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THE NORMAL FORM OF A PERTURBED KEPLERIAN 
HAMILTONIAN 

A. BLAGA 

Abstract. In normalizing a perturbed Kepler Hamiltonian the Kepler Hamil- tonian vector field is not complete, because solutions with angular momentum o reach the origin in finite time. We use first the Moser regularizalion and then obtain a perturbed geodesic Hamiltonian. In practice, computing the Poisson brackets wili lead to discuss the constrained Hamiltonian systems and this paper deals with a genuine algorithmic method for computing a con- strained normal form of a perturbed Keplerian Hamiltonian, involving the powerfull tool of Gröbner Bases Theory. 

1. Introduction 

Let f be a regularized perturbed Keplerian Hamiltonian. This paper describes an algorithm which brings f into normal form up to a cert ain order. A perturbed Keplerian Hamiltonian 

f= lHo + elH1 +H2 +.. 
1s in normal form to order n iff {Ho, H:} = 0, i E {1,2,. .. , n}, where Ho is Kepler tlaniltonian which describes the motion of two bodies in R° under the influence of the gravity. 

For a general idea about regularization process see the appendix. 
In the ext section we will give a brief presentation of wlhat a perturbed pler liamiltonian is. At the end of section 3 we include the definition of a normal forin. 
The normal form algorit hm starts in section 4 with some facts we need 

Le serics and ends up with an inportant lemma about the space of Lie Series 
abou 
The mechanisn of normal form algorithin can be found in section 5 but 
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constrained the implementation techniques appears in the next section with the constr: 

normal form algorithm and the powerful tool of Cirobner bases ([1), [2). 
In the appendix one can follow the detailod presentation of the Manlau 

constrained normal form algorithm. 

1.1. The environment. To explain our theory we need soine background 

Hamiltonian systems and perturbation theory. At the end of this section w 

give the meaning of the perturbed Kepler Hamiltonian. 

bout 
will 

First of all let's consider R"- {0} C R°, the space of positions = 
13. a) in R", without the origin. On R defne the euclidean inner prodnet 

s.y>zit + as and its induced norm (E= ¬i +¬+ 
On TRS with coordinates (E, n)) we have the standard symplectic form 

= i1 d£i A dji. 
Definition 1.1. A Hamiltonian on (TR", w) is a smooth function 

H: TR3>R 
where the dynamics of the system (TR3, w, H) are the solutions of the differential 
equation 

OH 

(1) OH 

which are called Hamilton's equations. 
Remark 1.2. The solutions of the Hamilton's equations are the integral curves of the Hamiltonian vectorfield XH on TRS. 

Definition 1.3. The Kepler Hamiltonian describes the motion of two bodies R-{0} under the influence of gravity and is given by: 

Ho: ToR> R, HolE. n)=z- (2) 
Here, TR" = (R" - {0}) R" C TR* 

Definition 1.4. A perturbation I, of a Kepler Hamiltonian of Ho is a fotr7 al 
power sETies 

I1 = Hy+ ell +H + (3) 
where Hi, i>0 are snooth Junctions on ToR" 

Before defining the nornal fornm of a perturbed Keplerian Hamiltonia We will give a short description of what a Poisson algebra is. 
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HE NORMAL FORM OF A PERTURBED KEPLERIAN HAMIITONIAN 
Poisson algebra 

Definition aition 2.1. Let (M,w) be a smooth symplectic manifold. Let F(M) be the 
pace of smooth 

sooth functions on M. 
th formal power series in e wilh cocfficienls in C' (M), the space of 

Demark 2.2. For J,gEC{M) definefgEC(M) by (fg)(m) = S(rn)g(n). Rem 
Then (F(M), ) is a commutative algebra. 

For f, g E C°(M) define a Poisson bracket {, } by 

{f.g}m) = w(m)(X1 (m), X,(m)), 

where X, Xg are Hamiltonian vector fields corresponding to f and g. 

If f = i0 fiE', g = Dio 9iE' in F{M) then define a Poissoi 

on F(M) by 
k 

k=0 i=0 

Since (C(M), ,{, }) is a Lie algebra, (F(M), , {, }} is also. Moreover, since 

{S.g h} = {f9} h +g -{i. h} 

for f,g, h, E C° (M) it also holds for f, g, h e F(M). Therefore (F(M), '{, }) is 

a Poisson algebra. 

Definition 2.3. VWe define the adjoint map: 

ad: F(M) > F(M), 

by adg= {S.s}, SgE F(M) 

temark 2.4. ad acts as a derivation on (F{M), :). 
The perturbed Kepler 

onan H = Ho + eH1 4 H +.... H is in normal form if {Ho, Hi} = 0 

Jor all i>0. 

eñnition 2.5. Let Ho be the Kepler Hamiltonian (2). 

nthe finite case, meaning that {Ho, H:} =0 for 0 <ign, we say that 

mal form to order n. is in nc 

he main goal of this paper is to compute the normal form of a given 

perturbed Kepler 
Hamiltonian, using the very nice idea from 15 

ely this idea has never 
been implemented in a computer algebra systen. 

H 

degre n for a 
fortunately 
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3. Lie series and the splitting lemma 

Definition 3.1. IffEF(M) then 

=cap(ead,) = d 
n=0 

is called Lie series. 

1. The formal flow of X, f¬F{M) is given by E p{. Proposition 3.2. 
2. pis an automorphism of the formal Poisson algebra (F(M), ,{, }}: 

(oh) 
i. h}= {p{(). (6)}. 

=p(g) e(h), 

3. 6p is one parameter group of automorphisms of Jormal Poisson alge- 

bra. 

Definition 3.3. X1, fEC° (M), has periodic flow if there is T> 0 on M such 
that for every m E M and g E C°(M)| 

PT(m9 
Remark 3.4. T is not necessarily the minimal period of an integral curve of Xf 

In the sequel we will give an important lemma, which is the basic tool in 
computing the normal form. 

ILemna 3.5. 1. fH,F e F(M) and e is the formal flow of N, se F(M) 
then 

(PH= exp(eadr)H. 

2. Splitting lemma. 1f XH, has periodic flow on C(M) then 

C(M)= ker adH, + ium adHo (4) 
Proof. The proof of the splitting lemma is based on solving the equatio 

Ln, F = G, F,GE C (M). 
Given F E C°(M) one can decompose it as F = F+ (F - F), where F 1s u average 

F Mr dt. (5) 

Moreover, the equation adH, G = F -- F is solved by 

G (Po)(F- F) dt. (6) 
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pler 

The next section will deal with finding the normal form of a perturbcd Ke- Hamiltonian. Section 6 gives the algorithms and several idcas in implementing the normal form. 

4. Computing normal form 

Before going into details we note that normal form theory finds a sequence of transformations which brings the perturbed Hamiltonian to normal form of a certain order. 

A given H = Ho + eH1 + H2+.., HEF(M) will be brought into a normal form up to some order as follows 

For G E C (M) we have the Lie series, P = ad, Then we 
changc cordinates using p. The transformed Hamiltonian is: 

F1) . ( H = 
Ho+e(H1 t ada, Ho) +( + 2ada, H1 + ada, Ho) + O(). 

2! 
In the above equation we have to find G ¬ C°(M) 

By the splitting lemma H1 can be decomposed as H1 = H1 + H1, where 

H E ker adH, and H E im adHo- Thus 

F=Ho+(Ti+ H{+ ada, Ho) +9( + 2ada, Hi t ad, Ho) + Ol), 

If we determine G so that H = adH, G1 then F is in normal form to 

the first order, since {Ho, H1} = 0. We now use (6) to determine G1. 

In order to compute the second order normal form it is important to 

preserve the already computed íirst order term fromn F. Thus we have to use 

another change of coordinates, p3, We obtain: 

F . (Pay F= 

Ho+elH1 +(H2 + 2ado, + ad, Ho +2ado, Ho)+ O(S). 

ere G2 E C(M) should be determined by solving:

adu,G = H2, 

re2= II2 + 2ada, H1 + ade, Ho and H2 = H2 + H2, with H2 E ker adHo 

and i E im aduo 
ngeneral having computed the (n - 1)t" order normal form, one could 

find the nth order normal form by 

pin)=( n-G.Fn-1), 
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e solved 
where G, G2,.., G-I are known and G,(G1. G2,.., Gn- 1) has to be. 

One might use the nonrecursive formula: 

F =(o "*' Gi)*H, 

where G, i= 1,2,.. .,n is a triangular system of equations 

5. The constrained normal form algorithm 

We introduce some notations. 
Let 

Hoa.p)=Vla2lpi2- < 9.p>, (y,P) E TR' and 
TtS = {(e.p) ¬ TR| «l* = 1, < q,p>=0,p# 0}, 

Fi = Ial-1=0, Fa =<q,p >= 0. 

(7) 

8) 
Define the field K := R([pl, k) of rational functions in lp| and k, with real cocfficients and its extensiou K CL := R(lp|, k, Ho). 
If (g,p) E TR* we define 

n>0 

and 

={f e F| fo = lHo}} 
Note that 

Flr+s= {f = 2n 1 Sn E Kla.Pl} 
n20 

and 

GlT+s= {f ¬ Flr+s» | So = Ipl 
Remark. For f E G, flr+s3 E GT+s3 is a perturbed geodesic Hamiltonian (l5). The constrained normal form algorithm takes as input f ¬ G and the order of normalization and outputs fEG, the normal form of f with the required order. 

From section 4 the first order normal form can be easily computed Dy averaging Si E K{g, P). For Ho given by (7) we restrict the flow po to T*S°, i is given by: 

p r sa(4.p) = (cOs 21 +sin 2 

-Iplg sin 2t + pcos 2t (9) 
This reduces the amount of computation needed in averaging. Thus We ca lculate 

S4 cos 21 +sin 2t, -Iplg sin 2t + pcos 2t dt (10) 
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THE NORMAL FORM OF A PERTURBED KEPLERIAN HAMILTONIAN 
After few steps of normal1zation the integrand in (8) will have so many that. it will not be manageable.. For this we introduce the equivalence relation 

terms 

we say that f g ift (f -g)lT+ ss = 0. In other words f g 
For f,g E G, 

f and g have the same coset representative N in L[y,pl/I, where I is the ideal 
generated 
od by TtS3. Later we will see that N is called nornal form of f or g. acticaly speaking 
bases for our problemn: 

ng, to find a coset representative we have to introduce Gröbner 

Definition 5.1. Let be 1 # {0} an ideal in L{g,p and G = {s1, 92,..., 9n}CI 
a set of nonzero polynomials in Llg,pl. We define a term ordering on L[g, p by 
q1 g2 93 44 P1>P2 > P3 p4. G is a Gröbner basis for I if for all 
fEI, f# 0 there erists an i ¬{1,2,... , n} such that the leading monomial of g: 

divuides the leading monomial for f. 

Proposition 5.2. If G = {g1, g2, . . . . gn} is a Gröbner basis for I then I is gen- 

crated by 91,92,.gn, that s 

=< J1 92, 9n 
If f eG and Z =< Fi, Fz >, then r e9, obtained by a division algorithm 

on multivariate polynomials with respect to the unique reduced Gröbner basis of 

I,it is also unique ([1]). r ¬ G is called the normal form of f and it is denoted by 

N) 
Proposition 5.3. If f.g E Llg.p} then 

SEg (mod 1) iff NS) = N{ø). 

Thus our definition for equivalence relation, , can be restated as: 

frg iffN(S) = Nig). 

e the normal form is taken with respect to the Gröbner basis of the ideal I 

generated by T+s3. 
Because TtS3 is an invariant manifold of XH, we see that fag implies 

. This means that that in order to compute tihe average of f we might compute 

c by using the Gröbner basis for the constraints. Thus, in our case we 

ha ei ¬ Glr+ss by just normalizing fi E G with respect to our Gröbner 

basis 

quation fi = adla 41 as it was pointed in section 4. This can be done 

by 
solve the 

e next step is preparing for the second order normal form. First we 

1 (f- )gcos 21+sin 24,-Iplgsin 2 + pcos 21 d. 

In this ca 

"9 does not leave TtS" invariant. Thus gi has to be modified to gf (see 
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A. BLAGA 

appendix): 

si=g1 -5 ln.< a.p>}(lal- 1)+5lo. lal 1} <9.p> 

Now Xa: leaves T*S° invariant, meaning 

{i,9,p >}lr+s3 = 0 

and 

0 I9- 1}lr+ss = 0. 

The last step in computing second order normal form is to use (6): 

f= fo +efi + 2+2ad,; fi + ad, fo). 
2! 

Applying the same method one can compute higher order normal forins. 

6. Appendix 

6.1. Regularization process. In normalizing a perturbed Kepler Hamiltonian, 
some problems arise even at the very beginning: the Kepler Hamilt onian vector 
field is not complete. The reason for its incompleteness is that solutions with 

angular momentumn 0 reach the origin in finite time. 

To remove this incompletness we use Moser regularization (3]), which 

changes the phase space from ToR" to T(S" - (0,0,0, 1)), the tangent bundle of 

the sphere S$ C R without the north pole. 
First of all we introduce the time scale by and define 

k M(E,)= .)+ 
where comes from (2). The Hamiltonian vector ficld of (2) is clearly: 

dE 
= 

dt 
(11) 

dn 
dt 

We would like to have rescaled Haniltonian equations for H, so we resu 
(E.)to lie in the level sct -(-k*/2) or equivalently M- (4/k), A/k> 0. 

Remark 6.1. H0> Io <0, so we have bounded keplerian orbits. 
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Thus, after time rescaling, the cquations satislied by M on the level set 

M-(p/k), are: 

ds 

(12) d 
dt 

As a last step ot regularization, compose M with Moser's map: 

M:T(S-(0,0,0, 1) ToR°, M(g.P) = (E,7), 

i=-Pi + 9iP4- Pi94). 

n 94 kqi - i= 1,2,3. 

The new Hamiltonian is: 

Gl.P)=Go(p) + eGi(g,P) +Gzla.P)+ 
where Golg, P) = Ip|. Thus a perturbed Kepier Hamiltonian is transformed into a 

perturbed geodesic Hamiltonian with its geodesic vector field XG, on 

T*SS = {(9, P) ¬ TR| |4l = 1,< 9,P>= 0,p#0. 

o= 1 is the condition for the body to move on the unit sphere. For it to have 

phase space T'S" we need the extra condition < 4,p>= 0. 
Another problem that arises in practice is computing Poisson brackets on 

Tts3. This leads to the discussion of constrained Hamiltonian systems. 

6.2. Constraints. The manifold T'S" C TR* defined by: 

Fi(4.P) 
F2(4.P) = <4,P>=0 

=ll- 1 = 0 

18 called constraint manifold. Since the matrix 

)- F»} )-( (i) 
{P2, Fi} {F2, Fa} 

1 non-singular, TS" is a symplectic manifold with symplectic form w = 

ITS3. Since T+S3 C TS3 is an open set, it is also a symplectic manifold. 
on 7 

n the sequel we will give a method to compute the Poisson brackets 

fS on Co (TS") by {f,4rss = w(Xf, Xg). The idea is to construct smooth 

unctions and G", which are extensions of f and g on TR* so that: 
F* and 

(13) 
g)rss = {P*, G*}l1rs», 

and 

rss= f. G"lrss =9 
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XIsts 
Let F be an arbitrary smooth extension of f to R". This extension 

by Whitney ertension theorcm (4J), because T'S" is closed subset of TR4 

to 
Because TS* is not an invariant man1fold it Af we can not use . 

compute . }rsa. We have to modify F. Let F* = F+ Pi +azF and che 
a1.02 E (C(RA) so that {F*, F)|Tss = 0 and {F, F2}l7s* = 0. This nean 

that TS" is invariant manifold of Xpe . So, for Fe C° (1TR°) 

F=F-Fita 
the Poisson bracket {. }Tss on C (7'Ss) is given by 

Plrso, Glrsa}rss = {F*,G"}|rs3. 

Now we look at Ho = V|p|3lg12- < q,P>. Ho 1s sInooth on the sym- 
plectic submanifold M = TR' - {Ho = 0} of (TR',w). Clearly Holr+53 = Ipi and TtS* is an invariant manifold of XHa Another fact is that the flow p on 
M is given 

(e.p) = 
- sin 2t + cos 2t sin 2t Ho (4.P) sin 2t )) 2sin 2t + cos 2t 

Clearly p° is periodic with period r. See [6] for more details. 

References 
1 W.W. Adams, P. Loustanau, An Introduction to Gröbner Bases, American Mathematical Society, 1994. 
2] D. Cox, J. Little, D. °'Shea, Ideals, Varieties and Algorithms: an introduction to computa- tional algebraic geometry and commutalive algebra, Springer-Verlag, Berlin, 1992. [3 R. Cushman, Normal Form for Hamilt onian Vectorfields with Periodic Flou in "Dififerential Geometric Methods in Mathematical Physics", pp. 125-144, ed. Sternberg, Reidel, Dordrecht, 1984. 

4 R. Cushman, J.A. Sanders, The Constrained Normal Form algorithm, Celestial Mechanics 45, pp. 181-187, 1989. 
5 R. Cushman, A Survey of Normalization Techniques Åpplied to Perturbed Keplerian Systems, Utrecht University, Department of Mathematics, preprint 598, 1990. [6] R. Cushman, R. Bates, Global Aspects of Classical Integrable Systems, to appear. (7 J,C. van der Meer, R. Cushman, Constrained Normalization of Hanmiltonian Systems ana Perturbed Keplerian Motion, Journal of Applied Mathematics and Physics (ZAMP), volume 37, Pp. 402-424, 1986. 

8J.C. van der Meer, R. Cushman, Orbiting Dust under Radiation Pressure in "DifferentGeometric Methods in Mathematical Physics", pp. 403-414, ed. Doebner, World Scientine Singapore, 1987. 
19) P.J. Olver, Applications of Lie Groups to Diffe rential Equations, Graduate Texts in Mathe 

matics 107, Springer-Verlag, New York, 1986. 

"BABES-BOLYAI" UNIVERSITY, FACU1TY OF MATHEMATICS AND INFORMATICS, 
RO-3400 CLUJ-NAPOCA, ROMANIA 

E-mail address: blaga0cs.ubbcluj.ro 

54 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

