. It is one of the few tests that atempts to 

solve system (2) simultaneously. The test is shown to be especially efficient for two- 
dimensional arays. Studies of scientific and engineering programs [Shen90] have 
shown that two-dimensional arrays are the most common type of array structures used. 

The central idea of the 2-test, for two-dimensional arrays is the determination of a 

set of y and o lines, on a (A1, ) plane, which define the dependence system. The y and 
lines are of the form al, + blz = 0 where a and b are integer constants. The 1-test for 

data independence involves forming linear combinations of the y and p lines, 

A =2, S + l2S2 
called a 2-plane, and showing that each A-plane does not intersect the subspace 
defined by the constraining subscript inequalities, as defined in system (3). To check if 
the -plane intersects Va simple bounds computation is performed. The procedure [is 
determines miní Jaa, ) and max (.a) and if min( S,a,) 0 S max( Jaj a We than 

conclude that 2,2, intersects . 

3.2.3. The Power test 

The 7-test, like the Banerjee bounds test, determines if there is a constraineu solution to the equalities in system (2). A true dependence will only occur it tnc COnstrained integer solution to the system. The Power test, proposed by wO Tseng Wolfe92], integrates the generalized GCD test for unconstrained SOluions with the Fourier-Motzkin variable elimination technique for constraineu SOunons. The test will determine if there is a constrained integer solution if one 

is a 

8 



DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION 

The test can also handle triangular, trapezoidal and other convex loop bounds. There is a 

slight inaccuracy in the test, hOwever, which will be explained further. 
The generalized GCD test was proposed by Banerjee to determine if an 

unconstrained integer solution exist for the system (2). We start with this system which 
can be concisely described by the matrix-vector product pair 

VA = C (6) 
where v = (V), .. , V2n 

a1 1,2n 
A = 

m,1 m,2n 

T and c = (C1,., C?nd". 

In the generalized GCD test, (6) can be factored (by Gaussian elimination for 

example) into an unimodular matrix U and an echelon matrix D such that U.A = D. The 

system (6) has an integer solution if and only if there exist an integer vector t such that 

tD =C. Since D is an echelon matrix, t can be found by back substitution. If tT 

cannot be determined the system has no solution and the def-ref array pair are 

independent. If t has an integer solution, then 

= iU (7) 
is the solution to the system (6). 

The Power test continues by determining if the integer solution for expression (7) 
satisfies the constraint system (3). It uses the Fourier-Motzkin variable elimination 

method to determine this. 
For example, consider the system of three constraint inequalities 

(8) 
Transforming system (8), we get 

(9) 
(10) 
The Fourier-Motzkin eliminates t, by projecting (9)> (10) 

t +I2>l1, t1 -12 < 2, 1 -2 

t +2> 1= t > 1-t 

t -t2 |5 t1 2 +t2 

2+ l-t;= > -1/2 
and combining the new inequality with the original system (8), we obtain 

-1/2 <t< -2 
which is inconsistent. We therefore conclude no feasible solution to the system ot 

inequalities. 
Now the solution to expression (7) for v,. Vs is expressed in terms of the free 

variables tm+l 2n The Power Test substitutes the relevant terms in system (3) with 

their free variable solution from expression (7) and solves the new constraint system 

using the Fourier-Motzkin variable elimination method. If an inconsistent pair of 

bounds is encountered the test deduces no data dependencies between the def-ref array 

variable pair. 
There is an inaccuracy in the Power test, for an inequality 

ht + ht2+ ... + ht2U 
for which we wish to eliminate variable t, 

9 



GR. MOLDOVAN, A. VANCEA AND M. VANCEA 

U-h, h,2 h-l- 
ht2U-ht- h4-.. - heite-s 2 - h,t, 

h 
-..- h. 

.. 

The Power test takes the ceiling of the division on the RHS, i.e. 

U-h-h/,.-h' 
h 

the The ceiling operator in this case 1s the source Ot imprecision because it enlarges th. 

solution space and may consequentiy introduce integer solutions where none exist 

3.2.4 General integer programming methods 

All the data flow analysis methods which have been described in this section are 

inexact, in that a dependence between a def-ref array variable pair may be reported 
when none exists. Arn exact answer can be derived through integer programming, 
Whereas integer programming requires a vector to be found which minimizes or 
maximizes some cost function, a data independence test need only determine if there is 

a feasible solution within a convex set in R" and if that solution space contains at least 
one integer point. Wallace [Wallace88] Lu and Chen [Lu90] and Pugh [Pugh92] have 
adopted this approach. Note that there is already a very large body of work on integer 

programming and that the method is generally agreed to be NP-complete. 
Wallace proposes the Constraint-Matrix method which uses the simplex method in 

linear programming modified to solve integer programming problems. The number of 
pivoting steps in his method is bounded by a limit to prevent a condition know as 
cycling, where the simplex method is known not to converge onto a solution. Lu and 
Chen describe a new integer programming algorithm but the cost of using their 
procedure is difficult to assess as they do not provide a metric. Finally, Pugh proposes 
the Omega test which uses a modified version of the Fourier-Motzkin variable 

elimination algorithm. Through careful implementation, Pugh claims the Omega test to 
be practical for commonly encountered def-ref array variable pairs. The Omega test has, 
however, a worst case exponential time complexity, although Pugh claims that the 
algorithm is actually bounded within polynomial time for common cases. 

3.3. Concluding remarks 

Data flow analysis for multi-dimensional array variables requires complicated 
techniques to disambiguate the access patterns defined by the array subsc expressions. Table 1 summarizes the characteristics of the data flow analysis meuo described in this section. 

method by deeming it sufficient to provide an approximate solution. The exXCOp 

exact Almost all the proposed analysis methods have avoided the complexity ot an c 
have been methods which aim to solve the data flow analysis problem exacuy 

1ons 

as 

programs that employ integer programming 
Method Constrained Integer| Constrained Exact coupled 

subscript integer real 
10 



DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION 

GCD test No es No No No 
No Yes No No Banerjee test 

I-test 
-test 
Delta test 

Power test 

Integer 

No 

Yes Yes Yes No No 
No No Yes Yes No 

Yes Yes Yes Yes No 

Yes Yes Yes Yes No 
Yes Yes Yes Yes Yes 

programming 
Table 1: Characteristics of data flow analysis algorithms 

However, these integer programming techniques have worst case exponential time 
complexity which have discouraged many parallelizing tool developers from adopting 
the. Pugh claims the Omega test [Pugh92], which is an integer programming 

algorithm, to have a typical performance which is "acceptable". 
He makes this claim based on experiments which employ the Omega test on a 

collection of commonly used scientific and engineering loop kernels. He does not, 

however, prove his assertion for general case. 

Symbolic data dependence analysis 4. 

Symbolic analysis is needed for solving more systems exactly than previous 
approaches. That is because symbolic terms play a significant role in the analysis of 

programs. For advocating this, let's take the following example: 

read(n); 
if n>10 then 

for i:=/ to 10 do 

afitn]=afi] +5; 
end for 

end if 
If we annotate the two references with the fact that n > 10 this allows us to prove that 

they are not truly dependent. The more general approach can be very expensive at 
compile time. It is necessary to track the relationship of all scalar variables in a 

program. In addition, the data dependence system being solved becomes more complex, 
containing more variables and more constraints. 

A variety of methods for doing symbolic analysis have been proposed in the 
literature. Reif [Reif78] uses the control flow graph to construct a mapping from 

program expressions to symbolic expressions for their value holding over all executions 
of the program. This cover is weaker than others that have been done, but the algorithm 
is much cheaper. Its cost is Ofleng + a afa)) bit vector operations, where leng is the 
length of the program, a is the number of edges in the control flow graph, and a is 

Tarjan's function, which is almost linear. 
Reif and Lewis [Reif77] use a structure called the global value graph to compactly 

represent symbolic values and the flow of those values through the program. Their 

algorithm for symbolic evaluation discovers simple constants and minimal fixed point 
covers and is almost linear in the size of the global value graph. Like [Reif78), this 
technique deals only with variables that have the same symbolic value along all paths in 
the program's control flow graph. The global value graph is of size O((oa + leng), 

11 



GR. MOLDOVAN, 
A. VANCEA AND M. VANCEA 

where o is the number of variables in the program, a 1S the number of edges in 

lations 

dges in flow 

Alpern, Wegman, and Zadeck |Alpern88J try to determine equality relatio. 

between program 
variables in the presence of control flow. Their approach uses 

logE 

graph, and leng is the length of the program. 

value 

program. 
Determining which nodes in the val 

problem, where E is the number of edge in the value graph. Each assignment in th 

static single-assignment form ot the program is a node in the value graph, which hac 

two types of nodes: executable junction nodes, which represent normal assignments, and 

function nodes, which represent join points in the control flow graph. 

Cousot and Halbwachs [Cousot78] determine inequality as well as equalit 

relations, using abstract interpretation. Their approach converts linear constraints into a 

convex polyhedron and tries to deduce assertions about the relationships between 

program variables from the semantics of the program. This method is intended to be 

applied to tasks such as array bound checking; precision will be lost when the numbers 
are reals instead of integers. The cost of their analysis is almost linear in the length of 

the program but exponential in the number of variables involved in the analysis. 
Haghighat and Polychronopoulos [Hagh90] propose a framework for doing 

dependence analysis in the presence of symbolic terms, using abstract interpretation 

based on a lattice model. Essentially, they handle the simple symbolic cases that PFC 
takes care of: symbolic loop bounds, symbolic additive terms, and symbolic multipliers 
[Allen83]. The lattice is used to do constraint propagation and inequalities are solved 
using the convex hull method of Cousot and Halbwachs. 

Lichnewsky and Thomasset [Lich88] evaluate constraints symbolically when it 
cannot be done numerically, using approximations to reduce the computational cost. A 
general decision procedure is employed only after the Banerjee-GCD test [Bane79, 
Allen87, Bane88a] has failed. The decision procedure uses the SUP-INF method for 
proving Presburger formulas, as described by Shostak [Shos77]. The basic approach is 
to transform the integer problem into the real domain, solve it, and translate the results 
back into the integer domain. The complexity of this algorithm is O(2"), where N is the 
length of the formula. 

Havlak [Havlak94] uses array section analysis, a special SSA form, and global value numbering as integral components of his analysis. His approach combines value 
numbering with graph rewriting and is particularly adept at representing and matcnine patterns of operators, unlike [Hagh90], whose strength lies in rewriting expressions and solving recurrences. 

Blume and Eigenmann [Blume94] describe a new dependence test, known as in Range Test, which proves independence by determining whether symbolic inequal hold for a permutation of the loop nest. The Range Test is slower than Banerj Inequalities but faster on average than the Omega Test, although the Omega Test break cross-iteration dependences in some cases where the Range Test cannot. Some research has avoided the more traditional memory-based notion o 

numbering and builds a value graph that represents the symbolic execution of the 
value graph are congruent is an OE. 

1as 

can 

dependence in favor of a value-based approach. nstead of testing every pair or ah 

data 

references which may access the same memory location, a value-based ap 

ray 

eliminates pairs separated by an intervening write, thus eliminating sp 

roach 

dependences from consideration. Collard, Barthou, and Feautrier [Collard95] pre> 12 



DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION 

method which gives exact information in some cases and which can handle nonlinear 
terms in loop bounds and IF conditions but not in array subscripts. Maslov [Maslov94] 

exactly computes value-based dependence relations for program fragments where all 
subseripts, loop bounds, and IF conditions are affine. The algorithrm, which is lazy, also 
handles some nonlinear terms. Pugh and Wonnacott [Pugh94] handle more nonlinear 
constraints than Maslov's algorithm and their work also has the ability to relate terms in 

the dependence analyzer back to program expressions which can be more readily 

understood by the progra1mer. 

Finally, Shen, Li, and Yew [Shen90] present the results of an empirical study on 

array subscripts and data dependences. This study concludes that many of the subscripts 
contained symbolic terms with unknown values. An average of 33.97% of all subscripts 
were nonlinear, and of these, 85% to 100% of the nonlinear or partially linear subscripts 
were caused by an unknown variable. User assertions pertaining to the value of some 

symbolic variables were employed in an effort to reduce the number of nonlinear 

subscripts for six programs. Using user assertions, only 27.38% of one-dimensional 

array references and 14.7% of two-dimensional array references were nonlinear, as 

opposed to 47.44% of one-dimensional array references and 44.91% of two-dimensional 

array references when assertions were not used. 

5. Run-time parallelization 

Polychronopoulos proposes a technique called run-time dependence checking 

(RDC) Poly86, Poly87, Poly88] that uses program information available at 

compile-time to generate code that resolves dependences at run-time. The goal of RDC 

is to determine at run-time whether a particular iteration of a loop depends on one or 

more previous iterations, and synchronize the loop iterations involved in dependences. 

A dependence source vector is created for each true dependence in the loop. Non-zero 

elements in the dependence source vector indicate the iterations of the loop that may be 

involved in a dependence. For each potential dependence source, a statement is inserted 

at the beginning of the target loop that causes the program to wait on the 

synchronization vector until the statements corresponding to the dependence sources 

have executed. Iterations which cannot be involved in a dependence are executed in 

parallel without any constraints. He gives no time complexity for the algorithm used to 

construct the pendence source vectors, but estimates that the storage requirement for 

the dependence source vectors is O(kN), where k is the number of dependences and N is 

the number of loop iterations. 
Saltz et al. [Saltz91] describe a compiler that transforms a loop into two separate 

code segments, an inspector and an executor. The inspector reorders loop iterations into 

concurrent wavefronts, then the executor carries out the scheduled work. This method 

applies only to loop nests in which inter-iteration dependences do not depend on the 

results of computations carried out in the loop nest. If the run-time parallelization is 

being done for a distributed memory architecture, then the inspector phase will also 

determine the location of distributed array elements and calculate which communication 

calls will be needed to retrieve the data. Information about communication patterns is 

saved between executions in an effort to amortize the cost of the inspector. 

Rauchwerger and Padua [Rauch94] present their Privatizing DOALL test, which 

identifies fully parallel loops at run-time and dynamically privatizes scalars and arrays. 

13 



GR. 
MOLDOVAN, 

A. VANCEA AND M. VANCEA 

The test can be applied to any loop, rcgardless 
of control flow. The te 

pertormed 
before the loop is exccuted, 

delerm 

a 
DOALL, or it can be done while the 

he test can cither 
whether the loop can be 

the loop is being speculativcly executed as 1S a 

should be applied in almost all cases because 
DOALL. They conclude that the test 

cost of encountering a 
less-than-fiully-parall 

speedup. 

Leung and Zahorjan |Leung9.S| present an inspector-executor method with t. 

possible approaches. The first, which targets inspector etficiency, achieves nearly line 

specdup relative to a sequential execution of the nspector, but may produce: 

suboptimal schedule for the executor. The second approach emphas1zes executor 

efficieney and is guaranteed to produce the best schedule, at the cost of a potentiall 

slower inspector loop. 

the 
allel loop is minimal compared to the expected 

two 
ar 

a 

. Run time anomaly detection 

Access anomalies, also referTed to as data races, occur when one thread of a 

parallel program modifies a shared variable concurrently being accessed by another 

thread. Dinning and Schonberg [Dinn90] present a debugging algorithm known as task 

recycling, for detecting access anomalies at run-time. The expected space complexity is 

OV), but the worst-case bound is O(TV), where T is the maximum umber of threads in 

the program and V is the number of variables monitored. This on-the-fly approach 
detects anomalies by monitoring program execution. When a variable is accessed during 

execution, a check is made to see if the current access conflicts with a previous access. 

If a conflict does occur, then an error is reported. Their empirical estimate of the cost of 

monitoringis a 3-fold to 6-fold slowdown if every shared variable reference is 
monitored. This cost can be reduced by using static analysis or user assertions to limt 

the number of variables that are monitored. 
Hood, Kennedy, and Mellor-Crummey [Hood90] also use an on-the-fly detection 

method, but their algorithm is more efficient than the one presented in [Dinn90]. The 
overhead attributed to monitoring program execution is estimated to be less than 40% 
anda Single instrumented execution will either identify sources of schedule-dependent 
behavior or verify that all executions of the program on the same set of data compu the same result. Their approach uses dependence analysis to reduce the amount o 

run-time checking, and they also reduce the cost of detection by using a method ua Works for programs with no nested parallel constructs using only the strucu synchronization primitives in a disciplined way. 

7. Conclusions and future work 
We sustained in this paper the idea that automatic parallelization is the most su approach at the moment for the large scale integration of parallel program vers sequential programs. This parallelism is of SIMD type, concentrated on n 

ons 

optimizing compiler. Here we focused on the data dependence analysis phase o 
1g 

and 

al 

ited 

of 

structures of sequential programs and offers the most substantial speedup relauv and sequential versions. Our main final objective is the construction of a restru 

loop 
the 

compiler. The paper made a complete and up to date overview toge together with a criti analysis of the data dependence testing techniques and claimed that symbolic andiy 
lysis is 

14 



DATA DEPENDENC: TESTING FOR AUTOMATIC PARALIELIZATION 

also needed for better results in a more general framework. The substantial list of 
references given can be of a great help to the reader interested in these topics. 

Our future efforts will be devoted to the establishment of a practical approach of 

efficient data dependence testing (known to be NP-complete in the general case), not 
focusing on only one particular methodology, but cascading existing techniques in 

particular manners based upon the main featurcs of the class of problems taken into 

consideration. 

REFERENCES 

Compilers: Principles, Techniques and Tools, Addison- Aho86] A.V.Aho, R.Sethi and J.D.Ullman 
Wesley, Reading, Massachussetts, 1986. 

Allen69] F.E.Allen - Program optimization, in Annual Review in Automatic Programming 5, International 

Tracts in Computer Science and Technology and their Applications, vol. 13, Pergamon Press, Oxford, 

England, pp.239-307, 1969. 

Allen83 J. R. Allen Dependence Analysis for Subscripted Variables and Its Application to Program 
Transformations, Ph.D. thesis, Department of Computer Science, Rice University, Houston, April 

1983. 

Allen87] J. R. Allen and K. Kennedy 
ACM Transactions on Programming Languages and Systems, 9(4), pp.491--542, October 1987. 

Automatic translation of Fortran programs to vector form, in 

Alpern88] B. Alpern, M.N. Wegman and F. K. Zadeck- Detecting equality of variables in programs, in 

Conference Record of the Fifieenth Annual ACM Symposium on Principles of Programming 

Languages, pp.1-11, San Diego, California, January 1988. 

Bane79] Utpal Banerjee Speedup of ordinary programs, PhD thesis, Dept. of Computer Science, 

University of Illinois at Urbana-Champaign, October 1979, Report No. 79-989. 

Bane88a] Utpal Banerjee - Dependence Analysis for Supercomputing, Kluwer Academic Publishers, 

Norwell, Massachussets, 1988. 

Bane88b] Utpal Banerjee - An lIntroduction to a Formal Theory of Dependence Analysis, The Journal of 

Supercomputing 2 (1988), pp.133-149. 

Bane97] Utpal Banerjee - Dependence Analysis, Kluwer Academic, 1997. 

|Blume94] wWilliam Blume and Rudolf igenmann - 7he Range test: A dependence test for symbolic, 
non-linear expressions, in Supercomputing 94, IEEE Computer Society, 1994. 

Collard95] J.F. Collard, D.Barthou, and P.Feautrier -Fuzy array dataflonw analysis, in Jeanne Ferrante 

and David Padua, editors, Fifih ACM SIGPLAN Symposium on Principles and Practice of Parallel 

Programming, PPoPP, volume 30(8), pp. 92-101, August 1995. 

ICousot78] Patrick Cousot and Nicholas Halbwachs - Automatic discovery of linear restraints amon8 

vuriables of a program, in Conference Record of the Fifth Annual ACM Symposum on Principles o 

Programming Languages, pp.84-96, Tucson, Arizona, January 1978. 

Dinn90 A. Dinning and E. Schonberg - An empirical comparison of monitoring algorithms for acces 

anomaly delection, in Proceedings of the Second ACM SIGPLAN Symposium on Principles and 

Practice of Parallel Programming, pp. 1-10, Seattle, WA, March 1990. 

Dow190] M.L.Dowling Optimum code parallelization using unimodular transformations, in Parallel 

Computing, 16, 1990, pp.155-171. 

15 



IGofD1 G.Goff, K.Kennedy and C.w.Tseng-Practical Dependence Testing, in Procene 

SIGPLAN 91 Conference on Programming Language Design and Implementation 

June 26-28, 1991, pp.15-29 

GR. 
MOLDOVAN, A. VANCEA AND M. VANCEA 

ings of the ACM oronto, Canada, 

(Hagh90] M. Haghighat and C. Polychronopoulos 
- Symbolic dependence analvsis fo t 

parallelizing compilers, in Advances in Languages and Compilers 

August 1990. The MIT Press. 

or igh-performanc Compilers for Paralle Computing, Irvine,o CA, 

of Computer 
Havlak94] Paul Havlak Interprocedural Symbolic Analysis, PhD 

R94451 
thesis, 

from 
Departrment 

the Center 
. 

for Research Science, Rice University, May 1994. Also available as CRPC-TR9. 

on Parallel Computation and CS-1TR94-228 from the Rice Department of Computer Seieno ence. 

Hood90] R. Hood, K. Kennedy and J. Mellor-Crummey - Parallel program debugging with . 

anomaly detection, in Proceedings of Supercomputing 90, New York, NY, November 1900 n- 

[HPF93 High Performance Fortran Forum, in High Performance Fortran Journal of Developmen, RPC. 
TRO3300, Center for Research on Parallel Computation, Rice University, Houston, May 193. 

lrigss] F.Irigoin, R.Triolet -Supernode partitioning, in Conference Record of the 15" ACM Symposium on 

Principles of Programming Languages, San Diego, California, January 1988, ACM Press, New Yortk 
pp.319-329. 

IKarpQ7] R.M.Karp, R.E.Miller and S.Winograd 7he organization of computations for unifom 
recurrence equations, in Journal of the ACM, 14(3), pp.563-590, July 1967. 

Kenn93] K.Kennedy, K.McKinley, C.W.Tseng - Analysis and transformation in an interactive paralled 
programming tool, in Concurrency Practice and Experience, 5,7 October 1993, pp.575-602. 

[Kong91 X.Kong, D.Klappholz and K.Psarris - The I Test: An Improved Dependence Test for Automatic 
Parallelization and Vectorization, in 1EEE Transactions on Parallel and Distributed Systems, vo., 
no.3, July 1991, pp.342-349. 

Kuck72] D.Kuck, Y.Muraoka and S.Chen - On the number of operations simultaneously executabie in Fortran-like programs and their resulting speedup, in IEEE Transactions on Computers, 21 pp.1293-1310, December 1972. 

Lamp74] Leslie Lamport - The parallel execution of DO loops, in Communications of the AcMs 17(2) 1974. 

Leung93] S. Leung and J. Zahorjan - Improving the performance of runtime parallelizatio, nn ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, volune * 83-91, July 1993. 

Li90 Z.li, Pen-Chung Yew and C.Zhu An Efficient Data Dependence Analysis Jor Compilers, in IEEE Transactions on Parallel and Distributed Systems, vol.l, no.l pp.26-34 

Lich88 A. Lichnewsky and F. Thomasset Introducing symbolic problem solvug Canference 
dependence testing phases of a vectorizer, in Proceedings of the Second Internaona Supercomputing, St. Malo, France, July 1988. 

in he 

Confe 

ILove77 D.B.Loveman - Program improvement by source-to-source transformato 
ACM, 1,24, January 1977, pp. 121-145. Ource transformation, in Journal o 

Lu90 L.lu and M.Chen Subdomain Dependence Test for Massive Parallelism Supercomputing '90, New York, November 1990. 
in Proceeding 

16 



DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION

MaHL91 Dror E. Maydan, John L.Henessy and Monica S.Lam - Eficient and Exact Data Dependence 

Analysis, in Proceedings of the ACM SIGPLAN 91 Conference on Programming Language Design and 

Implementation, Toronto, Canada, Junc 26-28, 1991, in SIGPLAN Notices 26(1991), pp. 1-14. 

Maslov94] Vadim Maslov - Lazy array data-flow dependence analysis, in Conference Record of POPL 94, 

21st ACM SIGPLAN-SIGACT Symposium on Principles of Progrumming Languuges, pp. 311-325, 
Portland, Oregon, January 1994. 

[Mura71 Y.Muraoka - Parallelisnm exposure and exploitation in programs, Ph.D. thesis, Tech.Rep. 71- 

424, University of Ilinois at Urbana-Champaign, 1971. 

Pugh92] william Pugh -A practical algorithm for exact array dependence analysis, in Communications of 

the ACM, vol.35, no.8, August 1992, pp. 102-115. 
Pugh94] william Pugh and David Wonnacott - Nonlinear array dependence analysi, Technical Report 

S-TR-3372, Department of Computer Science, University of Maryland, November 194, 

[Poly86] C. Polychronopoulos On Program Restructuring, Scheduling and Communication for Parallel 
Processor Sysiems, PhD thesis, Dept. of Computer Science, University of Iilinois at 

Urbana-Champaign, August 1986. 

Poly871 C. Polychronopoulos - Advanced loop optimizations for parallel computers, in Procedings of the 

First International Conference on Supercomputing, Athens, Greece, June 1987. Springer-Verlag. 

Poly88] C. Polychronopoulos - Paralel Programming and Compilers, Kluwer Academic Publishing. 1988. 

Rauch94] L. Rauchwerger and D. Padua The Privatizing DOALL test: A run-time technigue for 
DOALL loop identification and array privatization, in Supercomputing 94, International conference, 
July 1994, Manchester, pp. 33--43, Manchester, UK, 1994. Univ of Manchester. 

[Rei77 John H. Reif and Harry R. Lewis - Symbolic evaluation and the global value graph, in 

Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, pp. 104- 

118, Los Angeles, California, January 1977. 

[Reif78] John H. Reif Symbolic programming analysis in almost lincar time, in Conference Record of 
the Fifth Annual ACM Symposium on Principles of Programming Languages, pp. 76-83, Tucson, 

Arizona, January 1978. 

Saltz91] J. Saltz, H. Berryman and J. Wu - Multiproeessors and run-time compilation, in Concurrency: 

Practice and Experience, 3(6), pp.573-592, Dec. 1991. 

PTRAN The IBM Parallel Translation System, in Parallel Functional ISark91] Vivek Sarkar 

Languages and Compilers, ACM Press 1991, pp.309-391. 

IShen90 z.Shen, Z.Li and Pen-Chung Yew An Empirical Study of FORTRAN Programs for
Parallelizing Compilers, in 1EEE Transactions on Parallel and Distributed Systems, vol.1, no.3, July 
1990, pp.356-364. 

Shos77] R. Shostak - On the sup-inf method for proving Presburger formulas, JACM, 24(4), pp.329. 
543, October 1977. 

ISchr87] Alexander Schrijver Theory of Linear and Integer Programming, John Wiley & Sons, New 

York, 1987. 

IVan94 Alexandru Vancea Categorii de limbaje. Aspecte comparative pe arhitecturi conven�ionule �i 
distribuite, Relerat îin cadrul stagiului de doctorat, Universitatea "Babe_-Bolyai" Cluj-Napoca, 1994. 

IWallacc88 D. Wallace Dependence of Multi-Dimensional Array References, in Proc. of the 20 

International Conference on Supercomputing, St.Malo, France, 1988. 

17 



GR. 
MOLDOVAN, 

A. 
VANCEA AND M. VANCEA 

Wolfes9] 
Michael J. Wolfe - Optimizing 

Supercompilers Jor Supercomputers, Research 

Parallel and Distributed Computing, 
MIT Press, Cambridge, Massachussetts, 1 989 

h Monographs in 

Wolfe92] 
Michael Wolfe and Chau-Wen Tseng 

The Power Test for Data Depende 

Transactions on Parallel and Distributed Systems, vol.3, no.5, September 1992, pD.591-6 
n lEEE 

Babes-Bolyai University, Faculty of Mathematics and Informatics, RO 3400 Clui-Nas. 

Kogalniceanu 1, România. 

str 

E-mail address: {moldovan, vancea @Cs.ubbcluj.ro 

Babes-Bolyai University, Faculty of Economics, RO 3400 Cluj-Napoca, str. Kogalniceanu 1, Rorm4 månia. 

E-mail address: vancea@econ. ubbcluj.ro 

18 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

