STUDIA UNIV. BABES-BOLY AL, INFORMATICA, Volume I, Number 1, 1997

DATA DEPENDENCE TESTING FOR AUTOMATIC
PARALLELIZATION

GRIGOR MOLDOVAN ALEXANDRU VANCEA
MONICA VANCEA

Abstract. In this paper we prove that automatic parallelization is the moment's most
suited approach for large scale integration of parallel program versions resulted from
the original sequential versions. This parallelism is of SIMD type, is loop structure
oriented and offers the most substantial speedup relative to the sequential versions.
Having as the main final purpose the construction of a restructuring compiler, we
focus here on the data dependence analysis phase of such a compiler. The paper
makes a complete and up to date overview together with a critical analysis of the data
dependence testing techniques and claims that symbolic analysis is also needed for
better results in a more general framework. A substantial list of references is given
which can constitute an excellent guidance for the reader interested in the topics.

1. Introduction

The trend towards parallel computing has become no more just an option, but a
necessity. High performance computing has become vital for scientists. Much technical
progress has been made in developing large scale parallel architectures composed of
many powerful processors.

The software transition to a novell way of programming and thinking has proved
to be not so easy. Research upon the ways in which computer scientists can make this
mandatory change emerged a long time ago [Allen69, Karp67, Kuck72, Love77,
Lamp74, Mura71]. In spite of its envisioned effectiveness, parallel programming could
not impose itself during the years as the general and unanimously accepted method for
designing, implementing and/or executing algorithms.

The problems posed by a totally new software strategy proved to be extremely
difficult to solve both at the level of the theoretical foundations and especially at the
level of programmers' mentalities. Our inherent sequential life and way of thinking
together with the already well learned and understood traditional sequential
programming made this transition to parallel programming very hard to accomplish.

Logically, there are two practical ways in which we could approach the transition
from sequential programming to parallel programming.

Received by the editors: January 14, 1998,

1991 Mathematics Subject Classification. 68N185.

1991 CR Categories and Descriptors. D.1.3 [Programming Techniques]: Concurrent Programming - parallel
programming, D.2.8 [Software Engineering]: Metrics - performance measures; D.3.4 [Programming
Languages): Processors - optimization, compilers

GR. MOLDOVAN, A. VANCEA AND M. VANCEA

One way is to build from scratch everything again, having in mind the paralle]
execution model. This way would have the advantage of being the most effective, being
oriented towards efficiently building parallel applications. New languages would have
to be designed (actually there are already some [Van94]) which had to offer the whole
methodology and constructs needed for such an action. Again, we have here ty,
approaches if we want to build imperative language facilities for parallel programming,

The first approach augments an existing language with a set of directives, The
programmer then becomes responsible for inserting these directives into strategic parts
of the program, instructing thus the compiler on how to best perform the parallelization
process.

The second approach incorporates parallel constructs directly into the language
defmnition. Examples of this kind are seen in High Performance Fortran [HPF93] and
IBM Parallel Fortran [Sark91], where language constructs such as PARALLEL DO and
PARALLEL CASE are introduced.

The other practical way is to pass the whole responsability of paralellization onto
an automatic tool which extracts parallelism directly from the sequential program. This
approach is extremely important for the actual moment because there are many code
libraries in use which could thus maybe execute in parallel. Furthermore, the issues
involved in parallelizing a sequential program subsumes many of the problems faced by
compiler developers of other languages. The experience gained in developing a
parallelizing compiler can therefore be applied to compilers for other languages with
more explicit parallel constructs. Also, developing a parallelizing compiler for an
imperative language allows a programmer to develop code for a massively parallel
programming (MPP) architecture in a familiar language like C or FORTRAN. Such
programs would also result in more portable code if effective compilers can be
developed for the different classes of MPP architecture.

These are in our opinion the main reasons for which we argue that (even if we
think that in the near future the parallel applications will be build from scratch and with
the help of new and specialized languages) the actual moment must accept as the main
facility for building parallel programs the developing of parallelizing compilers.

2. Data dependence

A parallelizing compiler has to detect the possible instructions to execute in
parallel. For this, it has to make a dependence analysis of the sequential programs to
determine the data flow and their interactions.

One of the main actions of a parallelizing compiler is the restructuring of the
sequential program (that's why they are sometimes called restructuring compilers). This
restructuring aimes to maintaining where necessary (that means where the data
dependencies impose it) the order in which the instructions are executing. That's why
data dependence represents the theoretical framework on which the restructuring
methodology is based.

It is important to note that this concept does not appear related only with para11€1
programming. Classic compiler optimizations make also use of it to accomplish their
tasks [Aho86].

There are many good introductions to these topics and we refer the reader t0
[Bane88a] and [Bane88b], because the aim of this paper is not to be a tutorial on data

4

DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION

dependence, but to overview the existing test methodologies and to claim that symbolic

analysis is also needed for practical application.
The following sections review the most important data dependence analysis

methods proposed in the literature and makes a critical analysis of their strengths and

weaknesses.

3. Data dependence tests and their effectiveness

The main aim for an automatic parallelizer are loops and inside them the analysis
is mostly concerned with array elements. We can classify data dependence tests based

on the appeareance of the array subscripts.
Definition. An array variable has coupled subscripts if there exists some index

variable which appears in two or more subscript expression fields.
For example, the array variable A[x+y,x] is said to have coupled subscripts, but

A[y,x] no (so we term them uncoupled subscripts).

3.1. Uncoupled index subscript analysis methods

We present further a class of data flow analysis strategies which attempt to analyse
the array subscript expressions directly. For example, in the code fragment
for i:=1I to n step 2 do

dl . a[2*i] =..
d2 Lo=al2*%i+ 1]
end for
many schemes will attempt to solve the dependence equation
(1) 2i;=2i,+1 or 2ij-2i;=1

with / < I,) <n.
If a solution exist for equation (1), we deduce a dependence when a value defined

in variable g, in statement d/, is referenced in statement d2. This information is
important because statements in a loop kernel which are deduced to be data independent

can then be executed in parallel.

3.1.1. The GCD-Banerjee test

The expression in equation (1) is known as a linear diophantine equation in two
variables. From the GCD theorem in Number Theory, equation (1) has an integer
solution if and only if the greatest common divisor (GCD) of the coefficients in the left
hand side (LHS) exactly divides the constant term in the right hand side (RHS). Thus,
for dependence equation (1), the GCD of the coefficients on the LHS, GCD(2,2) = 2,
does not exactly divide the constant term on the RHS. Hence we can deduce no data
dependence. This test is known as the GCD test and it was first introduced by Utpal
Banerjee [Bane88a].

The major disadvantage of the GCD test is that it only predicts the existence of an
unconstrained integer solution. Where an integer solution exists which does not satisfy
the bound inequalities constraint, ie. I <i, i» <n, the GCD test will predict a data
dependence when none exist.

5

GR. MOLDOVAN, A. VANCEA AND M. VANCEA

Another test which takes the bo.und constraints into consideration uses th

- rermediate value theorem. A real solution exists if the RHS is found to lie within the

inimum and maximum values which the LHS can take. Therefore for dependencz
max

i . ma , , N . mi
equation (). min(2i ;mn i ‘2‘“ y =2~ 2n and max(2i, " -2i ;"")=2n-2.1f2-2n< <

2y — 2. equation (1) has a real solulinn‘wilhin the bound constraints, otherwise a rey)
solution does not exist. The bounds test 18 commonly referred to as the Banerjee test 4
it was also first introduced by Utpal Banerjee [Bane88al. Note that the Banerjee te§t
only decides it a constrained real solution exists. ~
" An array subscript analysis scheme can be generalized for a pair of def-ref .
dimensional array variables illustrated by the code fragment shown below:
for x; ;= L; to U, do

fﬁr x, =L, to U, do

d1: ALFE" (X, S5 ()] 5=
d2: = A XD, f (X]
end for
end for

where X is the index set {x;,....x,} and f 2" (X) and f :.‘Se (X) are linear functionals in

terms of X. A data dependence exists between d] and d2 if the system of diophantine
equations,

£ X) -5 (X) = apxi— b Xyt a],n-xn_b],"x,n - G

gen use _ ' r_
fm (X) - fm (X') = am,1X1— bm,l X] +...t Am,nXn — bm.n Xn = Cm

or described more concisely

Sy =apvit ..t agmVa T €
(2) cee e ce
Sm = A, Vi +.ot Am2nV2n = Cm
has an integer solution subject to the following subscript constraint inequalities

L, < v,V <U 1
(3) _ "t ce
o Ly< Vo Ve <Uy .
Ihis problem is similar to integer programming where given the subscript equaliics
represented by system (2) and the inequalities represented by system (3), an intege!
solution represented by the vector V = (v;,v5, ..., V2,) is required which will maximiz®
some cost f'unction cost(V). Our data flow analysis problem is simpler in that we only
fj?ter mine if ax integer solution exists, or in the case of a geometric interpretation, we
aim 1o determine if the hyperplanes described by the subscript equalities intersect at 5

within ¢ 3 [. |
i hin a region ¥ bounded by the subscript constraint inequalities, with § containi®®
some integer point.

DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION

3.1.2. The I-test
The GCD-Banerjee test does not determine exactly if a def-ref array variable pair
is data independent. The reason for this is that it does not distinguish the case where the
real solution satisfies the bounds constraints (3) but the integer solution does not; both
tests will determine a dependence. The [-test proposed by Kong, Klappholz and Psarris
[Kong91], integrates the two tests and determines exactly whether an integer solution
exists for ecach equation m the dependence system (2) restricted by the bounds
constraints (3).
The I-test poses the subscript equality equations as interval equations of the form
! /
ap \x;— b, x| oot ap Xy — bl,n X qa - /Ill; {///
4)
! !
A 1 X1~ bm,l X, ot A Xy — bm,n X n [Llru Um/
where for the 7 subscript equality, the interval equation
(5) a;vi + ..t Q;2nVon = [Lb UJ
is checked for integer-solvability. If g is the GCD of the coefficients {a;,, ..., a;2./, an
integer solution exists if L; < g[L/g] < U,. Each interval equation is then successively
transformed through a series of variable elimination steps for which the step to eliminate

V>, 1s shown below:
+ - + -
ai Vit ..t @GonVar = [Li—a;,, Uyta,, L, U—a,, Ly ta,, Usa/

assmning lai,an < U.Zn - L2n + / and

a =a if a > 0, 0 otherwise

a=a if a <0, 0 otherwise

With each new interval equation generated the bounds test is performed. If the
procedure encounters an equation which is inconsistent, the I-test concludes that the
array variables concerned are independent. The I-test is an exact test for def-ref array
variable pairs possessing uncoupled subscripts. Array variables with coupled subscripts
require more sophisticated techniques to disambiguate the array variable access patterns.

3.2. Coupled index subscripts analysis methods

We have until now avoided the complications involved in the analysis of coupled
subscript expressions. For all the tests described so far multi-dimensional array
variables are tested subscript-by-subscript. That is, the systems (2) and (3) are
formulated and tested one array dimension at a time.

As we mentioned before, an array variable has coupled subscripts if there exists
some index variable x; € X which appears in two or more subscript expression fields
(the array variable A/x+y,x] is said to have coupled subscripts). For a def-ref array
variable pair with coupled subscripts a subscript-by-subscript test will yield an over
conservative estimate. For example, in the code fragment below a subscript-by-subscript
application of the GCD-Banerjee test will determine a data dependence when none
exists.

for i .= /tondo
dl: Afi+1,i+2] = Alii] + 3;
end for

GR. MOI DOVAN, A. VANCEA AND M. VANCEA
JIN. ”

321. The Delta test

he Delta test proposed by Gioff, Kennedy and Tseng [Goff1] accounts for
The D¢ § '

bscripts by using @ ¢"(m,s'!"”"'”_ 1”"’/-’“?»”’1""‘,' ' ’e,c;tl””(/“e' ;(Ezeir (Slcheme first
tioning the subscript eguahty expressions into coup ban' uncoupleq
cking for separability. Phen they attempt to solve the subscript equalitie,
. yeder where an uncoupled s}ubsprlpl gquahty is favoured over a coupled one,
in an ONIEt % T test (i.e. the GCD-Banerjee test as suggested by the authors) is the,
data independent aints are generated in the form of either a dependence hyperplane
a depéndencc point. ’
The generated constraints are propagated intp the next sub§cript test where
independence 18 concluded when either the appllc_atlon of the Qata independence test
determines so, or the set of constraints do not intersect. A simple example of the
application of Delta test can be seen in conjunction with the code fragment above. The
first subscript dimension is checked where a data independence cannot be determined. A
dependence distance constraint, ¢, i; - j; =1, 18 generated. The second subscript
dimension is then checked where again a data dependence cannot be determined. A
second dependence distance constraint, ¢,: i; - j; =2, is generated. Since c¢; N c;=0, we
conclude that the defiref array variable pair is data independent.

coupled su
involves pal'fl
oroups, i.e. che

pcrfonmd and constr
a dependence distance or

3.2.2. TheAtest

The A-test proposed by Li, Yew and Zhu [Li90] is an efficient data independence
test for two multi-dimensional array variables. It is one of the few tests that attempts to
sqlve system (2) simultaneously. The test is shown to be especially efficient for two-
dimensional arrays. Studies of scientific and engineering programs [Shen90] have
shown that two-dimensional arrays are the most common type of array structures used.

The centra.I idea of the A-test, for two-dimensional arrays is the determination of a
set .of v and ¢ lines, on a (4, 1) plane, which define the dependence system. The y and
b lmgs are of the fqrm al; + bA, = 0 where a and b are integer constants. The A-test for
data ndependence involves forming linear combinations of the y and ¢ lines,

f}tl,,l2 =481+ 1,8,

11 a .
EZﬁenidab)v It)liane’ and’showmg thgt gach A-plane does not intersect the subspace V
-).-plan);: ; rﬁ constraining subscript inequalities, as defined in system (3). To check if
ersects V' a simple bounds computation is performed. The procedure first

determin i . .
es min(flplz) and max(f,wLZ) and if min(fll 2,)S0< max(f, ,) we thar
s 1>7%2

conclude that f, , intersects V.

The J-test, 1 s
solution to the ,c(llllll(:littlil:sl?dn‘erjee bounds test, determines if there is a constrained 7¢4/
constrained integer so]utin system (2). A true dependence will only occur if there is 2
Mseng (Wolfe92) iien on to the system. The Power test, proposed by Wolfe and
solutions with lhé, }“ou:‘:'z’.r . th? gcn_ethCd GCD test for unconstrained integer
solutions, The tegt will M-M()Vk".l variable elimination technique for constrained real
tl determine if there is a constrained integcelr solution if one exists-

8

DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION

The test can also handle triangular, trapezoidal and other convex loop bounds. There is a
slight inaccuracy in the test, however, which will be explained further.

The generalized GCD test was proposed by Banerjee to determine if an
unconstrained integer solution exist for the system (2). We start with this system which
can be concisely described by the matrix-vector product pair

(6) VA=c
where V.= (v), ..., Vi),

a ai oy

A= i,

am,l ‘ am,2n

and C = (cy,..., Co)".

In the generalized GCD test, (6) can be factored (by Gaussian elimination for
example) into an unimodular matrix U and an echelon matrix D such that U-4 = D. The
system (6) has an integer solution if and only if there exist an integer vector f such that
fD =cC. Since D is an echelon matrix, [can be found by back substitution. If 3
cannot be determined the system has no solution and the def-ref array pair are
independent. If ! has an integer solution, then
(7) v=tU
is the solution to the system (6).

The Power test continues by determining if the integer solution for expression (7)
satisfies the constraint system (3). It uses the Fourier-Motzkin variable elimination

method to determine this.
For example, consider the system of three constraint inequalities

(8) t+L>1 -t <2, 6,<-2
Transforming system (8), we get

9 t+t, > 1 = > 11—t
(10) -t < I = ¢ < 2+t

The Fourier-Motzkin eliminates ¢; by projecting (9) > (10)
2+t2 > l-tgj > -1/2
and combining the new inequality with the original system (8), we obtain
-12<t,<-2
which is inconsistent. We therefore conclude no feasible solution to the system of
inequalities.

Now the solution to expression (7) for v, ... , v, is expressed in terms of the free
variables 7,+;, ... , t2.. The Power Test substitutes the relevant terms in system (3) with
their free variable solution from expression (7) and solves the new constraint system
using the Fourier-Motzkin variable elimination method. If an inconsistent pair of
bounds is encountered the test deduces no data dependencies between the def-ref array
variable pair.

There is an inaccuracy in the Power test, for an inequality

hit; + hots + ..+ bty 2 U
for which we wish to eliminate variable #,

GR. MOLDOVAN, A. VANCEA AND M. VANCEA

3 U"ht-ht _"'_h t
. 4 = 1 2 171 262 keily
Pty ZU—h;t;~]13tz—— B 1t ;A hk |
The Power test takes the ceiling of the division on the RHS, i.e.
U—ht, —ht,—..—h_t,
>
> "

The ceiling operator in this case is the source of imprecision because it enlarges th,

solution space and may consequently introduce integer solutions where none exist,
SC ¢

3.2.4. General integer programming methods

All the data flow analysis methods which have been described in this section gre
inexact. in that a dependence between a def-ref array variable pair may be reporteq
when none exists. An exact answer can be derived through integer programming,

Whereas integer programming requires a vector vV to be found which minimizes or
maximizes some cost function, a data independence test need only determine if there is

a feasible solution within a convex set in R and if that solution space contains at least
one integer point. Wallace [Wallace88] Lu and Chen [Lu90] and Pugh [Pugh92] have
adopted this approach. Note that there is already a very large body of work on integer
programming and that the method is generally agreed to be NP-complete.

Wallace proposes the Constraint-Matrix method which uses the simplex method in
linear programming modified to solve integer programming problems. The number of
pivoting steps in his method is bounded by a limit to prevent a condition know as
cycling, where the simplex method is known not to converge onto a solution. Lu and
Chen describe a new integer programming algorithm but the cost of using their
procedure is difficult to assess as they do not provide a metric. Finally, Pugh proposes
the Omega test which uses a modified version of the Fourier-Motzkin variable
elimination algorithm. Through careful implementation, Pugh claims the Omega test to
be practical for commonly encountered def-ref array variable pairs. The Omega test has,
however, a worst case exponential time complexity, although Pugh claims that the
algorithm is actually bounded within polynomial time for common cases.

3.3. Concluding remarks

) Data flow z.malys'is for multi-dimensional array variables requires complicat'ed
techniques to disambiguate the access patterns defined by the array subscript

expressions. Tgble 1 summarizes the characteristics of the data flow analysis methods
described in this section.

Almost all the proposed anal
method by deeming it sufficient
have been methods which aim t
Programs that employ integer pro

ysis methods have avoided the complexity of an e?‘act
to provide an approximate solution. The exceptio®
0 solve the data flow analysis problem exactly 3

gramming.
Method - .
l\—{ﬁnsm&mcd Integer COIlSll'ained coupled ExaCt
teger real subscript

10

DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION

GCD test No ‘ \?és No No No
Banerjee test | No I_\Jjo | Yes 7 ' No No
I-test fYes _Y,CS,: 77 Yes - FIO No
Atest ~ INo [No |Yes |Yes |No
Delta test Yes [Yes |[Yes | Yes No
zowcr test Yes | Yes [Yes | Yes | No
Integer Yes Yes Yes Yes Yes
_Rrogramming i

Table 1: Characteristics of data flow analysis algorithms

However, these integer programming techniques have worst case exponential time
complexity which have discouraged many parallelizing tool developers from adopting
them. Pugh claims the Omega test [Pugh92], which is an integer programming
algorithm, to have a typical performance which is “acceptable”.

He makes this claim based on experiments which employ the Omega test on a
collection of commonly used scientific and engineering loop kernels. He does not,
however, prove his assertion for general case.

4. Symbolic data dependence analysis

Symbolic analysis is needed for solving more systems exactly than previous
approaches. That is because symbolic terms play a significant role in the analysis of
programs. For advocating this, let's take the following example:

read(n);
if n > 10 then
for i-=1/to 10 do
afi+n] :=afi] +5;
end for

end if
If we annotate the two references with the fact that n > 10 this allows us to prove that

they are not truly dependent. The more general approach can be very expensive at
compile time. It is necessary to track the relationship of all scalar variables in a
program. In addition, the data dependence system being solved becomes more complex,
containing more variables and more constraints.

A variety of methods for doing symbolic analysis have been proposed in the
literature. Reif [Reif78] uses the control flow graph to construct a mapping from
program expressions to symbolic expressions for their value holding over all executions
of the program. This cover is weaker than others that have been done, but the algorithm
is much cheaper. Its cost is O(leng + a a(a)) bit vector operations, where /eng is the
length of the program, a is the number of edges in the control flow graph, and is
Tarjan's function, which is almost linear.

Reif and Lewis [Reif77] use a structure called the global value graph to compactly
represent symbolic values and the flow of those values through the program. Their
algorithm for symbolic evaluation discovers simple constants and minimal fixed point
covers and is almost linear in the size of the global value graph. Like [Reif78], this
technique deals only with variables that have the same symbolic value along all paths in
the program's control flow graph. The global value graph is of size O((oa + leng)),

11

CEA AND M. VANCEA

GR. MOLDOVAN, A. VAN |
m, a is the number of edges in flqy,

' ; ra
here o is the number of variables in the prog
where 0 I

: y “the program. : . ,
raph and [en%h;StEfafni?dO;?gczk (Alpern88] try to determine equality relatigp,
Alpern, WC€g) -

ables in the presence of control flow. Their approach uses vajy,
a

between Pf"gfsn:);’;:;g a value graph that represents the symbolic e.xecution of the
numbcnn%)eatncrmining; which nodes in the value graph are congruent 1S an O(E logE)
program.

y of edges in the value graph. Each assignment in the
problem, Wh?r,c-[,: l,:ct:,c (gl:rl:b()cfr the pr%)gram is a node in the value graph, which hag
SHBHE Sm‘glcf- dss;i’sl oxecutable function nodes, which represent normal assignments, and
oo tysv;:noml)‘;; .\;vhvjch rcpres‘cnt join points in the control flow graph.
d)'/u”é?:usot an‘d, Halbwachs [Cousot78] | determine inequality as well as eqpality
relations, using abstract interpretation. Their appfoach converts lmear.const'ramts Into a
convex polyhedron and tries to df:duce assertions about the relationships between
program variables from the semantics of the program. Th}s method is intended to be
applied to tasks such as array bound checking; precision will be lqst Whgn the numbers
are reals instead of integers. The cost of their analysis is almost linear in the length of
the program but exponential in the number of variables involved in the analysis.

Haghighat and Polychronopoulos [Hagh90] propose a framework for doing
dependence analysis in the presence of symbolic terms, using abstract interpretation
based on a lattice model. Essentially, they handle the simple symbolic cases that PFC
takes care of: symbolic loop bounds, symbolic additive terms, and symbolic multipliers
[Allen83]. The lattice is used to do constraint propagation and inequalities are solved
using the convex hull method of Cousot and Halbwachs.

Lichnewsky and Thomasset [Lich88] evaluate constraints symbolically when it
cannot be done numerically, using approximations to reduce the computational cost. A
general decision procedure is employed only after the Banerjee-GCD test [Bane79,
Aller}87, Bane88a] has failed. The decision procedure uses the SUP-INF method for
fgotrﬁfgres‘tt)ﬁrg.er formulas, as Qescribed by Shost?k [Shos77]. The basic approach is
back intortrl?e irftelgft:igde(:rg?: l?hnelrég)rr:hfe;ei?) d(f) ?m’lsowe - 'and trgnslate the rc.:sults
length of the formula : plexity of this algorithm is O(2"), where N is the
fiix;fbker[;lz\gslife] ;lsles array section qnalysis, a spepial SSA form, and global

gral components of his analysis. His approach combines value

solving recumence. [Hagh90], whose strength lies in rewriting expressions and

value

Blume and Eigenmann [B] 3
Range Test, which proves inf[iep::zlef:] describe a new dependence test, known as ¢

hold for a i ce by determining whether symbolic inequalities
Incqualities};)e:tm fl:sig:) I(I)nOf the loop nest. The Range Test is sloilver than Bgnerjee's
average than the Omega Test, although the Omega Test caf
dependence ip f more traditional memory-b ion of datd
references whiciw;;a c;f 2;;1226-31%6(1 approach. Instead of tesrt}ilngaS:i/(ir;loglal(;;l of arfdy
imi . e sam :
climinates pairs separateq by an © memory location, a value-based appro*°

dependences f; ot , intervening Writ . ous
tom consideration. Collard, Barthou, ancll %eatht:s eliminating spuf;nt .
0 utrier [Collard95] pres

DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION

method which gives exact information in some cases and which can handle nonlinear
terms in loop bounds and IF conditions but not in array subscripts. Maslov [Maslov94]
exactly computes value-based dependence relations for program fragments where all
subscripts, loop bounds, and IF conditions are affine. The algorithm, which is lazy, also
handles some nonlinear terms. Pugh and Wonnacott [Pugh94] handle more nonlinear
constraints than Maslov's algorithm and their work also has the ability to relate terms in
the dependence analyzer back to program expressions which can be more readily
understood by the programmer.

Finally, Shen, Li, and Yew [Shen90] present the results of an empirical study on
array subscripts and data dependences. This study concludes that many of the subscripts
contained symbolic terms with unknown values. An average of 33.97% of all subscripts
were nonlinear, and of these, 85% to 100% of the nonlinear or partially linear subscripts
were caused by an unknown variable. User assertions pertaining to the value of some
symbolic variables were employed in an effort to reduce the number of nonlinear
subscripts for six programs. Using user assertions, only 27.38% of one-dimensional
array references and 14.7% of two-dimensional array references were nonlinear, as
opposed to 47.44% of one-dimensional array references and 44.91% of two-dimensional
array references when assertions were not used.

5. Run-time parallelization

Polychronopoulos proposes a technique called run-time dependence checking
(RDC) [Poly86, Poly87, Poly88] that uses program information available at
compile-time to generate code that resolves dependences at run-time. The goal of RDC
is to determine at run-time whether a particular iteration of a loop depends on one or
more previous iterations, and synchronize the loop iterations involved in dependences.
A dependence source vector 1s created for each true dependence in the loop. Non-zero
elements in the dependence source vector indicate the iterations of the loop that may be
involved in a dependence. For each potential dependence source, a statement is inserted
at the beginning of the target loop that causes the program to wait on the
synchronization vector until the statements corresponding to the dependence sources
have executed. Iterations which cannot be involved in a dependence are executed in
parallel without any constraints. He gives no time complexity for the algorithm used to
construct the dependence source vectors, but estimates that the storage requirement for
the dependence source vectors is O(kN), where k is the number of dependences and N is
the number of loop iterations.

Saltz et al. [Saltz91] describe a compiler that transforms a loop into two separate
code segments, an inspector and an executor. The inspector reorders loop iterations nto
concurrent wavefronts, then the executor carries out the scheduled work. This method
applies only to loop nests in which inter-iteration dependences do not depend on the
results of computations carried out in the loop nest. If the run-time parallelization 1s
being done for a distributed memory architecture, then the inspector phase will also
determine the location of distributed array elements and calculate which communication
calls will be needed to retrieve the data. Information about communication patterns 1S
saved between executions in an effort to amortize the cost of the inspector.

Rauchwerger and Padua [Rauch94] present their Privatizing DOALL test, which
identifies fully parallel loops at run-time and dynamically privatizes scalars and arrays.

13

Ol DOVAN.A. VANCEA AND M. VANCEA

any loop, regardless of control flow. The test can cithe, be
e . determining whether the l()()p can be executeq .
jone while the loop 18 hcmg spcculatlvcly exceuted 45 ,
est should be applied in almost all cases because .
allel loop is minimal compared to the CXPCCted

GR.M

pplicd {0

e tost can be d A
The (€ ¢ he]‘)ﬂl\ 1S (‘_\((l"(

betore 1
or it can be ¢
lude that the
a less- than-fully-par

pcrlbrmcd
a DOALL,
DOALL. They cone

cost of encountering

speedup.
Leung
possible appro
:ipccdup relative 1
suboptimal schedu
nd 1s guarantccd to

and Zahorjan llvcung‘)}l prcscn.l an inspcc‘l.f)r.—exccutor .met}‘md withl two
aches. l‘iu‘ first, which targets inspector cfhcxcncy, achieves nearly lines,
o a sequential execution of the inspector, but may produce ,
le for the executor. The second approach emphasizes executor

fficiency a produce the best schedule, at the cost of a potentially
¢ CICIN Y <«
JJower inspector 1oop.

6. Run time anomaly detection

4ccess anomalies, also referred to as data races, occur when one thread of a
parallel program modifies a shared variable concurrently being accessed by another
thread. Dinning and Schonberg [Dinn90] present a debugging algorithm known as fask
recveling, for detecting access anomalies at run-time. The expected space complexity is
O(7). but the worst-case bound is O(T¥), where T is the maximum number of threads in
the program and V is the number of variables monitored. This on-the-fly approach
detects anomalies by monitoring program execution. When a variable is accessed during
execution, a check is made to see if the current access conflicts with a previous access.
If a conflict does occur, then an error is reported. Their empirical estimate of the cost of
monitoring is a 3-fold to 6-fold slowdown if every shared variable reference is
monitored. This cost can be reduced by using static analysis or user assertions to limut
the number of variables that are monitored.

Hood, Kennedy, and Mellor-Crummey [Hood90] also use an on-the-fly detection
g‘v‘?:}?idb:gilgilé gltgg)rrggnmit (1)sr irx:mrer oeff;xlcient than the one presented in [Dinn90]. Tohe
and a single instrumented execut%olil g'rllm'eli(ecmlon' s estimated to be less than 4770
behavior or verify that all executi WIf fl?t er identify sources of schedule-dependel
the same result. Their approacl;llons ol e program on th_e same set of data comp ute~

T uses dependence analysis to reduce the amount of
run-time checking, and they al d -)

y also reduce the cost of detection by using a method that

works for programs with n
ith no nested parall u i fl
. o . el constr ired
synchronization primitives inadiscip]ined way s Hene only the struc

7. Conclusions and future work

We sustained in thi
’ ’ g 1S paper the idea th:
approach at the moment for the [are e

sequential programs. This parallel:
structures of ge : -
cquential programs : v
sequential vcrsi(j)ns ()u'l_) n:agirs[?,'b d;ld l;)llcrs the most substz,mtial speedup relative 0 the
o nal obiective i« .
OPUMIZing compiler. Here we focys Jecve is the construction of a restructuring 4

DATA DEPENDENCE TESTING FOR AUTOMATIC PARALI ELIZATION
also needed for better results in a more general framework. The substantial list of
references given can be of'a great help to the reader interested in these topics.

Our future efforts will be devoted to the establishment of a practical approach of
efficient data dependence testing (known o be NP-complete in the general case), not
focusing on only one particular methodology, but cascading existing techniques in
particular manners based upon the main featurcs of the class of problems taken into

consideration.

REFERENCES

[Aho86] A.V.Aho, R.Sethi and J.D.Ullman - Compilers: Principles, Techniques and Tools, Addison-
Wesley, Reading, Massachussetts, 1986.

{Allen69] F.E.Allen - Program optimization, in Annual Review in Automatic Programming 5, International
Tracts in Computer Science and Technology and their Applications, vol.13, Pergamon Press, Oxford,
England, pp.239-307, 1969.

|Allen83] J. R. Allen - Dependence Analysis for Subscripted Variables and Its Application to Program
Transformations, Ph.D. thesis, Department of Computer Science, Rice University, Houston, April

1983.
[Allen87] J. R. Allen and K. Kennedy - Automatic translation of Fortran programs to vector form, in
ACM Transactions on Programming Languages and Systems, 9(4), pp.491--542, October 1987.

[Alpern88] B. Alpern, M.N. Wegman and F. K. Zadeck - Detecting equality of variables in programs, in
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pp.1-11, San Diego, California, January 1988.

[Bane79] Utpal Banerjee - Speedup of ordinary programs, PhD thesis, Dept. of Computer Science,
University of Illinois at Urbana-Champaign, October 1979, Report No. 79-989.

[Bane88a] Utpal Banerjee - Dependence Analysis for Supercomputing, Kluwer Academic Publishers,
Norwell, Massachussets, 1988.

[Bane88b] Utpal Banerjee - An Introduction to a Formal Theory of Dependence Analysis, The Journal of
Supercomputing 2 (1988), pp.1 33-149.

[Bane97]| Utpal Banerjee - Dependence Analysis, Kluwer Academic, 1997.

[Blume94] William Blume and Rudolf Eigenmann - The Range test: A dependence test for symbolic,
non-linear expressions, in Supercomputing "94, IEEE Computer Society, 1994.

[Collard95] J.F. Collard, D.Barthou, and P.Feautrier - Fuzzy array dataflow analysis, in Jeanne Ferrante
and David Padua, editors, Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP, volume 30(8), pp. 92-101, August 1995.

[Cousot78] Patrick Cousot and Nicholas Halbwachs - Automatic discovery of linear restraints among
variables of a program, in Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, pp.84-96, Tucson, Arizona, January 1978.

[Dinn90] A. Dinning and E. Schonberg - An empirical comparison of monitoring algorithms for access

anomaly detection, in Proceedings of the Second ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 1-10, Seattle, WA, March 1990.
[Dowl90] M.L.Dowling - Optimum code parallelization using unimodular transformations, in Parallel

Computing, 16, 1990, pp.155-171.
15

. VANCEA
VAN, A. VANCEA ANDM VA
GR. MOLDO ’ Practical Dependence Testing, in PrOCeeding
Tseng -

. S of the
nguage Design and Implementation, TOFOnto, N

C.W.

4 CM
Programming La

[Goff91] G.GofT, K.Kennedy and .

SIGPLAN 91 Conference on
L ' pLb
1e 26-28, 1991, pp. 15-29.

Jur Ivchronopoulos - Symbolic dependence analysis for high
olyc

S ‘perfor]nan ’
‘n Languages and Compilers for Parallel Computin
ances in

~ P .
highat and C. 1 . lrvmey "

M. Hag .
lHaghogl'allelizing compilers, Ad
iugusl 1990. The MIT Press.

Iy

1 is, PhD thesis, Department of ¢
weedural Symbolic Analysis,
Paul Havlak - Irvlcrl)tlooc()c:";\‘lls() ;vuilablc as CRPC-TR94451 from the Center for
May :

('S-TR94-228 from the Rice Department of Computer Science

OMpytey

[Havlak94] RCSeargh

Science, Rice University, l

2 ' (¢

Parallel Computation ar ' ‘

on Kennedy and J. Mellor-Crummey - Parallel program debugging iy, on
R. Hood, K. Kenne

‘the-ﬂy
dings of Supercomputing '90, New York, NY, November 199

[Hood90] g
anomaly detection, n ;
A . al of Devel, o
High Performance Fortran Forum, in High Performance Fo.rtrarftJm;_Ircr)zuSt Ojr’] o Olpg'g;”” CRec.
’ b . . ’ .
" Fql%l]{t) 1?00 gemer for Research on Parallel Computation, Rice University, y

th _

1 i ACMS mposii »

i iti Conference Record of the 15 Ymposium o,

i Jrigoin, R.Triolet - Supernode partitioning, in : . i

. lgss}l’ril:zclz;;ge(;lo;’Programming Languages, San Diego, California, January 1988, ACM Press, New v,
pp-319-329.

(Karp67] R.M.Karp, R.E.Miller and S.Winograd — The organization of computations JSor uniform
recurrence equations, in Journal of the ACM, 14(3), pp.563-590, July 1967.

[Kenn93] K.Kennedy, K.McKinley, C.W.Tseng - Analysis and transformation in an inte_erggg've parallel
programimning tool, in Concurrency Practice and Experience, 5, 7 October 1993, pp.575-602.

[Kong91] X.Kong, D.Klappholz and K.Psarris - The I T. est: An Improved Depem?enf:e Test for Automt;t;c
Parallelization and Vectorization, in IEEE Transactions on Parallel and Distributed Systems, vol.,
no.3, July 1991, pp.342-349.

[Kuck72] D.Kuck, Y.Muraoka and S.Chen — On the number of operations simultaneously executable in

. . ¢, 21(12),
Fortran-like programs and their resulting speedup, in IEEE Transactions on Computers, 21(
pp.1293-1310, December 1972.

[Lamp74] Leslie Lamport -

2),
The parallel execution of DO loops, in Communications of the ACM, 110
1974.

TP rth
[Leung93] S. Leung and J. Zahorjan - Improving the performance of runtime parallelization, I Fou
ACM SIGPLAN Symposiu

L ! R(T) TP
m on Principles and Practice of Parallel Programming, volume 28(7):P
83-91, July 1993.

[Li%)] Z.Li, Pen jzing

990,

-Chung Yew and C.Zhy -

, |
: An Efficient Dqyq Dependence Analysis for P aralle
» M IEEE Transactions op Pa

ary |
rallel and Distribyteq Systems, vol.1, no.1, January

ic i . «n the
lLuh8§] A;j Llchnewsky and F, Thomasset - Introducing symbolic problem solving techmq;m ,:a’
€pendence testing phases of a vectorizer, in Pro i nal Confere
') ceedi ternationa
*Sullc‘rcomputing, St. Malo, F ngs of the Second In

rance, July 1988

[l,uve77] l).B.Lovcman -
ACM, 1, 24, January 1
(Lu9o)

Program improyem
977, pp.121-14s.

L.Lu ang M.Chen -

Subdomain D
! epen,
ASu/;(frlfompu,/,,g Pendence Tegy

: or Massive Parallelism, i
90, New York, November 199 Jor Massive Par

16

DATA DEPENDENCE TESTING FOR AUTOMATIC PARALLELIZATION

[MaHL91] Dror E. Maydan, John L.Henessy and Monica S.Lam - Efficient and Exact Data Dependence
Analysis, in Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design and
Implementation, Toronto, Canada, Junc 20-28, 1991, in SIGPLAN Notices 26(1991), pp.1-14.

[Maslov94] Vadim Maslov - Lazgy array data-flow dependence analysis, in Conference Record of POPL 94,
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 311-325,
Portland, Oregon, January 1994,

[Mura71] Y.Muraoka - Parallelism exposure and exploitation in programs, Ph.D. thesis, Tech.Rep. 71-
424, University of Illinois at Urbana-Champaign, 1971.

[Pugh92] William Pugh - A practical algorithm for exact array dependence analysis, in Communications of
the ACM, vol.35, no.8, August 1992, pp.102-115.

[Pugh94] William Pugh and David Wonnacott - Nonlinear array dependence analysis, Technical Report
CS-TR-3372, Department of Computer Science, University of Maryland, November 1994.

[Poly86) C. Polychronopoulos - On Program Restructuring, Scheduling and Communication for Parallel
Processor Systems, PhD thesis, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, August 1986.

[Poly87] C. Polychronopoulos - Advanced loop optimizations for parallel computers, in Proceedings of the
First International Conference on Supercomputing, Athens, Greece, June 1987. Springer-Verlag.

[Poly88] C. Polychronopoulos - Parallel Programming and Compilers, Kluwer Academic Publishing, 1988.

[Rauch94] L. Rauchwerger and D. Padua - The Privatizing DOALL test: A run-time technique for
DOALL loop identification and array privatization, in Supercomputing '94, International conference,
July 1994, Manchester, pp. 33--43, Manchester, UK, 1994. Univ of Manchester.

[Reif77] John H. Reif and Harry R. Lewis - Symbolic evaluation and the global value graph, in
Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, pp. 104-
118, Los Angeles, California, January 1977.

[Reif78] John H. Reif - Symbolic programming analysis in almost linear time, in Conference Record of
the Fifth Annual ACM Symposium on Principles of Programming Languages, pp. 76-83, Tucson,
Arizona, January 1978.

[Saltz91] J. Saltz, H. Berryman and J. Wu - Multiprocessors and run-time compilation, \n Concurrency:
Practice and Experience, 3(6), pp-573-592, Dec. 1991.

[Sark91] Vivek Sarkar - PTRAN - The IBM Parallel Translation System, in Parallel Functional
Languages and Compilers, ACM Press 1991, pp.309-391.

[Shen90] Z.Shen, Z.Li and Pen-Chung Yew - An Empirical Study of FORTRAN Programs for
Parallelizing Compilers, in IEEE Transactions on Parallel and Distributed Systems, vol.1, no.3, July
1990, pp.356-364.

(Shos77] R. Shostak - On the sup-inf method for proving Presburger formulas, JACM, 24(4), pp.-529--
543, October 1977.

[Schr87] Alexander Schrijver - Theory of Linear and Integer Programming, John Wiley & Sons, New
York, 1987.

[Van94] Alexandru Vancea - Categorii de limbaje. Aspecte comparative pe arhitecturi conventionale §i
distribuite, Referat in cadrul stagiului de doctorat, Universitatea "Babeg-Bolyai" Cluj-Napoca, 1994.

[Wallace88] D. Wallace - Dependence of Multi-Dimensional Array References, in Proc. of the 2

International Conference on Supercomputing, St.Malo, France, 1988.

17

JWAN, A. VANCEA AND M. VANCEA

yercompilers for Supercompulers, Research M
()n()gr

aphg |

S In

zing Sul
IT Press, (ambridge, Massachussetts, 1989

GR. MOLDX

tichael J. Wolfe - Optimi
| and Distributed Computing,
.Wen Tseng - The
1 Systems, vol.3, nc

[Wolfe89] M

paralle
Power Test for Data Dependence, |
y In II“I,I'I

Jolfe and Chau
.5, September 1992, pp.591-60]

[\\‘olfr%] Michael W
‘qhute

Transactions on Parallel and Distt

Faculty of Mathematics and Informatics, RO 3400 Cluj-N
-14)-INapoca, str

Rabes-Bolyal University,
Kogalniceanu 1, Romama.

ddress. {moldovar @cs .ubbcluj.ro

\, vancea}
RO 3400 Cluj-Napoca, str. Kogalniceanu 1, Romg
’ ania,

E-mail @
Rabes-Bolyai University, Faculty of Economics,

E-mail address: vancea@econ . ubbcluj . ro

18

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

