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cYMBOLIC MODELLING OF DYNAMIC EQUATIONS FOR 
NON-COMPREsSIBLE STATIONARY FLUIDS 

A. ANDREICA 

Abstract. This paper deals with automatical implemnentation of particular 

theoretical computatious wlhich appear in the mechanics of non-cormpressible 
stationary fiuids. For certain classical types of movements, there were writ- 

ten Mathematica packuges which calculate their physical characteristics, such 
as: velocity, friction tensions, flow, pressure. The results are obtained sym- 
bolically, as an expression depending on some variables, but these variables 
can also be given numerical values, in this case the result will be "partially" 

or "totally" numerical. Therefore, symbolic computation supports a quick 
finding of the theoretical desired results, which would otherwise demand a 
considerable amount of time since they are obtained by differentiations, inte- 
grations, and solving quite complicated equations or systems of equations 
differential equations. 

1. Introduction 

Until the last decades, the problems of nmathematical physics were solved 
almost exclusively by numerical methods, therefore no appropriate solution could 

be found for some of them. Begining with the '70s and especially during the 80s, 
there took place a huge development of symbolic computation systems for pure 

mathematics, biology, chemistry, but most of ali physics: celestial mechanics, high 

energy physics, general relativity, electronic optics, molecular physics, fluid me- 

Chanics, quantum mechanics [3. This evolution pursued two directions: building 

pecialized systems for specific domain problems and building applications using 

e existing general purpose symbolic computation systems (such as MACSYMA, 

EDUCE, MAPLE, MATIHEMATICA) [1. As some of these systems had an 

PrOpiate interface for numerical computations, these types of problems were 

solved, too. 
Dynamic phenomena are described in fluid mechanics by a system of three 

a dlferential equations, which describes the movements on the three axes of 
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Considering the compli- coordinates, depending on velocity, density, pressure 
cated form of these equations, which are knowu as the Navier-Stokes equation ns, 

they cannot be solved in the most general case. Fron the physical point of vi 

the sequences of computations which lead to the formulas of velocity, fluid flou 

and friction tensions 

View 

for particular situations are of interest.. Here we enuner 
ate such types of movemenis: newtonian movements between two parallel plalog. 

without pressure gradient and with o moving plate (Couctte movement), with Dres 
sure gradient between two immobile plates (Poiseuille movenent), with a free ur- 

face (laminar movement), combined movement (Couette-Poisseuille); movement in 

cylindrical pipes and between two circular cylinders; non-newtonian parallel plane 

movements or in cylindrical pipes; non-compressible stationary movements follow 
ing concentrical circles, between two coaxal cylinders (withh a number of special 

cases), following concurrent lines or between two plane walls. 

For all these types of movements there were written Mathematica pack- 

ages which contain functions for computing the necessary quantities. The built-in 
Mathematica functions allow to make a simple description of the complicated op- 

erations involved in these computations: differentiations, integrations, and solving 
quite complicated equations or systems of equations / ordinary differential cqua- 

tions. Moreover, working with Mathematica packages, allows a natural and easy 

extension of the basic capabilities which are available in a Mathematica session. 

The variables representing arguments for the newly written Mathematica functions 

can be symbolical or numerical, therefore influencing the result. 
In the following paragraphs, we shall present the physical aspects of the 

problem, the principles used in writing the Mathematica packages, together with 

a few ideas in respect with the possibility of expanding the computations and an 

easier interpretation of the result (finding the type of movement based on some 
characteristics, a graphical representation of the solutions). 

2. The problem from the physical point of view 

The physical aspects of the problem, together with their mathematical 
modelling are presented in fluid dynamics [2]. 

The study of fluid dynamics is a phenomenal one; fluids are considered 
continuous and deformable media. 

The effect of fluid deformation under a shearing force is continuous; fluids 
flow. The study of real fiuids is based on research performed on models, such as 
the models of perfect fiuid (a homogeneous, deformable, non-resisting medium) 
and perfect viscous fluid. 

The perfect viscous fluid, or the newtonian fluid, doesn't immediatey 
react to an action. Its deformation depends on the duration and on the intensiuy of the solicitation; when thc action stops, the deformation doesn't recover and tne 
consuined mechanical work spreads in the whole mass of the fluid as heat. Unles» 
the solicitation moditics, tlhe deformation continues and the deformation velocuy 
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omains constant. The newtonian fluid has the property of viscosity it opposes aresistance to a shearing or compression deformation. 

The hypothesis that for newtonian fluids, there is a linear relation betweenthe deformation tensions (shearing tensions Tij, i, j E {7, y, z}, ifjor compression tensions Tij,i E {t, y, 2} and the deformation velocities, irnplies the existence of 
two viscosity coetficients: dynamic ) and volumic nv. Using cartesian coordinates, the relations between deformation tensions and velocities are: 

=21 ( div u) + "7},div v -

p 

() Tuy 29 div v) + ,div v- Tyy 
Tzz 21( div v) +7div v - p 

Ty 7 ( + 

(2) Tyz Ty=n + 
Ta 7 +) = TEz 

where v, with the cartesian components vr, Vy, vz is the velocity, p 1s the pressure 
and 

div v ôy 

is the divergence of the velocity. 
These formulas represent the basis for the mathematical (deductive) study 

of viscous compressible and non-compressible fluids' movements [2. 
The differential equations, in tensions, for newtonian fluid flow in non- 

stationary, isothermic conditions can be deduced trom the equilibrium of: inertia 
pdu/dt, exterior pf and surface + + forces for an element of volume. 
Under gravitational field, the forcc corresponding to an element of volume is pg, 
where p is the density and g the gravitation. Therefore, in cartesian coordinates 
we have: 

pt=Ppf. 
Pfy + OT:y 0Ty 8y DUy. 

r y 

Pl + + Oy 

By substituting the formulas for tensions Tij, i, j E {t, y, :} {1,2) in these 
1st equations, we obtain the differential equations for newtonian fluid flow de- 
Eding on the velocity components, known as the Navier-Stokes equations: 

whereD= tU +Vy + v is the substantial derivative. 

73 



A. ANDREICA 

P+ +y+ = » + +) 
+( +)( tbz6y tr tpi. 

+( t )or +y +oyo-+p 
n + + 8vy 

+( +7) os t -by + tpf 
(3 

These equations describe the non-stationary isothermal How of coupressible fluids. 
The vectorial form of the equations (3) is: 

Dv 
D9Av +(+7) V(V») - Vp + pf, 

3 

where the V and A operators are 

V , (Hamilton operator) 
82 A = 8? 2 ta (Laplace operator) 

The integration of Navier-Stokes equations (3) can be performed by ana- 
lytical methods, which generate exact solution (but they often solve only limited 
particular cases), by numerical methods, which give approximate solutions and by 
experimental modelling methods, the latter being based on similarity and dimen- 
sional analysis. It is of utmost importance for the theoretical researchers to obtain 
exact, correct, symbolic or numeric results. Further on, we shall deal with this 
aspect. 

3. Implementing the counputations into Mathematica packages 
Because of the complexity of the Navier-Stokes equations (3), they are solved in certain specific cases. 

Thus, the Mathematica packages that were written are to compute, 1o certain types of novements, by means of the functions they contain, the physica quantities that characterize those movements, such as: velocity, friction tensiol flow etc. These functions have a symbolic result, solving the problem Irom theoretical point of view (the most important aspect for theoretical researci 

the 

s) But if numerical arguments are wanted for some or all variables which app 
ear 

in the computat.ion of a certain quantity ((function), they can be used ana will 
generate an appropriate result. 
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stitu. 

Before presenting some exanples, we mention that. the numeric direct sub- ...dian of a differential or integration variable or of a solution for an equation 
Sy'ste. 

auxiliary functio 

r:if so, we applied a transformation rule upon the symbolic expression, sub ating the variable by the numeric specified value. Another possible solution of 

of equations) is not, obviously, possible. To solve this problem, we de- tions, which verified whether the argument matches a numeric 

sti 

he Droblem would have been defining the functiou as a block with local variables 
and similar effect. 

Examples. A. Stationary non-compressible fluid movements follouwing concurrent 

lines. Specihc case: movement bet ween two plane walls 

In order to make the computations, we use cylindrical coordinales (r, r, w), 
the components of the velocity being: vr = 0, v, = v,(7, w), V= 0. From the 

continuity equation, we have t, = f(w)/r, where f is a function depending on r. 

Navicr-Stokes equations are (in cylindrical coordinates) [2]: 

0=op2 

pu, = -+ (7) (4) 

We intend to find the formula for the pressure p, depending on f,r,n 

dynamic viscosity coefficient) and an integration constant C1. The expression 

obtained after reducing equations (4) (integrated in respect to r, w, respectively), 
will be named c; therefore we shall obtain the equatione = 0. The pressure P 

Which has the corresponding Mathematica function P) is deduced by integrating 
quation (6); subsequent to this operation we shall obtain function t, depending 

oly on r. The velocity v, has the corresponding Mathematica function Vr; all 

ne others are auxiliary functions. Thus we obtain the following Mathematica 

AOr -, ro_,eta. ,p_ ,f..] : =Integrate[ -ro Vrlr,w,f] D[Vr[r, w, f],r]-D [plx,r, ] ,r]+ 

Axxo[r -,ro_,eta,p-,f.]: If[ Match9 [r ,n_Int eger] || Match [r, n_Real], 

Axor **",ro_-,eta_,p_, f.] :=If[ MatchQ[w, n_Integer] || NatchQ [w,n_Real], 

functions: 
r[r,,f_]: =f[w]/r 

ta1/r D[r D[Vr[r, #, fj , rl,r]+D[Vr[r, ", f]), {w, 2}]/r*2-Vr[r, w,f]/r*2) , r] 

AOLrr,, ro,eta,p, fl /. rr->r, AOLr, 7, ro,eta,p,fIJ 

AXOLr, ww,ro,eta,p, f] /. ww->w, Axx°[r, 7, ro, eta,p,fll 

-eta-,p-,f.]:=Integrate[-D [p [x,r,w], w]1/r + 2 eta/r°2 D[Vr[r,w, f],w], w] 

Axpo[r. -,w-,eta.,f.,1-,t_]: =Integrate[2 eta/r*2 f'[w], »]+t[r] 

,eta.,p-,f_]: = If[ Mat chQ [w, n_Integer} i| MatchQ[»,n_Reall, 

*L, ,eta,p,f] /. ww->w, A1[r,W, eta,p,flJ 
ta.,p_-,f.]:=Simplify[Numerator [S imp 1 ifyl 

AxO[r, ,ro,eta,p,fj * 

Ax1 [r 

Ax1 Lr, w, eta,p, f]]]/eta] 

Axpo , Ww , eta,f, t] /. ww->w, Axpo[r, W,eta, f, t}]| 
Axplr.,u_ f-,t.]:=If[ MatchQ[w,n_Integer] || MatchQ[w,n_Real], 

"-,To_, eta.,f_, t_] :=S implifyl(-ro Vr[r, w,fI D[Vr[r, w,f],rl- to[r. 
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D[Axp[r, w, eta, f, t],r] eta (1/r D[r D[Vr[r, 9, f] ,r],r] + 

D[Vr[r, w, f], {w, 2}1/r*2 -Vr[r, w, fl/r*2))r*3/etal (* ==0 ==>t *) 

Axti [r,W_,ro_, eta,f., t.]:=Ifl Match9[w,n_Integer] || HatchLw,n_Real]. 

Axto[r, ww, ro, eta,f,t] /. ww->w, Axto[r, w, ro, eta,f,t]]
Axt [r.,w_,ro_,eta_,f.,t];"If[ MatchQ[r ,n_Integer] || MatchQ[r,n_Roal]], 

Axt1lrr,w,ro,eta,f,t] /. rr->r, Axt1[r,v, ro,eta,f, t]]] 

ec2plr.,, ro_,ata,f., t]:=s implify[ Wumarator [ Simplify [ 
AxO[r,w, ro, eta,p,f] /. p[x,r,w] -> Axp[r, w, ata, f,t]]] 7 (-eta)] 

taux [rw_, ro_, ota_ .P-.f,CI]: =Simp 1 ifyl((t[r] /, Part I 3olve[ 
Integrate[(c [w, ro ,eta,p, f]-Axt [r,w, ro, eta, f, t] ) eta/r*3, r] 
==Integrate[C eta/r *3,r] ,tlrll,1]) + C1) /. C->c[w, ro, eta,p, f]] 

t[r ro_ ,eta,p-,f.,C1.]: =1f[ NatchQ[r, n_Integer] || Mat ch9[r,n_Real], 

taux (rr, w,ro,eta,p,f,ci]/. rr->r, taux[r, w,ro,eta,p,f,C1] ]| 
Pirvro. eta. f.. t .ciLl:=S imp1 ifyl Axplr, w,eta, f, t} /. tir)->t[r,v, ro, eta,p, t .Cn 

B. Combined Couetle-Poscuille movement of newtonian media, with pres- 
sure gadient. 

Suppose the fluid flows between two parallel plates, one of themn moves 
by velocity V, there is pressure gradient and a nucleus with hb - ha thickness. which moves by constant velocity vxc. We use cartesian coordinates (z, y) and 
the velocity has only the component vr (y). 

Velocity profile is given by Navier-Stokes equation [2J: 

1 dp 
n dr dy 

on the intervals 0 y <ha, ha < yhb and hb < y h, with vz{0) = V, v(ha)= vrc, vz(hb) = vxe and v (h) = 0. The friction tension Try is given by: 

Ty FTo+ 

where (ha - hb) = -2T0 and the flow has the usual formula [2: 

d. 
We intend to calculate the velocity for the three intervals (Vx1, Vx2, Vx3 in the Mathematica functions), the friction tension Ty for the intervals 0 U n (Tensry1) and hb<y<h (Tensxy3) and the flow q (in Mathematica Qx). Tns we obtain the following Mathematica functions: 

Aux1 [y-,V_ , ha. , eta..p- , Vxc.-] : =Simplify [Coll ect [Part [vx ly]. DSolvel{eta vx'' [y]==p, vx [o] ==V, vx [ha]==vxc), vx [yl, y] ,1],{p, hatll Aux3(yh_,hb_ ,eta.,p-,vzc.] ; =Simplify[Collect [Par t [vx [y] DSolve[{eta vz'' [y]==p, vx [hj==0, vx [hb]==vx c) , vx [y], y] ,1],{p,vxctJ Vx1 [y-,V- ,ha_ ,eta.,p-, vxc_]:# If[ MatchQ [p.-'[.)), 
If[ MatchQ [y,n_Integer] 1 MatchQ[y,n_Reall, Aux1 lyy,V,ha,eta,p,vxc]7. yy->y, 

Auxi Ly, V , ha, et,p, Vxc]], 
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If[ 
r (NetchQ [P ,mInteger] NatchQLp,m_Real] |I MatchQ[p,n_Symbol1]) &(MatchQ [y ,n_Integer] T Match9[y, n_Real] D, 

Aux1 [yy, V, ha, ,eta,p,vxc] /, 
Aux1Ly,V,ha,eta, P, Vxc]]] 

Yy-y, 

Vx2[vxc_]:=vxc 

vx3[y-,h,hD_,eta- P-,vxc]:= 
Ifl Match9 [p,- '[Ll, 

T[ MatchQ [y, n_Integer] || Nat ch9 [y,n_Real] , 
Aux3 [yy ,h,hb,eta,p, vxc] yy->y, 
Aux3 [y,h,hb,eta,p, vxc]], 

eT (NatchQlp ,m.Integerl NatchQ[p ,m_Real] || Match9[p,n_Symbol] (MatchQ Ly ,n_Integer] | Matchqly,n_Real), 
Aux3Lyy, h, hb,eta, P, Vxc] /. yy->y, Aux3ly,h, hb, eta,p, vxc]]] 

Tensxy1 [yV- ,ha. , etap., vxc_l:-s imp1ify [Collect [ 
If[ MatchQ [y ,n_Integer] || Match9[ly,n_Real], 

Simplify [-eta D[Vx1 Lyy ,V,ha, eta, p, Vxc], yyl] /. yy->y, 

Simplify[-eta D[Vxi [y,V,ha,eta, p,vxc],y]1], feta,p}1] 
Tensxy3Ly-,h.,hb,eta.,p- , vxc_]:=S implify [Collect 

If[ MatchQ [y ,n_Integer] I| MatchQ Ly,n_Real], 
Simplify (-eta D[Vx3 [yy,h, hb, eta,p, vxc] , yy]] /. yy->y, 

Simplify [-eta D[Vx3 Ly,h,hb, eta,p,vxc],y]]1,{eta, p}1] 
Qx [Vhha_,hb_,eta..p-,vxc]:=Simplify[Apart[ 

Integrate [Vxi [y,V,ha, eta,p, vxc],{y,0, ha) ]+Integrate [vxc, (y ,ha, hb}] + 
Integrate [Vx3 [y,h,hb ,eta,p, vxc],{y,hb,h}]]l 

Subsequent to these calculations, we should consider the system of three 

equations obtained from the Navier-Stokes equation for the three specitied intervals 
as a system with the unknown variables vzc, ha, hb depending on dp/dr and (0 

and calculate their expressions. 
An extension of the system of packages described above could be made 

by introducing input data as sets of numeric values characterizing the evolution 

of a quantity (velocity, for example), the expected result being the type of move-

Inent. Moreover, for an intuitive interpretation of the results, we can include in 

the packages functions which create a graphic representation of the expressions 

obtained for the computed quantities; this would not be much trouble considering 

Mathematica's facilities for drawing function plots. 
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