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PROOF METHOD FOR CLOSED NORMAL DEFAULT THEORIES 

MIHAILA LUPEA 

Abstract. In his paper [4), Reiter delined a proof method for closed normal theories, based on the lincar resolution for classical logic. A refinement of the Reiter method, using linear resolution with ordered clauses is proposed in this paper. This retinement is exemplified by sone exanples. 

. Introduction 

Reiter introduced in |4| a very attractive formalization of the non-rnonotonic 
reasoning, adding to the first-order logic a new kind of inference rules called de- 
fauits. A default is an expression of the form a1 and is interpreted 

as follows: "if one believes a(x) and it is consistent to believe 

3, ) Bm(z), then one can also believe 7(r) ". 
The default logic presented in this paper is taken from 3] and [4. 

Definition 1.1. Let L be a first-order language. A default theory A = (D, W) 

consists of a set W of closed formulas in first-order logic and a set D of defaults 

d- azB, {T) m ) where 
) 

a),B(r),.. . , B,m(z), 7(=) are well formed formulas in first-order logic; 

-a() is called the prerequisite of the default d; 

-1(z),.. ,Pm(r) are called justifications of the default d; 

7) is called the consequent of the default d. 

The set W of forinulas is the based knowledge of the theory, are treated 

Oms, and we may reason about them using the inference rules of classical 

Cand the defaults, obtaining beliefs. 

r ults are inference rules which complete the incompletely specified world 

rules model the non-monotonic reasoning, thus, we can infer conclusion8, 
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later on invalidated by new informations which denied the justifications of 

defaults already applied. 

A default theory A = (D, W) is consistent if W is a consistent et 
of 

formulas. 
A default is closed if none of a(r). (r),.. , m (r), 7(r) contains a free variable 
If the default is not closedd, it is open. A detault theory 1s closed if all of its 

defaults are closed. 
Every open default theory may be transfornmed into a closed theory. Therefore 

all what follows we will only consider the closed default theories. A closed default 
n 

has the form *110n 

We denote 

PRE(D) = Ufa| n E D}, and 

CONS(D) = U{1 E D}. 
Having a default theory we are interested to extend it (using the inference 

rules from classical logic and the defaults), in a consistent way, obtaining all the 
acceptable set of beliefs that one may hold about the incompletely specified world 

W 
Definition 1.2. Let A = (D, W) be a closed default thcory. For any set of closed 
formulas SCL, let r(S) be the smallest set satisfying the follouing properties: (i) 
WC r(s); 
(i) Th(T(s)) = r(S), where Th(S) = {P|S P}; 

(ni)if a E D and a E r(S) and -B1,... ,Bn S then E I(S). 
A set of closed formulas E CL is an extension for A if and only if T(E) = E, 

i.e. E is a fired point of the operator l 

The default theories can have zero, one or nmore extensions. 

Definition 1.3. The set of generating defaults of an eatension E of a closed 

default theory 1s 
GD(E, A) = {d E D|ld = and a E E and -g1,..,m f E} 

Theorem 1.4. Let F be an ertension of the closed default theory A = (D, W) 

Then E - Th (W UCONS(GD(E, A)). 

2. Normal default theories 

Between default thcories, there is a class of theories which have always a 
extension. These theories have all their defaults of the for , and are cale 

normal default theories. Their defaults are called normal defaults and 

model the most common non-monotonic rules used in practice "if a, then beie 
Buntil the contrary of is known" 

interesting properties according to the following theorems. 
The normal default theories have man 
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A PROOF METHOD FOR CIOSED NORMAL, DEFAULT THEORIES 
2.1. Every closed normal default theory has an extension. 

mi-monotonicity) Let A = (D, W) arnd A' = (D', W) be 
Theoremn 

Theorem 2.2. (Sem 

two normal 
The l default theories, D C D, and F" an eatension of A'. Then the theory 

has an ension E such that: 

n) GD(E",4') C GD(E, A). 
il says that the normal delault theories are monotonic with respect to 

defaults. An important practical consequence of (i) is that closed normal default 
hoories admit a proof procedure which is local with respect to the defauits, s 
that proofs may be constructed which ignore some of the defaults. 

Theorem 2.3. (Orthogonality of eatensions) 1f E and F are two eztensions of the 

same normal default theory, then EUF is an inconsistent set of formulas. 

Theorem 2.4. Suppose A = (D, W) is a closed normal default theory such that 

WUCONS(D) is consistent. Then A has a unique ertenson. 

In classical logics and monotonic logics all the formulas derived are valid, 

they are called theorems. For non-monotonic logics, a derived formula (a belief) 

is not necessary valid, it is only consistent with ali the formulas of the extension 

to which belongs. 
A proof theory for the default theories means a method for answering the question 

"given , can 3 be believed?". This question may be formalized in :"given a closed 

normal default theory A and a closed formula BEL, determine whether A has 

an extension E such that 3 ¬ E." 

Definition 2.5. (Reiter (4l) Let A = ([D, W) be a closed normal default theory 

and E L a closed formula. A finite sequence Do, . . . , De of finite subsets of D 

18 a default proof of B wth respect to A if and only if 

(pA) WUCONS(Do) F ; 

(p2) for 1 <i<k 
WUCONS(D;) E PRE(D;-1); 

(p3) D= ; 
P4) WUU_ CONS(D;) is consistent.

This definition does not provide a real proof procedure, 
because it gives 

C d for determining the D; sets, nor does it specify a 
method to verify the 

set of formulas. We may say that il the conditions (pl), (p?), 

(p9), (p4) are satisfied, then can be believed. ency of a 

a clo 
2.6, Let A = (1), W) be a 

consistenl
closed 

normal theory, and B EL 

has 
sed formula. If has a dcfault proof Do,.. . , De with respect to A, then A he comnpleteness of this method results from the following 

two theorems. 

Theo 
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Theorem 2.7. Suppose that E 1s an ertension jor a cons2.stent closed 
default theory A = (D, W), and that E E. Then has a defanlt Tal with 
respect to A. 

logic, but we know that this problem is not semi- decidable. 'Therefore u L 1ave 

the following theorem: 

The condition (p{) is a test of consistcncy lor a set of formula in first.rne. order 

the- Theorem 2.8. The ertension membership problem for chosed normal defanlt the, 
ories is not semi-decidable. 

A proof method for normal default theorics, inspired fron the Reiter 
method is defined and studied in 5. 

3. Linear resolution and OL-resolution 

3.1. Linear resolution. Linear resolution, introduced by Loveland, provides a 
top down theorem prover. This refinement of resolution is complete and was used 
by Reiter (4]) in his default proof method to obtain the D; sets. 

Definition 3.1. A linear resolution proof of 3 fron some set of clauses S has 
the form of figure1, uhere: 

i) the top clause Ro is a clause of -B 
(1i) for 1 <ign, R; (calleda center clause) is a resolvent of R;-1 and Ci-1 (called a side clause) 
(11) for 0<i<n-1, C; E S or C; is a clause of or (C; is R; for some j<. (i Rn=0, the empty clause. 

Ro Co 

R C 

Cn-1 

FiGORE1. Linear resolution 
38 



APROOF METHOD FOR CLOSED NORMALL DEFAULT THEORIES Ordered linear resolution. We can strengt.hen the linear resolution by or- 
3.2. 

ering the 
btain the ordercd 

clauses and by using the information of the literals resolved upon, and linear resolution(O1-resolution). These two concepts We 

An 
dered clause means that its literals 

heir position nOsition in the clause, from left to right. In the process of lincar deduction 

ncrease 
the efficiency of linear resolution and do not destroy its completenes. Is are increasing ordcred according to 

that the literal resolved upon from the center clause be the last in we can require th. 

the clause. 

ho informations of the iterals resolved upon allow to know if a side clause is 
clause of the initial set or a center clause previously generated. We can keep 

the literal resolved upon fronm the center clause in the resolvent and it beromes 
a 

framed literal. 

Example 3.2. The resolvent of the ordered clauses Ci = PVQ and C2 = Pv 

-QvR is the clause C = PV [Q] VPv R. 

We can apply merging left operation for identical unframed literals and the clause 

C becomes PV[Q VR. 

In this way we can lead the process of deduction, eliminating the expansive 

search of the side clauses. 

These concepts are formalised in the following definitions and theorems taken from 

and 2 
Definition 3.3. An ordered clause R is a reducible ordered elause if and oniy 

y the last literal of R is unifiable with the negation of a framed literal of R. 

Definition 3.4. Let Ri and R2 be two ordered clauses with no variables in com- 

mon and L1, Lz be two unframed literals in Ri and R2 respectively. Let L1 and 

2 have a most general unifier d. Let R" be the ordered clause obtained by con- 

cutenating the sequence Rid and R2ð, framing L10, removing L2ð, and merying 

t Jor arny identical unfrumed lilerals in the remarnng sequence. Let R be obtained 

m by removing every framed lileral not followed by any unframed literal in 

1s called an ordercd 
resolvent of Ri against l2. The literals L1 and Lo 

Ttcalled the literals resolved upo. 

tion 3.5. Let R be a 
reducible 

ordered clause. Let the last iteralL be 

ole with the neqation of some framed literal with a most general unifier d. The 

Lcedordered 
clause of R is tlhe ordered clause oblained from Co by deleting 

L and d Every subsequent framed 
literal not followed by any 

unframed 
literul. 

deduction of R. with top 
ordercd 

clause Ro is a 
deduction 

uwhich 

$atisfies the conditions: 

d ton 3.6. (Given a sl S of ordered 
clauses and an 

orderd clause Ro in 5, 

duse) against C; (called side 
ordered eluuse). 

The luteral 
resolved upon 
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in R; is the last literal. 

i, i<i 
C: is an instance of some C, j <i, ifarnd only if R, is a red 

In this case, Ri41 is the educed ondered clause of Hi. 

(ui) No tautology is in the deduction. 

(i) Each Ci is either an ordered clause n S or an mstance 

educible 
of 80me 

orderea 
i 

clause. 

lause Theorem 3.7. (Completeness of OL-deduction) 1f R is an ordered . 

the in an unsatisfiable set S of ordemd clauses, then there is an OL-deduction 

empty clause from S with top ondered clause R. 

Example 3.8. Let S = {PVQ,PV-QVR,PV-QV--lt, PVR,-PV-R} a 
set of clauses. We use Ol-deduction to proved that the set S is unsatisfiable. The 

figur represents the OL-deduction of 0 from S with P V as a top clause. 

Ro= PV Ca= Py-QVR 

R = Pv[Q] VR C1 = PV-QV-R 

R= PviQ] v [R]v - .Ca= PVQ = Ro 

R3 = Pv [Q] v [R) = PP C3 = -P vR 

Ra= [P] vR C4 =aPV-R 

Rs= [P]v[R]V-P ,Cs = P = R3 

=O 

FIGURE 2. OL-deduction 

In this example, R, is a reducible ordered clause, therefore 2 is a cent clause previously generated, namely Ra, and Ra is the reduced ordere R2. Similar R, is the reduced ordered clause of Rs The steps 3 and 6 in the process of dedduction can be eliminated, framed 
directly the reduced ordered clauses a and t. We can observe tae 
literals are useful ouly for the unframed literals which follow them. 

nstructi 
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APROF METHOD FOR CLOSED NORMAL DEFAULT THEORIES 
ment of linear resolution 1s very easy to implement and is very effi 

cient, beca 

deduction. 

This refine 

This re se we need only the last resolvent (last center clause) in the process of 

ofault proof method for normal default theories using OL-resolution 
A 

A refinement of the Reiter proof method [4] for closed normal theories is 

oro DOSed in this section.The OL-resolution seems to be appropriate to h 
he default proof method of Reiter for determine the sets D. The idea is 
the 
ot-resolution to allow the goal g to help select a suitable subset Do of D, and so 

an We must have an appropriate representation of a closed normal default theory 

for using the OL-resolution. Assume that W is a set of ordered clauses. For a 

normal default d = suppose C1,.,C, are all the clauses of 7. A pair (G, {d) 

on. 

is called an ordered consequent clause of the default d. 

Let A = (D, W) be a closed normal default theory, where W is a set of ordered 

clauses. We define CLAUSEs{A) = {(C, 0)|C E W}U 

Uf(C, {d})|d E D and (C, {d}) is an ordered consequent clause of d}. 

A pair (C,D), where C is an ordered clause and D is a set of defaults is called 

indexed ordered clause; C is said to be indexed by D. 

The resolvent of the two indexed ordered clauses (C1, Di) and (C2, D,) is the 

indexed ordered clause (R, DUD2), where R is the ordered resolvent of C; against 

Cp 
An OL-resolution of B from some set S of indexed ordered clauses has the proper- 

ties: 

the top clause Ro is an ordered ciause of -; 

1or Ii <n, R-1 and C;-1 are indexed ordered clauses and R; is their resol- 

vent 
Or 0i<n- 1, C; E S or C; is a an ordered clause of 3 or C; is R, for some 

=(0, D) for some set of defaults. 
e say that such OL-resolution proof of B returns D. 

ntion 4.1. A top down default proof of B witlh respect to a closed normal 

tcory A = (D, W) is a sequence of OL- resolution proofs Lo,.., Lk such De 

that: 

8 an OL-resolution proof of B from CLAU SES{A); 

1) for 0 <i: ,Li returns Di; 

CLATT iKk, LË is an 
Ol-resolution proof of PRE(D;-1) from 

CLAUSES(A); (u) D = 0; 
(u) WUUi= CONS(D,) is consistent. 
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Theorem 4.2. ((Completeness of top down default proofs) Let A -in W) 

Then the theory has be a closed normal default theory, and B a closed formula. 

an extension E such that B E E if and only il has a top down default DrOof 

respect to the theory. 
with 

ion 

The demonstration of this theorem results rom the completeness of do 

fanlt proofs (Theorem 2.6 and Theorem 2.7) and the completeness of OL-resolution 
(Theorem 3.7). Remarks: 

1. The defaults of Do, Di. .. Dx-1 belong to the generating defaults set of tho 1e 

extension E. 
2. If there are more extcnsions which contain the same formula f, then exists a 

top down default proof for B corresponding to each extension. 

3. If none of the defaults of the theory has prerequisite, then the top down default 

proof consists in Lo only. 

Example 4.3. Let A = (D, W) be a normal default theory, where W = {Pv 

R, PV-QV~R}, and D = {d = Py-ovR d2 pV-R 

A top down default proof of B = -P AQ is Lo which returns Do = {di, da} 

according to figure3. 

Ro PVQ Co = (P V-QVR, {d1}) 

R = (PV [Q] VR, {d1}) .C1 = (PV-QV-R, 0) 

R2 = (PV [Q] V [R] V-Q. {d:}) .Co = {PvQ= Ro, 0) 

Ra = (PV [Q] V [R] = P.{d}) C3 = (PV R, 0) 

R= (P]V R, {d;}) .C4 = (PV-R, {d2}) 

Rs= ([P] v {R]V-P, {d1, da}) .Cs = R3 == (P {d1}) 

G= (9,{di, d»}) 

FGURE 3. A top down default proof of --PAQ 

In this example Ro is , CLAU SES(A) = {(-PV R,0),(PV 
R, 0), (PV -QV R, {d1}). (-Pv -R, {d2)}. The set Wu CONS({d1, d:}) 
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A PROOF METHOD FOR CLOSED NORMAL DEFAULT 'THEORIESs 
consistent. TH ntThe theory of this example has an unique extension E = Th(W U 
CON S({d1, dz}), and B ¬ E. 

4.4. Let A = (D, W) be a closed normal default theory, where W = 

C D, AAB 

ANEC, da= 
Ths theory has two eatension E1 = Th(W u{A AF, B, C}) and E, = {Th(WU 

AAF-E}). We vant to demonstrale that formula DAA belongs to both 

tensions. We will construct the top down default proof of corresponding to 

Exa. 

B- E, EV D, D + F}, and D = {d = EvANP d, = A,d3 = 
AF 

eatension B2 (igure 4). 

DV-A -E 
(4, {d1}) (EVD,0) 

(-D, {di}) (EVD,0) (D,0) .(DVF, 0) 

(E, {d}) (E, {d4} (F,0). (-F,D) 

(0,{d, da}) 
The OL-resolution Lo 

(O,0) 
The OL-resolution Li 

FIGURE 4 

CLAUSES(A) = {(A, {d1}), (F, {di}), (B, {da}), (C, {íds}), (~E, {da}). (-CV 

D,0),(AV-B VE, 0), (EV D, D), (DVF, 0)} 
The top down default proof of A A D as an element of E2 is the sequence L0, L1, 

where: 

Lo returns Do = {d1, da}, PRE(D») = {-E, -F} 
L returns D1 = 0. 

The set WUCONS({d1, da}) is consistent. 

he top down default proofof AAD as an elenent of Ei is the sequence Lo, L1, L2, L3 

where 
o returns Do = {d1, da} 
returns Di = {dz, di} 
2returns Da = {d1 
3 returns D3 = W 
Can be constructed in a similar way. The set WUCONS({d1, d2, da}) is 

Consistent. 
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