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sYMBOLIC MODELLING OF DYNAMIC EQUATIONS FOR
NON-COMPRESSIBLE STATIONARY FLUIDS

A. ANDREICA

Abst,r:?ct. This paper deals with automatical inplementation of particular
theoretical compui@hnns which appear in the mechanics of non-compressible
stationary fluids. For certain classical types of movements, there were writ-
ten Mathematica packages which calculate their physical characteristics, such
as: velocity, friction tensions, Aow, pressure. The resnlts are obtained svm-
bolically, as an expression depending on some variables, but these variables
can also be given numerical values, in this case the result will be ”partially”
or "totally” numerical. Therefore, symbolic computation supports a quick
finding of the theoretical desired results, which would otherwise demand a
considerable amount of time since they are obtained by differentiations, inte-
grations, and solving quite complicated equations or systems of equations /
differential equations.

1. Introduction

Until the last decades, the problems of mathematical physics were solved
almost exclusively by numerical methods, therefore no appropriate solution could
be found for some of them. Begining with the *70s and especially during the "80s,
there took place a huge development of symbolic computation systems for pure
mathematics, biology, chemistry, but most of all physics: celestial mechanics, high
energy physics, general relativity, electronic optics, molecular physics, ﬂuid me-
chanics, quantum mechanics (3]. This evolution pursued two directi‘ons‘: bmld}ng
Specialized systems for specific domain problems and building applications ?smg
the existing general purpose symbolic computation systems (such as \1 ACSYMA,
HEDU(JE, MAPLE, MATHEMATICA) [1]. As some of these systems had an
appropiate interface for numerical computations, these types of problems were
solved | 0.

Dynamic phenomena are
Partial differential equations, which describe

described in fluid mechanics by a system of three‘
s the movements on the three axes ol

l(e('eiw-d | 3 w27, 1997. :
cetved by the editors: January <0, 1% vals Ale analysis;
1991 CR Categorics and Descriptors. (i.4 [Mathematical Software]: Algorithm analysis

Fhysical Sciences and I*',nginl""'i“?r]: Mathematics and statistics.

Z[

71



A. ANDREICA

coordinates, depending on velocity, density, pressure.  Considering the compli.
cated form of these equations, which are known as the Navier-Stokes equationg
thev cannot be solved in the most general case. From the physical point of yigy,
thevsequonces of computations which lead to the formulas of velocity, fluid ﬂo“;
and friction tensions - for particular situations - are of interest. Here we enimer.
ate such types of movemenis: newtonian movements between two parallel plajeg.
without pressure gradient and with o moving plate (Couctte movement), with preg
sure gradient between two immobile plates (Poiseuille movement), with a free gy,
face (laminar movement ), combined movement (Couette-Poisseuille); movement iy,
cylindrical pipes and between two circular cylinders; non-newtonian paralle] playe
movements ot in cylindrical pipes; non-compressible stationary movements follow-
ing concentrical circles, between two coaxal cylinders (with a number of specia)
cases), following concurrent lines or between two plane walls.

For all these types of movements there were written Mathematica pack-
ages which contain functions for computing the necessary quantities. The built-in
Mathematica functions allow to make a simple description of the complicated op-
erations involved in these computations: differentiations, integrations, and solving
quite complicated equations or systems of equations / ordinary differential equa-
tions. Moreover, working with Mathematica packages, allows a natural and easy
extension of the basic capabilities which are available in a Mathematica session.
The variables representing arguments for the newly written Mathematica functions
can be symbolical or numerical, therefore influencing the result.

In the following paragraphs, we shall present the physical aspects of the
problem, the principles used in writing the Mathematica packages, together with
a few 1deas 1n respect with the possibility of expanding the computations and an
easier interpretation of the result (finding the type of movement based on some
characteristics, a graphical representation of the solutions).

2. The problem from the physical point of view

The physical aspects of the problem, together with their mathematical
modelling are presented in fluid dynamics [2].

The study of fluid dynamics is a phenomenal one; fluids are considered
continuous and deformable media.

The effect of fluid deformation under a shearing force is continuous; fluids
flow. The study of real fluids is based on research performed on models, such as

5y 5 g 2 1 ‘ ) . * M N ]
the models of perfect fluid (a homogencous, deformable, non-resisting medium)
and perfect viscous fluid.

The perfect viscous fluid, or the newtoniany fluid, doesn’t immediately
react to an action. Its deformation depends o1 (he
of the solicitation: when the action stops, the de
consumed mechanical work spreads in Lh,c: wh ‘
the solicitation modifies, the

duration and on the intensity
formation doesn’t recover and the
ole mass of the fluid as heat. Unless

deformation continues and the deformation velocity
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remains constant. The newtonian fluid has the
a resistance to a shearing or compression de

The hypothesis that for newtonian fluids, there is a linear relation between
the deformation tensions (shearing tensions Tijy 1,0 € {x,y,2},i 4 jor compression
tensions Tij, 1 € {&,y, 2} and the deformation velocities, iraplies the existence of
gwo viscosity coeflicients: dynamic 1) and volumice Nv. Using cartesian coordinates,
the relations between deformation tensions and velocities are:

property of viscosity - it opposes
formation.

Tew = 27 (‘i}',’* - %(liv 'U) + v o —p
Tyy = 27 (—),:—’y*i - %div 'u) +ndivy—p (1)
Tez == 21 (%"j — %(’liv 1)) + pdive —p
( Tey = Tyz =10 %U;f + %yz
Tyz fred sz =n %y_ -+ %f (2;
Tee =Tpz =70 (%L + Qdizl) ’

where v, with the cartesian components v,

, Uy, U, 1s the velocity, p is the pressure
and

divv =

Ovy N Ovy " Ov,
Ox Oy 0z

is the divergence of the velocity.

These formulas represent the basis for the mathematical (deductive) study
of viscous compressible and non-compressible fluids’ movements [2].

The differential equations, in tensions, for newtonian fluid flow in non-
stationary, isothermic couditions can be deduced from the equilibrium of: inertia
pdv/dt, exterior pf and surface 9% + % + = forces for an element of volume.
Under gravitational field, the force corresponding to an element of volume is pg,

where p is the density and g - the gravitation. Therefore, in cartesian coordinates
we have:

Dvg __ o OTae . OTye | OTip

P bt — pfr + dx ey + 963
Dvy __ r OTey 4 OTyy | 9Tay

Ppi — Py + O + dy F RE
Dve —  f, 4 9Iaz Ory: | 014y

P — Ple dr ay 9z

where '37 = g—t + Uy 75)_ + vy -(,;-’-/- + v, (;Ld is the substantial derivative.
ar : 4

. : y 1 o A a o P o { 9) <

By substituting the formulas for tensions 7,4, 7 € {x,y, =} (1,2) In these

AL equations, we obtain the differential equations for newtonian fluid flow de-
Pending on the velocity components, known as the Navier-Stokes equations:

J
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, 2
i v vy 4 0lve 4 Oug
P\ 5t T 5z Ay N g, 5%, 5%, ,
+ (3 + 7’1/) (’);x;j + 5}8_1/ Ords | — 5? +pr
2 82y 9%y "
y ov v . .('2_‘!—)_! B E~J L T_#
p (85;1 + v, —1(2‘;.1 -+ vy Ld'{/l + v, 5l> = N ( T2 +4 ay? { 972
: v ’ . y N
()__U.z: 9 U! d“y 0
+(% ‘ 7’”) (Oy(fx_*_ ay? +m‘; ‘5§+f)f
: v ) 0v a’v 8%y 9%y
p (%ﬁ* + vy G 4 t!y% + v, —dl> = (*(;Ti‘ gyt t Gt
. ‘ ) ) p o< b
1, U'el"—u B ‘f) “:[ _:JU ) 9
}—(:']3-*- n”> ({Ia(“):r 1 Dz0y + H22 — g§+pf7

(3)
These equations describe the non-stationary isothermal flow of compressible fluigg
The vectorial form of the equations (3) is:
Dv 1
Py T A+ (é + nv) V(Vv) = Vp+pf,

where the ¥V and A operators are:

-k, (Hamilton operator)

0z

82 6‘2 82
A = 53 + 7 +'822’ (Laplace operator)

The integration of Navier-Stokes equations (3) can be performed by ana-
Iytical methods, which generate exact solution (but they often solve only limited
particular cases), by numerical methods, which give approximate solutions and by
experimental modelling methods, the latter being based on similarity and dimen-
sional analysis. It is of utmost importance for the theoretical researchers to obtain

exact, correct, symbolic or numeric results. [Further on, we shall deal with this
aspect.

3. Implementing the computations into Mathematica packages

Because of the complexity of the Navicr-Stokes equations (3), they are
solved in certain specific cases.

Thus, the Mathematica packages tl
certain types of movements. by me
quantities that characterize

1at were written are to compute, for
ans of the functions they contain, the physical
those miovements, such as: velocity, {riction tension,

- - ar=Y ~f Y 1 5 AN o . . N
flow (L(j' F]nc:sc fum,t:wna have a symboljc result, solving the problem from the
theoretical point of view (the most, important aspe

'But]]f numencal' arguments are wanted for some or all variables which appea!
1C CoIn;| ¢ : sart o . . \ "
1‘n 1c computation ’of A certain quantity (function), they can be used and will
generate an appropriate resyq
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SSIBLE ¢ PLUI

Before Prebellt'f‘]g Some examples, we mention that the numeric direct sub
gitution of a differential or integration variable or of - b

| : : a solution for an e I
stem of equations) is not, obviously, possible oy

y To solve this proble
. : o his :m, we de-
fned auxiliary functions, which verified whether (he argiument matches a ’numeri(*

attern; if so, we applied a transformation rule upon the symbolic express: )

stituting the variable by the numeric specified value. Another [)r;ss:ift)lel::'l(:r:?(Su ‘f
the problem would have been defining the function as o block witl,l|1 ]or‘;;l)vi]i;')f(ll?f
and similar effect. ariables

pxamples. A. Stationary non-compressible Slurd movements following concurrent
limes. Spectfic case: movement between two plane walls h

fn order to make the computations, we use cylindrical coordinates (« 7 w),
the components of the velocity being: v, = 0,v, = vr(r,w), v, = 0. F\rom’the’
continuity equation, we have v, = f(w)/r, where f is a function depending on r.
Navier-Stokes equations are (in cylindrical coordinates) [2]:

— _9r
- ax
Su,. __ op 19p v [ 8% v
PUrar = % T [F ok (rge) 5 — 75] (4)
__op | 2w

We intend to find the formula for the pressure p, depending on f,r 7
(dynamic viscosity coefficient) and an integration constant C'l. The expression
obtained after reducing equations (4) (integrated in respect to r,w, respectively),
will be named ¢; therefore we shall obtain the equation ¢ = 0. The pressure p
(which has the corresponding Mathematica function ) is deduced by integrating
tquation (B); subsequent to this operation we shall obtain function t, depending
only on p. The velocity v, has the corresponding Mathematica function V,; all
the others are auxiliary functions. Thus we obtain the following Mathematica

functions:

Vrﬁ;,w_,f_]:=f[w]/r

AO[IL,H_,ro_,eta_.P-,f”]:=Integrate[ -ro Vr[r,w,£] D[Vrlr,w,f],r]-Dlplx,r,vl,rl+

eta(1/r D[r D[Vr[r,w,£j,r],x]+D(Vrlr, &, 1] (9,231 /2" 2-Vr e W, £1/072) 5]
MX0lr_u_ro_,eta_,p_,£.]:=I£[ MatchQ(r,n_Integer] || MatchQlr,n_Reall,
KO[rr,w,ro,eta,p,f] /. rr->r, AO[r,w,ro,eta,p,fl]
~¥_,ro_,eta_,p_,f.]:=If[ MatchQ[w,n_Integer] || MaichQ[w,n_Reall,

hxxO[r ww,ro,eta,p,f] /. We>W, AxxO[r,w,ro,eta,p,f]] )
‘1[r_)‘,”eta pt f»]:=Integrate[—D[p[x,r,w]’w]/r + 2 eta/1~-2 D[Vr[r,w,t],w].w]

AXIhL,w_,eta p_ £.1:=11[ MatchGlw,n_Integerl 1l MatchQ[w,n_Reall,
M(r,uw,eta,p,£] /. wu->w, Allr,%,eta,p,fl]

kxo[r

cw""’ﬂ“"‘ p_,f_]:=Simp]l ify[Numerator[Simpl,ify[

Pt ] 1 " ;
Ao e MXO(r,w,ro,eta,p,f] + 1 Axilr,u,eta,p,f111/ctal
X0 | [2 eta/r~2 £ [w] wl+tlr)

"ol -¥_,eta_,f_,t_]:=Integrate
P r""-.eta_.f_,t-]:=lf| HatChq["’n~Integer

Axpo[r,ww,eta,f,t] /' dW=7H, AxpO[r.W.Qtu.f{L!]
~¥_,ro_,eta_,f_,1_) =G implify[(-ro vrlr,w,fl D

111 H..‘t(;hQ[u,n_Real_],

Axto(, [vrlc,w,f],0] -
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[ +
7 + ata(i/v D[r D[Vr[r,w,f],r]),r]
D[Axp[r’w,eta’f,t]‘l] 4 a;a: /H £1/r°2)) r“3;era] (% ==0 ==>t %)
JAw,2X1/x72 - Velr,w, ors s
i1 Tre n o ot 1 =Tl MatehaLu,n_Tntegor] |1 KatchQle,n_Ron1],
X r_.,v_, - -t tay bl ) ) )
AxtO[r.ww,ro,eta,f,t] /. we->w, AxtOlr,u.!Q.nta.f.Fl][ _—.
Axt[y_.®_.ro Cata £ .t 1:~1£[ MatchQlr,n_Integer] || MatchQlr,n_ eal] ,
X — N, - 2. W A )
Axtilrr,w,ro,eta,f,t] /. rr->r, Axti[r,w,ro,eta,f t]]
ec2plr_.v_,ro_,eata_,f_,t_) =Simplify| Numarator[ Simplifyl
’ ;;OE; w,ro,eta,p,f] /. plx,r,w] -> Axplr,w,eta,f,t]])] / (tha)]
taux[r_.,w ;o eta_.P_.i_.C‘u]1‘5imr]ifyl((t[rl /. Part | b?lve[
I;te;rate[\c[w,ro‘eta.P.fl”Axlll.H.PU.Ota»f.tl) eta/r 3, r] .
==1n;egrate(0 eta/r"3,r] ,tirll, 1]1) + C1) /. C-»clw ro,eta,p,f]] -
tlr_,w_,vo_.eta_,p_,f_,Ct_):=1f[ NatchQ[v,n_Integer] || H?fchQ[r,n_Realj,
taux [rr,w,vo,eta,p,f,Ci] /. vvr->v, taux|r,w,ro,eta,p,f,C1] ]r )
Plr_.w_,vo_,eta_,f_ t_,Ct_]:=Simplify| Axp[r,w,eta,f,t] /. larJ'/t[r,w,ro,eta,p,fﬂ“J

B. Combined Couctte-Poiscuille movement of newtonian media, with pres.
sure gradient.

Suppose the fluid flows between two parallel plates, one of ther MoOves
by velocity V', there is pressure gradient and a nucleus with hb — ha thickness
which moves by constant velocity vxc. We use cartesian coordinates (z,y) and
the velocity has only the component v, (y).

Velocity profile is given by Navier-Stokes equation [2]:

d’v, 1dp
dy? nde
on the intervals 0 < y < ha,ha < y < hb and ht < y < h, with v (0) = V.
y s ) S < < < h, _
= vxr

vr(ha) = vre, vr(hl;j vre and v, (k) = 0. The friction tension Tzy 18 given by:

Tey = F70 + 1 v
Ty — :F 0 7 ay )
where %;—(ha — hb) = =27 and the flow has the usual formula [2]:

X
Jr :/ vede.
0

We intend to calculate the velocity for the three intervals (Vx1, vx2, Vx3
in the Mathematica functions), the friction tension 7,y for the intervals 0 < y < ha
(Tenszyl) and hb < y < h (Tensxy3) and the flow ¢r (in Mathematica Qx). Thus
we obtain the following Mathematica functions:
Auxi[y_,v-,ha_,eta_,p_,vxc_]:=Simplify[Collect[Part[vx[y] /.

DSolve[{eta v’ [y]=

=P,VX[0]==V,vx[ha]==vx
MX3y_ kb eta. p. ar c},vxlyl,yl ,11,{p,ha}1]

m]:=Simplify[Collect[Part VX /
DSolve({eta V")[yjz“p,vx[h [vx[yl /.

VXI[y_’v~'ha~'eta—,p—,vxc-J:L J==0,vx[hb]==vxu},vx[y],y] 11, {p,vxc}]]
If[ HatchQ[p,_’[-]J.
If[ HatchQ[y,n_InLeger] N MatchQly,n Real)
Auxl[yy,v,ha,etn,p,vxrl /. yy'>; ’
Auxl[y,V,ha,eth,p,vxcl], ,
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il (MatchQp,m_Integer] || MatchQ[p,m_ R
gt (MatchQly,n_Integer] || Hatc}’\q-[ oall 11 Match
Auxi[ﬁ,v,ha,eta,p,vxc] /. yy->y, ¥on-Reall),
Auxi[y,v,ha,et:an,p,vxc]]]
VxZ[VXC—] =vxe
vx3[Y-’h‘ ,hb_,eta_,p_,vxc_]:=
1£[ MatchQlp,.’[_1],
£l MatchQly,n_Integer] || MatchQ(y,n_Real]
Aux3[yy,h,hb,eta,p,vxc] /. yy~); '
Aux3[y,h,hb,eta p ,vxc]], ‘
1£[ (MatchQlp,m_Integer] || MatchQlp,m_Real] || Match
e¢ (MatchQly,n_Integer] || MatchQly,n_Real]) it
pox3[yy B, hb,eta,povxel /. yy->y, Aux3ly,h,hb,eta vxell]
rensxylty-»\’-»hk,etaﬂp-,vxc_]:==simplify[00119ét[ e
1f[ MatchQly,n_Integer] || MatchQ[y,n_Real]
simplify(-eta D[Vx1(yy,V,ha,eta,p,vxc] ,yy]]—/, yy-'>y
simplify(-eta D[Vx1[y,V, ha,eta,p,vxc],y11],{eta,p}]] ’
Tensxy3[y-,h_,hb_,eta_,p_,vxc_] :=Simplify[Collect[
1f[ MatchQly,n_Integer] || MatchQly,n_Real],
simplify[-eta D[Vx3[yy,h,hb,eta,p,vxcl,yyl]l /. yy->y,
simplify[-eta D[Vx3[y,h,hdb,eta,p,vxc],yl1],{eta,p}i]
x[V_,h_,ha_,hb_,eta_,p_,vxc_]:=5implify[Apart[
Integrate[Vxi[y,V,ha,eta,p,vxc],{y,0,hat]+Integratelvxc,{y,ha, hb}]+
Integrate[Vx3[y,h,hb eta,p,vxc],{y,hb,h}]11]

ONIPRESSIBLE STATIONARY FLUID!
Qlp »n_Symbol])

_Symbol])

Subsequent to these calculations, we should consider the system of three
equations obtained from the Navier-Stokes equation for the three specified intervals
as a system with the unknown variables vze, ha, hb depending on dp/dz and (0
and calculate their expressions.

An extension of the system of packages described above could be made
by introducing input data as sets of numeric values characterizing the evolution
of a quantity (velocity, for example), the expected result being the type of move-
ment. Moreover, for an intuitive interpretation of the results, we can include in
the packages functions which create a graphic representation of the expresslons

obtained for the computed quantities; this would not be much trouble considering

Mathematica’s facilities for drawing function piots.

References

1] B, Buc},))p,-ger G. E. Coliins, It. Loos, R Albrecht ((‘d.). Clomputer Algebra and Symboic

Computation, Springer Verlag, Berlin, 1982. B

y . oA oo Bd. Academiel, 1987

2 VoN, Constantinescu, Dinanicd fluidelor vscoase 1t regim lamanar,
- 1 VO IR Qv NS
ings 88 Springet-

: , v (Proceedings), 1SSAC 8 8

['l’] P. Gianni (ed.), Symbolic and Algebraic Computation (Proce gs),

d.), S !

Verlag, Rome, 1989, 77



78

A. ANDREICA
“EMIL RACOVITR" THRORETICAL HIGH-SCHOOL, Cr.ul-NAPOCA

E-mail address: Ghergari@hera.ubbcluj.ro




{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

