
STUDIA UNIV, "BABES BOLYA", INFORMATICA, Volume 1, Number 2, October 1996

A FORMAL SUPPORT SYSTEM roR THE OBJECT ORIENTED

ANALYSIS OF AN APPLICATION DOMAIN

S. BERAR, M. VANCEA, AND A. VANCEA

Abstract. The paper introduces a formal system ained to a8sist the pro-

grammer in the object oriented analysis of an arbitrary application domain.
The object oriented models shift the modelling semantics towards a concep-

tual modelling in the application's domain. Being given a graphical repre-

sentation of the application's domain structure, we further generate a correct

and consistent specification in an intermediary code, independent of thc pro-

gramming language in which the application will be developed.

1. Preliminaries

In approaching complex applications domains, classical data models show

some limitations, comming mainly from the impossibility of modelling implicit
knowledge, the limits imposed by the capacity of abstraction and the difficulties

that arise when trying to access some composite parts of the involved objects.
Object oriented models (00M) shift the modelling semantics towards a conceptual
modelling in the application's domain [2] ignoring the intensive use of notions like
pointers or trees. OOM reduces the gap between reality and the model.

The paper presents the design ofa system (partially implemented) which
assists the programmer in object oriented analysis of an arbitrary application

domain.
It is generally simpler to specity graphically the structure of an application

domain. Starting from such a representation, one tries to generate a correct and

consistent specification, in an intermediary code, independently from the program-
ming language in which the application will be programmed. Such a specification

can be further processed for obtaining an object oriented source code.

The system has to fulfil the following functions:

a): Offering a friendly user interface for the graphical specification of the

involved classes and the relationships between them; based on the graphical

1991 Mathematics Subject Classification. 68M15, 68Q60, 68NO5.
1991 CR Categorices and Descriptors. D.1.5 |Programing Techniques): Object-oriented

Programming; D.2.1 [Software Fugineering]: Requirements and Specification - languages,

ethodologies; D.2.4 [Software Engineering): Progran Verification reliability, validation.

91

S. BERAR, M. VANCEA, AND A. VANCEA

specification, the algorithm presented in section 3 will generate an ademat.

model for the chosen application;

b): Verifying the corectness and the consistence of the user defined modol

signaling the possible occiuring errors;

c): Offering the possibility of the dynamic modification of the nodel and of

completion of an existing one;

d): Generating a specilication file based on the graphical represcntation de-

veloped by the user.

2. The formal description of the problem

We will further consicder the object as introduced by Booch [5]: an object
is an entity which has a state, behaviour and identity, the structure and behaviour
of similar objects being defined in their common class.

An object oricnted model is a tuple (C, IS - A, 0), where C is a type

system, 1S - A represents the structural and behavioural inheritance relationship

(which introduces a partial ordering relation in the type system) and O is a type
that generalizes all others types, being the root of the type hierarchy [4].

The set C can be divided in three disjoint sets:

CA the type set identified in the application domain
CAUx - the auxiliary type set from the solution domain;

CB the basic type set.
Considering that the C'a types are completed with the implementation

component, we can approach the classes identified in the application domain. Our

system intends to support the user in the specification process of these classes.
We will assume that the inheritance relation IS - A is represented as the

tuple set

SI = {< Ci,Cj >e Cx CI(C%IS-A C;)}.
We consider also that a class C; is internally represented in our system by a data structure of the form

classname: string;
structure : 8et_of_attributes;

interface set_of_methods;
We will denote by an attribute a tuple of the form:

attrname:string, attr_domain: Ca U CB >
A method is declared by a tuple of the form:

method_name:string, method domain:tuple-ofCUCA), method.Iesult : CAUCB We have further to define the following elements: a basic set G of paramcterizcd graphical symbols with which the descriptto" will be made;

92

A FORMAL SUPPORT SYSTEM FOR OBJECT ORIENTED ANALYSIS

a couple of functions (Tc G Ca,T1 : G> SI) which express the
correspondence between the graphical symbols instantiated by the user
aud classes, and the inheritance relationship between classes, respectively;

a set of restrictions SC1 :SI-> BOOL, which expresses the validity of
the defined inheritance relationships;

a set of restrictions SCc : Ca-> BOOL, which expresses the structural
and behavioural consistence and correctness requirements of the classes.

3. The basic algorithm of our system

The functionning of the support system is defined by the following se-

quence:

Step 1: Initialization of the C'a and SI sets with the empty set (for the cases
in which we start a new model description) or with Cao and Slo (when we start

from a partially existent model);
Step 2: Starting from Ca and SI we build the set of graphical instantiated

symbols, Do, which describes the initial state of the system. We initialize the

work set D = Do.

Step 3: The user will instantiate a sequence of graphic symbols gi E G by giving
values to their parameters. It is also possible the elimination of some elements

ge E D. The set D = DU{g:|Vi}\{ge; vj} is updated accordingly.

Step 4: 7To

Step 5: The validity of the generated model is evaluated with the formula V =

CVnIv, where

and T1 are applied on D, resulting the new forms of CA and SI.

CV = nCC;(¢;), for all CC; ¬ SCc. cj E CA,

IV = nC1;(s;), for all Cl, E SC.8; E SI.

Step 6: If V evaluates to false, the algorithm goes on from step 3. Otherwise,
à procedure for building and printing the specification is started, based on Ca

and ST. The algorithm of this operation is simple and depends on the system's

nternal implementation.
The algorithm can be restarted at the user's request until obtaining a

astactory specification, adequate to the considered application domain. The

put of the algorithm is a text file which contains the description (following the

Syntax presented below in section 4) of the classes generated at step 6.

Our implementation was programmed in C++ under Windows, for having

c acilities regarding the development of the graphical procedures.

The syntax of the specification language

he syntax of the generated specification language given in BNP form is

dapted from [1] and follows below:
93

S. BERAR, M. VANCEA, AND A VANCEA

<class>::=class <name>

snperclass <list-domains >>
structure <listattributes>

interface <list-methods

end <name>

<list domains> ::= <domain> | <list.domains>;<domain>

<list attributes> = <attribute>;<list attributes> | e

<list-methods> ::= <method>; <listmethods> | e

<domain> ::= <name> I <base.type>

base type> := int | real | string | char | boolean

attribute> := <name>:<donman >

method> ::= <input> Koutput>

input> :=e| <domain>| <domain>x<input>
output> :e <domain>>

name::= identifier

Steps 5 and 6 of the algorithm presented in section 3 assures the validation
and the correct generation (meaning to follow the restrictions imposed at step 5)

of the specification language described above. We have thus that the generated

specification will follow the defined restrictions set.

5. The set of graphical symbols

The structure of a graphical symbol is formed by a tuple of parameters

(P1.P2 Pn), n varying upon the type of that symbol
We will use the following graphical symbols: class (a), inherit (b),

aggregate one (c), aggregate many (d), based on the MT notation [6.
These assure the expressiveness of the classes specification and of the orthogonal
hierarchies IS- A and PART-OP. For specifying the methods of a class one will

use also a graphical symbol, namely method (e).
A common parameter to all those syn1bols is shape, which refers to the

graphical aspect presented to the user. In figure 1 it is presented the value of this

parameter for every symbol used.

6. Model validation

Model validation means verifying the restrictions set SCc: Ca> BOOL,
which expresses the correctness and structural and behavioural consistency re
uests of the classes, and respectively of the restrictions set SC S1- > BOOL,
which corresponds to the inheritance relationships 2

The clusses validation is accomplished at the moment at which all t

classes were described. T'his validation is composed of:

veritying f the classes nanies (class_name) are unique and if the attribute
s

and methods names are unique in the frame of the same class,

94

A FORMAL SUPPORT SYSTEM FOR OBJECT ORIENTED ANALYSIS

a. class-name

b. d

rmethod-name
e.

FiGURE 1. The vaiues of the shape parameter for the graphical

symbols from G

verifying the existence of the attributes definition domains and also of the

domains on which the methods are defined; these could be implicit domains

or user defined ciasses.

The relationships validalion refers particulary to multiple inheritance re-

strictions verification. Multiple inheritance is allowed when there are no two dis
tinct descendant paths (4). But, considering that in the model of an arbitrary

application domain all the classes emerge from an abstract class called ROOT, it

follows that any multiple inheritance relationship leads us to multiple paths. From

this reason, in the program, multiple inheritance will be signaled as a validation

error.

7. Conclusions

In the paper a theoretical model for designing, and afterwards for syntac-

C and semantic validation of the object oriented applications is introduced and

eveloped. These actions take place in the context proposed in section 4.

The main advantage of using this specification and validation method

des in simplifying the design and generation of the object oriented applications

ur implemented system l1as nainly a didactic goal and helps the user in the

OTfect design and reliability of his object oriented aPplcatioins.

95

S. BERAR, M. VANCEA, AND A. VANCEA

References

11 B. Stroustrup, The C++ Programming Language, Addison-Wesley Series in Computer i-
ence, 1986.

2] B. Eckel, Using C++, Osborne/McGraw-Hill, 1990.

13 **, BORLAND C++: Programmer's Guide, 1990.

oca,
4 I. Salomie, Object Oriented Programming Techniques, Ed. Microinformatica, Cluj-Napor-

1995 (in Romanian).

5] G. Booch, Object Oriented Design with Applications, The Benjamin/Cummings Publishing
Company Inc., 1991.

6) J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented Modelling
and Design, Prentice Hall International, 1991.

BABE^-BOLYAI UNIVERSITY, FaCULTY OF EcONOMICS, RO 3400 CLUJ-NAPOCA,
STR. KoG�LNICEANU 1, ROMANIA

E-mail address: {sanda, vancea Qocon.ubbcluj. ro

BABES-BoLYAI UNIVERSITy, FaCULTY OF MATHEMATIcS AND INFORMATICS,
RO 3400 CLUJ-NAPOCA, STR. KoG 1, RoMANIA

B-mail address: vancea@cs.ubbcluj.ro

96

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

