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THE NORMAL FORM OF A PERTU

RBED KEPLERIAN
HAMILTONIAN

A. BLAGA

Abstract. In normalizing a perturbed Kep
tonian vector field is not complete, because solutions with angular momentum
0 reach the origin in finite time. We use first the Moser regularization and
then obtain a perturbed geodesic Hamiltonian.

Poisson brackets will lead to d
and this paper deals with a
strained normal form of a
powerfull tool of Gribne,

ler Hamiltonian the Kepler Hamil-

In practice, computing the
iscuss the constrained Hamiltonian systems
genuine algorithmic method for computing a con-

perturbed Keplerian Hamiltonian, involving the
Bases Theory.

l. Introduction

Let f be a regularized perturbed Keplerian Hamiltonian. This paper
describes an algorithm which brings f into

normal form up to a certain order. A
perturbed Keplerian Hamiltonian

f:[[(_,+5‘111+—!‘ _+
s In normal form (o order n iff {Ho, H;} =0, i € {1,2,. .., n}, where H, is Kepler
Hamiltonjan which describes the motion of two bodies in R® under the influence
of the gravity.

M

)

For a general idea about regularization process see the appendix.

K In the next section we will give a brief present
epler Hamiltonian is.
“ormal foryy,

ation of what a perturbed
At the end of section 3 we include the definition of a

The normal form algorithm starts in section 4 with some facts we need
ot Lic series and ends up with an important lemma about the space of Lie
86 g ~ : : - ) . N : - - -
Tes. The mechanism of normal form algorithin can be found in section 5 but
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the implemeniation techniques appears in the next section with the copgy,
. : ‘ o B o & " NAOHQ (3
normal form algorithm and the powerful tool of Grobner bases ([1], [2]),
: ’ > . . .
In the appendix one can follow the detailed presentation of the Mapley
constrained normal form algorithm.

ai eq

1.1. The environment. To explain our theory we need some b-:l.(:kgr(?un(l
Hamiltonian systems and perturbation theory. .Al, I,‘ho end of this sectio,
give the meaning of the perturbed l\'(‘\pl(‘r Hn‘m_lll.m':m.n. | N
) First of all let’s consider R* — {0} C R? the space of positions £

a };()ut
we will

(&1.82.&) in R3, without the origin, On R? define the euclidean inner product
1082083 X R S X - 2 9 9 .9
<& >=8Gm+Sm 4 s and its induced norm €)% = €7 + €7 €2,

On TR? with coordinates (£,9) we have the standard symplectic forr,
W= VS d&; A ("11),‘.

Lan=1

Definition 1.1. A Hamiltonian on (TR3,w) is a smooth function
H:TR’ 5 R

where the dynamics of the system (TR®,w, H) are the solutions of the differential
equation

: oH
§ = o
) (1)
. _ oH
7 - 5{- ’

which are called Hamilton’s equations.

Remark 1.2. The solutions of the Hamalton’

§ equations are the integral curves of
the Hamiltonian vectorfield Xy on TRS,

Definition 1.3. The Kepler Hamiltonian describes

. the motion of two bodies in
R’ — {0} under the mfluence of gravity and is given

by:

Ho iR 5 R, Hy(€, ) = 1 |2 — A (2)
2 €]
Here, TiR? = (R® — {0}) » R3 C TR,

Definition 1.4, A perturbation I, of a Kepler Tlamiltonian of Hy 1s a fOI‘l““l
power serics
2

W=tlotetty+ S,y

(3)

[N

whf,’ll, /l, I 7 () ore .'s‘lnl;tlfll j"”“"“’”.s‘ on /[;}l}.‘i

Hefe e . o ‘ . . . e
. fore d 1“““}’, ‘}“ Hormal forn of a pertirbed Keplerian Hamiltonian we
will give a short (it",(‘)‘)]ﬂ](;“ ol whiat 0 l'“i‘»“iun alo bra is

’ e 1y < e (S PN
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9. poisson algebra

peﬁnition 2.1. Let (M’w be
) be a smooth symplectic manifold. [
old. Jetf(M) be the

§ace of smooth formal power series i ,
. h ti P series in e with coeffics .
smoot  functions on M. ocfficients in (M), th

Y , Lhe space Of

Renlark 2-2' FOT f’ g E ("m.«'( w) (1‘ +
/ . ’ 4 cehne f-g e (/@
Then (F(M), 1) 1s @ commutative fllgfe[,,,cw“f g €M) by (fg)(m) = [(1n)g(m)

For f,g € C™
or f,9 € C™(M) define a Poisson brackel {-,.} by
y " )

{fa g}(?ﬂ) e w(m)(Xf ('rn,)’ Xg(m)),
here X, X iltoni
where Iff, p g_—a;:garfmlitoman ve%t;or fields corresponding to f and g
R z= .E , — .. ): . . Y Y.
on F(M) by o Ji€', 9 = >°,2, 9i€" in F(M) then define a Poisson bracket

00 k
{f,q9) = Z(Z figu—i)".
k=0 7=0

Since (C'*® 1. : :
( (M), ,{}) 1s a Lie algebra, (F(M), -, {.,-}) is also. Moreover, since

{fg-hy=Alg} h+yg-1/h;

for f, g, h, € C°°(M) it also holds for f,g,h € F(M). Therefore (F(M), - {.})is

a Poisson algebra.

Definition 2.3. We define the adjoint map:
ady : F(M) — F(M),

byadpg = {f,9}, f.9€FM)
(f(]\’[),)

Rem o
ark 2.4. ad acls as 4 derivation on

Hamiltonian (2).
O H isan normal form #ff {HO,H,} =0

2::1_;1ti911 2.5. Let Ho be theanpler The perturbed Kepler
for ”?"mn H=Ho+et+ %;!H'_’ + ..
all'i > 0.

s iy In the finite case, meaning that {Ho, Hi} =0 for 0 < @ < n, we say that
Y normal form lo order 1.
degree The main goal of fhis P
nfol-Lun for a Pf;’l‘ilurb('d Kepler

. nately this idea has never I

4
e :
start with the l)a(‘kgronnd theory

normal form of a given
nice idea from [].
a system.

s to compute the
g the very
a ('Oll’lpll

aper |
Hamiltonian, usin
reen implen'urnted in

of the algorithm.

ter algebr
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3 Lije series and the splitting lemma

Definition 3.1. If f € (M) then

o 8}
vf);;.—(‘lp (eady) = Z“" d,}

(')

is called Lie series.

Proposition 3.2. 1. The formal flow of X;, f € F(M) is given by e — oI
2. ¢f is an automorphism of the formal Poisson algebra (F(M), -, {-,-}):

ellh) = elln) et
ol{g,h} = {pl(9) ! (M)}
3. ¢ = @l is one parameter group of automorphisms of formal Poisson alge-

bra.

Definition 3.3. Xy, f € C®(M), has periodic flow 1f there 1s T > 0 on M such
that for every m € M and g € C* (M)

‘P‘T(m)fl =9
Remark 3.4. T is not necessarily the minimal period of an integral curve of X;.

_In the sequel we will give an important lemma, which is the basic tool in
computing the normal form.

Lemma 3.5.
Len a 1. IfH,F € F(M) and ¢! is the formal flow of Xy, feFM)

(pf)"H = exp(cadp)

2. Splitting lemma. If X,y has periodic flow on C™ (M) then
C7(M) = ker ady, + i adg, . (4)
Proof. 'The proof of the splitting lemma is based on solving the equation
. Ly, F =G, F.G e C®(M).
ven F' € C™(M)

one o1 C — =
can decompose it ag J' — I+ (F - 75) where F is the

average: |
1 T
[,' — { }1)
orcover, the equation ad,, ¢ F
: G = F — F is solv
s solved by
I
(l' &= / o Hoye s Fal

I (P ") (F = F) at. (6)
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The next section will dea] with finding
ne

amiltonian. Section 6 give :
plllerirmal e on 6 gives the algorithye
the '

ERIAN HA MILTONIAN

normal form of a perturbed Ke-

A oo 1 .
and several jdeag tn implementing

I Computing normal form

Before going into details we ne
gomg l}to d(‘l.'f‘»ll-‘v we note that normal form ther find
of transformations which brings the perturbed Hton: Ty Iinds a sequence
: o >d Hamiltonian tc al Foo :
certain order. nan to normal form of a

A given [{:H0+5Hl+£H )
o+ ...  H e F i . .
normal form up to some order as fo?l'lows. - (M) will be brought into a

For G1 € C° (M) we have the Lie series, @, %1 = 7% o Srad? . Then we
. - n= ! Gy ) - -
change cordinates using &1, The transformed Hamiltonian js: |

Y = (B =
52
= HO+€(H1+(LdG1HO)+ET(HQ"f'QGdG’IHl+ad2G1HO)+O(53)-

In the above equation we have to find G; € C* (M),
. By the splitting lemma H; can be decomposed as Hy = Hy + H{, where
Hy € ker ady, and H{ € im ady,. Thus
£2
2!
B , (1)« .

If we determine G, so that H| = adpy,G1 then F ) is in normal form to
the first order, since {Ho, H1} = 0. We now use (6) to determine (.

In order to compute the second order normal form it 1s important to

. . (1) , -

preserve the already computed first order term fromn ') Thus we have to use

. - ain *
another change of coordinates, @i”?. We obtain:

FM = Ho + e(T; + H| + ada, Ho) + = (Hz + 2adg, Hy + adg, Ho) + O(&”),

€

FO = (pi) B =

gt . 2 Yade Ho) + O3).
= Ho+eM + (24 206, ¥ ad¥, Ho + 2adg, o) + O(€)

Here G, € ¢ (M) should be determined by solving:
<
ad,G = H2 .

‘ - z ! with Ho € ker ady,
Where 1j2 = Iy + 2adg, H1 + ad‘z';lHo and Ho = Ho 4+ H2, with Ho dy

S
and 11, ¢ im ady,.
fi In general having cotipt
Ind the nth order normal form by
_rn—l(:,'),l'w(ll_])

]?(”) = (,Ti

ted the (n — 1)t" order normal form, one could
o s ’

)
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_ s known and G, (G, G, ..., Gy — 1) has
where G1,Gz,...,Gn— 1 are ki . n (G | , Oy ) Lo be Solveq
One might use the nonrecursive formula:
n 41 Al
1"(") — ('p?:-r:l € ¢ ')*,11,
1= 1,2,...,n1s a tmangular system of equations.,

where G,

5. The constrained normal form algorithm

We mntroduce some notations.

Let
Ho{q.») == VIel2lp|2= < ¢,p>, (¢,p) € TR? and m
TSP = {(g.p) € TR fgI* = 1, < ¢,p >= 0, p # 0},
Fi=qP-1=0, Fy=<gq,p>=0. (8)

Define the field K := R(|p|, k) of rational functions in Ip| and k, with rea]
coefficients and its extension K C I := R(|p|, k, Ho).
If (¢,p) € TR? we define

F={f= Z %fn | fn € Llg,pl}

n>0
and
Y={feF| fo=Hy}
Note that
672,
Flres: ={f =3 —fu | fa € Klg,p))
n>0 ’
and

Glr+ss ={f € Flpsgs | fo = Ipl}.

Remark. For f € G, flp4s: € Glyegs is a perturbed geodesic Hamiltonian ([5)).
The constrained normal form algorithm takes as input f &€ @ and the

Orjer of normalization and outputs f € G, the normal form of f with the required
order.

~ From .se?t.ion 4 the first order normal form can be easily computed by
averaging fi € Klg, p]. For Hy given by (7) we restrict the flow ‘spHo to THS3. It
1s given by: t

H qcos 20 + L. g |
P e salg, p) = ( 1 .+’ rf,’—, sin 2t o)
T} : _lp’(] sin 2¢ -+ p cos Qt
s re - - . . _
reduces the armnount, of computation needed in ay\’eraging_ Thus we calculate

. | n
f] —- - / ({ T . ]) . s s )
rJ, fl ] COs 2t t ‘|‘;'T S zt,—lplqgln 2 + P cos 2{) dt. (10)

\
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Aft.,er few steps of normalization t}e integrand in (8) ywi]
ormS that it will not be manageable. For this we introdﬁrn th\e)oW]'l h[avVQ " ]many
. we say that f av g i ‘ € the equivalence relatic
~. For f,ghE gth say that f gt (f — Dlr+ss = 0. In other wor(]:efa'lvun
i f and g ave+ wg same coset representative N in [[q pl/1 whe£e Iis tl} cT ¢
g(,nerated by T75%. Later we will see that N g called nor’mlllf(;rm ‘Of ]; 10rea]
[s .(}.

Practicaly speaking, to find a coset representative we have to introdyce

pases for our problem: Grébner

Definition 5.1. Let be T # {0} an ideal in Llg,p) and G = {41, g, yCI
a set of nonzero polynomaals in Liq,p|. We define a term ord;ari)ng )on]j; p] b
> g2 > 43> 44 >.p1 > P2 > p3 > ps. G s a Grobner basis for 1 off jor aZyl
fel, f#0 there exssts ani € {1,2,... n} such that the leading monomial of g;
dindes the leading monomial for f. .

Proposition 5.2. If G = {g1,¢,, .. . gn} 18 @ Grobner basis for I then I is gen-
erated by 91,92, .. ., gn, that is

]:< 91,92, 9n > .

'If f.E G and 7 =< Fy, Iy >, then r € G, obtained by a division algorithm
on.m'ultlvarlate polynomials with respect to the unique reduced Grobner basis of
Jl\;(lt is also unique ([1]). » € G is called the normal form of f and 1t 1s denoted by

f)

Proposition 5.3. If f,g € L[g,p] then
f=g (modI) iff N(f)=N{g)
Thus our definition for equivalence relation, &, can be restated as:
fag ifftN(f) = Ny,
Where the normal form is taken with respect to the Grobuer basis of the ideal 7
Beherated by 7+$3,
Because T+ S is an invariant manifold of X, we see that f & g implies

N ML . B o moht
I %7, This means that in order to compute the average of f we might compute

T+ss by using the Grobmer basis for the constraints. Thus, n our case we

cal - ‘ R e S ores arobner
EL‘;l:]ate fi € Glp+gs by just normalizing fi € G with respect to out G

s0] The next step is preparing for the second order normal form. }{Dll'stl we
. , & B b i . T AT . v one
>V the equation fi = ady,g as it was pointed in section 4. "Lhis can be €oR
I)y' ' 1 — ¢ II(]~ I

1 [T — , P o lolgsin 2t + peos2t ] dt.
91 = — - ‘08 2t 4 — sin ut, |p|qaln
/U t(fi - ) (‘1L 7] ,

m .

0 gl . _ “obner basis. In
gfrthls “ase g, must not be normalized with respect to t’lIe (mﬁ[ied to g (see
"ler- o SU 4 S SV Thus (¢ has to be 1MOC b P
al, Xg, does not leave 719 imvariant. Thus 91 51

o]
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appendix):

1 , 9 1 y
g =g = 5lon <qp>Hlal =1+ slonlal” =1} <gp>.

Now X,- leaves 7153 invariant, meaning
1
{97, <q,p >Hr+gs =0
and
> 2 .
{97, 19" = 1} 7455 = 0.
The last step in computing second order normal form is to use (6):

~ —_— 62
f=f+eh+ a(fz + 2ady: fi + ad}, fo).

Applying the same method one can compute higher order normal forms.

6. Appendix

6.1. Regularization process. In normalizing a perturbed Kepler Hamiltonian,
some problems arise even at the very beginning: the Kepler Hamiltonian vector
field is not complete. The reason for its incompleteness is that solutions with
angular momentum 0 reach the origin in finite time.

To remove this incompletuess we use Moser reqularization ([3]), which
changes the phase space from ToR? to T(5° — (0,0,0, 1)), the tangent bundle of
the sphere 2 C R* without the north pole.

First of all we introduce the time scale by (‘i—r = T}t‘T and define

C k2 .
Mg =L (ms,n) + —) 2,

,.

where j comes from (2). The Hamiltonian vector field of (2) is clearly:

dé

-5 =

dit (“)
dy ¢

it P

We would like to have rescaled Hamiltonian equations for H, so we restrict
(€,7) to lic in the level sct H =1~k /2) or equivalently M~Yu/k), p/k>0

Remark 6.1. H < 0= H, <0, so we have bounded Keplerian orbits.
52
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4 1

Thus, after time rescaling, the equations satisfied by M on the level

y7 (k) e !
g |l oH
ds — k 51,—
i,l _ €| o (12)
TR T

As a last step of regularization, compose M with Moser’s map:
ALHW~W&QMARW,MWM:@W

1
& = —E(Pi + qipa — piqa),

The new Hamiltonian is:
2

G(‘]J’) = Golp) +eGi(g,p) + ;—‘Gz(g,p) 4

where Go(g, p) = |p|. Thus a perturbed Kepier Hamiltonian is transformed into a
perturbed geodesic Hamiltonian with its geodesic vector field X¢, on

T+S® = {(q,p) € TR |¢|* =1, < g, p >=0,p # 0}.

lg/* = 1 is the condition for the body to move on the unit sphere. For it to have

phase space 1'S® we need the extra condition < g,p >=0.
Another problem that arises in practice is computing Poisson brackets on
T+S3. This leads to the discussion of constrained Hamiltonian systems.

6.2. Constraints. The manifold 7'5% C TR* defined by:
Fi(g,p) = laP=1=0
Fy(g,p) = <g¢p>=0
8 called constraint manifold. Since the matrix
{Fy, F1) {FI'F:'} )___(0 '2\
{Fo, Fy} {1l F2} -2 0 )
M TS3 is non-singular, 7'S* is a symplectic manifold with symplectic form w =
“Inss. Since T+S3 C 7'S3 is an open set, it is also a symplectic manifold.
In the Sequ_e_l we will give a method to compute the Poisson brackets

{1; }7'53 on C*(T'S%) by {f,g)rss = w(Xy, \g) The idea is t}o construct smooth
lctions F'* and G* which are extensions of f and g on TR" so that:

)

(f,g}rs> = {F", G Hrs>, (13)
and

I[*|rss =1, G*|rss =9
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Let F be an arbitrary smooth extension of [ to Rl : ’l;hls exrt(n.s:on
“ TSRO 63 s closed subset, of TR4
by Whitney extension theorem ([4]), ho'ca,use 1 .S. 18 ;lf i, . R4 |
) Because 7'S¥ is not an invariant manifold if Xy we can not g4 F i,
cause T'SY 1s | e - Hagte
wpute {, }7s3. We have to modify I". Let I'* = '+ o Fy + ayF,y apg chooge
con ’ Yy 280 . T - — N . AL 1 g = ‘ N .
ar. s € C®(RH) so that {F*, Fi}|pss = 0 and {F '[;l‘i}l@_q‘ 0. This Meang
1, X2 ' . N \ pl 100 (111
that 7.8 is invariant manifold of X p.. So, for I' € C'"™(T'R?)

1 1
AL RN AR /) _1—4’)
F* =1 211-%-2 2

the Poisson bracket {, }7gs on C'(T'S%) is given by
Urss, Glesa}rss = {F",G"} s

Now we look at Hg = \/|p|?|q|2—= < q,p >2. Hy is smooth on the sym-
plectic submanifold M = TR?* — {Hy = 0} of (TR",w). Clearly Holp+sa = |p|

. . . . : ) , Hg
and 7% 5% is an invariant manifold of Xp,. Another fact is that the flow ©;° on
M is given

QXiSts,

2
i ) —iqﬁ;& sin 2¢ + cos 2t I%%sin 2t < q )
e = ‘Ilezsin 2t SH= sin 21 + cos 21 .
o 0

Clearly ',otH“ is periodic with period 7. See [6] for more details.
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