CDIA UNIV. "BABES-BOILya |

IN FORM ATIC A V.

o .
olume I Numhor :

2, October 1996

, OOF M
A TE FTHOD roR CLOSED NorMAL 1
THEOR g MAL DEFAULT

MIHAIF}LI\ LUPKA
Abstract. In his paper {“]. Reiter delined g proof method f

1 : for close .
theories, based on the lincar resolution for classical log; kel
1 . . oL n ORiC,
the Reiter method, using linear vesolution wigh, ordered ¢
¥ (

in this paper. This refinement 1s exemplified by some exa;
: Jov «

A refinement of
allses s p]'n[;r,anl
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1. Introduction

Reiter mntroduced in [4] a very attractive formalization of the non-monotonic

reasoning. adding to the first-order logic a new kind of inference rules called de-
-~ . . (x) B (z) B (1)
faults. A default is an expression of the form *)/A1(2). . Gm(z)

and 1s interpreted

y{w) ’
as follows @ 7if one believes a(2) and it is consistent to believe
3z}, .., Bn(z), then one can also believe y(z) 7.

The default logic presented in this paper is taken from [3] and [4].

Definition 1.1. Let L be a first-order language. A default theory A = (D W)
consists of a set W of closed formulas in first-order logic and a set D of defaulls

d 0(2"‘3"/”(""'%"(“”), where | |
a(z) [;1?.)2) B (), v(z) are well formed formulas in first-order logic,
- \ 3 ey m\ y 7 . - .
-a(z) is called the prerequisite of the flefauat di -
-bi(z) Bm(x) are called justifications of the default 4,
yr ottt m »
“/(z) is called the consequent of the defauit d.

the based knowledge of the theory, are t.rea.teci
m using the iuference rules of classica

The set W of formulas 13 o
I . - the
% axioms, and we may reason about

- ing iefs. : ol
ol and fhé defanults, EbEIE 08 blelhl( mplete the incompletely specified world
The def inf Jles which complete the ’ eer conclusions,
- defaults are inference rule: ‘ oo thus. we can infer conclus
W.'Tt | . del the non-monotonic reasoning, thus,
- Hhese rules model the B
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later on invalidated by new informations which denied the justificationg of
h So[n(\

defaults already applied.

A default theory A = (D, W) is consistent if W is a consistepy set
formulas. €l of
A default is closed if none of a(z), 81 (z), ..., Bm(x), 7(x) contains a free Variab].
If the default is not closed, it is open. A default theory is closed if al| of ;.
defaults are closed. 3
Every open default theory may be transformed intc a closed theory. Therefore in
all what follows we will only consider the closed default theories. A closed defa,)s

@01, .- ™

has the form
We denote
PRE(D) = Ufa| 221522 ¢ D}, and

CONS(D) = {y]|22aln € D},

Having a default theory we are interested to extend it (using the inference
rules from classical logic and the defaults), in a consistent way, obtaining all the
acceptable set of beliefs that one may hold about the incompletely specified world
W.

Definition 1.2. Let A = (D, W) be a closed default theory. For any set of closed
formulas S C L, let T'(S) be the smallest set satisfying the following properties: (1)
W CTI(S);

(i1) Th(T'(S)) = I'(S), where Th(S) = {P|SF P},

(iii) if “Prlu € D and o € T(S) and =fy, ... . =0 & S then 7 € I'(S).

A set of closed formulas E C L is an extension for A if and only if I'(E)=FE
i.e. E is a fired point of the operator I'.

The default theories can have zero, one or more extensions.

Definition 1.3. The set of generating defaults of an extension I of a closed

default theory s
GD(E,A)={d € D|d = 9—&*;—“9—- and o € I and =3y, ... =B, & E}

Theorem 1.4. Let I/ be an extension of the closed default theory A = (D, w).
Then E = Th(W UCONS(GD(I/, A))).

2. Normal default theories

Between default theories, there is a class of theories which have always &
extension. These theories have all their defaults of the form %2, and are called
normal default theories. Their defaults are called normal (ijefaults and they
model the most common non-monotonic rules used in practice :”if «, then believe
B until the contrary of 5 is known”. The normal default theories have many

interesting properties according to the following theorems
g theorems.
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R CLOSED NORMA1 DEFAU
A DBEFAULT THEORIRS

n 2.1. Every closed normal default the /
neory hae

el

Theor™
" i (1 'y e

Theo"em 12.12. (gﬂt;nz-monol,unicity) Let A — (1) Wn exlension.

- 3 | ? MES / n o ] | [
“l'() no,,n(] ((.'faQ.‘ l‘(.()7 s, ]) (: [)’ ””(I I’/” it extona ) f”)l’l A - (/)/‘ W) ’)/,
A has an extension E such that: wrension of ' Then the theory
(1) F' g 1’4‘/’. ) - ,
(”) GD(E A ) C (rD([L, A).

(1) says that the 110!"I'Ila.l default theories are monotonic wi
defau]ts. An .1mporta.nf, practical consequence of (i ) s “lm)(ll)(nylp,lwn.h respect, to
theories admit a proof procedure which is local with rw;); (:1 T}’( 1?(mna,l df:h”lr
(hat proofs may be constructed which ignore sorme of t,h:. r](l'%;;|1]:s o ddite

Theorem 21.3d. (Orthogonality of extensions) If E and I" arc two extensions of the
same norma: efault theory, then EUF is an inconsistent set of formulas

T!leorenl 2.4. SUPPOSQ_ A = (D, W) is a closed normal default theory such that
WUCONS(D) is consistent. Then A has a unique extension.

he formulas derived are valid,

In classical logics and monotonic logics all t
(a belief)

called theorems. For non-monotonic logics, 2 derived formula

they are
is not necessary valid, it is only consistent with all the formulas of the extension
to which belongs.

a method for answering the question

A proof theory for the defauil theories means
"given 3, can 3 be believed””. This question
normal default theory A and a closed form
an extension E such that g ¢ £

Definition 2.5. (Reiter [4]) Let & = (1) W)
and B € I a closed formula. A finite sequence Do, - -
is « default proof of B with respect to A 1f and only if :
(b)) W U CONS(Do) b5
v2) for 1< i < k

WU CONS(Di) F PRE(Di-1);
(03) Dy = ¢
) w ok, CONS(Di) 15 consistent.

! This definition does not provide a ¥ it specify
0 method for determining the 1 sets, nor does 1 Pl ‘hye CONC
"-Onsistency of a set of formulas. We may say that 1

(p?)} (p/,) are satisfied, then [ can he believed.

may be formalized in " given a closed
ula 8 € L, determine whether A has

be a closed normal default theory.
Dy of finite subsets of D

because it gives

cal proof procedure, a3
Lod to verity the

a metl |
litions (p1). (r2).

ing two theorets.
s

ry, and B € L
to A, then A

sults from (he follow

Josed normal theo
Dy with pespect

hod re

The completeness of this met
psistent «

Theorem 2.6. Let A = (I, W) e a cons
/¢ fault proof Do, -

a clpe .
. losed formula. If f has @ A%
S an egtension I/ such thal gel. 37
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7 ortension for a consistent close
Theorem 2.7. Supposc that 7 1s an exte / 1 n

default theory & = (D, W), and that 3 € . Then [} has a defauly pro
respect to A.

0 r Tn a I
of wity,

it 18 a tes ‘onsistency for a set of formula iy .
The condition (p4) 1s a test <)f(_})|1s141011 y fora: ot forn a1 first, ope,,
logic, but we know that this problem is not semi- deaidable. Therefore v,
C, -V
the following theorem:

hav

Theorem 2.8. The extension membership problem for closed normal defu, the.
ories is not semi-decidable.

A proof method for normal default theories, inspired from the Rejie,
method is defined and studied in [5].

3. Linear resolution and QL-resolution

0

3.1. Linear resolution. Linear resolution, introduced by Loveland, provides &
top down theorem prover. This refinement of resolution is complete and was used
by Reiter {{4]) mn his default proof method to obtain ihe D; sets.

Definition 3.1. 4 linear resolution proof of 3 fromm some set of clauses S has
the form of figurel, where:

(1) the top clause Ry is a clause of =3

() for 1 <i < n, R; (called a center clause) s a resolvent of R;_; and C;_,
(called a side clause)

(#mj for0<i<n—1,C;, €8 or Ci 1s a clause of -3 or C; 1s R; for some j < 1.
(w) Rp = O, the empty clause.

,Ro .C()

L] (,/']
A
.ﬁff
'/\/7’ -1 (”n 1

/”/
/’/
/

T¢

e |
e ar '
| Linen resolution
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D1y ORMAJ,

9. Ordered linear resolution \ -
» We can strengihen ) |
nglhen the line

~. - the clauses a e ’
i . th dand(;)) using the informat; (
. ) . " . ablon o ” T
_ obtain the ordered linear resolutj he Jite
we . 1 (’S()lll‘l() )
. aon(O1,-re _ ,
increase the efficiency of linear resolution an de solution). These two concepts
An ordered clause means that its literals > not, dest, :
. osition in the clause, fr Ta
their P e that the I , from left to right. Tn the nroceee of 1
we can req » that the 1l‘era.l l-(‘.S(’)I\rQ(I upon [.l‘()l 0l process of linear deduction
n the

ar resolution by or-
rals resolved upon, and

are | rQy Its (:()”l[)lhtr-“;,q;’.

Te mcreng) D
asing ordered according 1o
gt

the C]aluse_ center (‘,l;u)gf: });: "h, Jast, iﬂ
1 informations of the literals r
Th(; 1:16 e imtialﬂletlll.(,lalh resolved upon allow to know if a side ! .
~ se lal set . e . - ) a Side claius -
e ?ll al resolved selor a center clause previously gencrated. We ) 1;{“ §
eral re . TR > can keej
the h upon from the center clause in the resolvent and it h‘i” P
s L 'nt and 1t becomes

framed literal.

Examplg 3.2. The resolvent of the ordered clauses C; = PV Q and Cy = P
"QVR’StheClaUSC’C“PV[Q]\/pv . . Ty =

We can apply merging left operation for identical unframed litera s and the clause
C becomes PV [Q]V R.

In this way we can lead the process of deduction, eliminating the expansive

search of the side clauses.

These concepts are formalised in the follow
[1] and [2].

Deﬁnition 3.3. An ordered clause R 15 a7
if the last literal of R 15 unifiable with the n

Definition 3.4. Let R and R» be two ordered clause
mon and L, Ly be two unframed literals in Ry and 12 respectively. Let Ly and
=Ly have a most geneml unifier 4. Let R* be the ()f‘der(‘d clause olftaz'ned by con-
catenating the sequence R6 and Rod , framing Llf), removing L20, qnd merging
left for any identical unframed literals in the remaining Sequence. Lf:’[ R be qbtamed
Jrom R by removing every f'r'am(,’d literal not joll(')wc‘d by qrwzy m}zjmmcd literal in
R*. R is called an ordered resolvent of R against R.. The Literals Ly and L2

ure called the literals resolved upon.
be a 7't>(lu(r1'blr

ing definitions and theorems taken from

educible ordered clause if and only
egation of a framed literal of R.

s with no variables in com-

Let the last literal L be

' ' fier 8. The
n of 6()17;,(’fr(z1n(-’(1 Literal with a v itfler

] 1 lause oblained from 8 by deleting
i R 15 the ordered clause 00T |
ed ordered clause of It 15! " 08 by d
’ / ' ; iy un ranted iterad.
44 and cvery subsequent f?'(l‘l”ll('(] literal not followe d by any unf
{5 of ordered clauses and an ()'l‘dc"nu'; [
ith | o 48 duc
th top U’I’(lt,“l'(‘ll claust Ry is a dedu
with

ordered clause.
1ost general t

Definition 3.5. Let It
Unifiable with the negatio

‘luuse ,Il)o imn S.
Definition 3.6 Crven @ ‘tron which
Z:ti(.)‘L-deductio‘n of Iy
sfies the conditions:
(1) For i=0,1,...,n-1, R+
dered clause) against ' (call d

) J - 2. (C ’ ( [ "';t(,l onr-
[4 y (”I ‘)’Ii’l('l‘("l I‘(‘h’()!lf(/]'l ()', 11‘ (((.lll((i I“ .‘ | Tl 0.'
i . I ,l"‘,fl '1lllA“f). /[7’ ! el Z l(’\() Ved up n
10 (& ()" . « (M2 & y [§ l“‘ ¥ 5 I ‘i
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a y nstance of some It
lc ' y o or an sl
in R; 1s the last fiteral lause in 5
imn Iy ¥

: i g < 1
ther ) 1R as a reducible ordeye,
1) Each C; 1s either an o i af and only 1f Ri 15 a
= ome (U, ) <1, 1
C i(e an mstance of son J

© 1+ b y ( .l{'.
]‘ ic ")‘ 1(‘(11/( (\d o1 li‘ 7((1 ( 1 s )

1” (" v > v ‘- ' | ! ,’f)”.,

(‘ “ Wy

. Mt as an ordereq cloy,
eo ss of OL-deduction) Ij It * i ordered f;;{
o o onfersd 2 cre 1s an ~aedauction o Lhe
Theotan ng; 15‘ f ondered clauses, then th
' Y 3] ) 5 (
' satisfiable set S 0,
in an unsa

dered clause It.
lause from S with top ordere
emply claus

P - _1P\/ R,ﬁ[)\/ 'ﬁ}{,' [[(j 1]
tS={PVQ,PV-QVR,PV ﬂQt\]/P 51:; S s unsatz’sﬁablc{ The
Example S'S.HI'T"(‘ z:ve‘ ()\1.“(1(7(111(‘“0” to proved that,-[hl P \/ Q as a top clause.
set of Cm“sm"‘m‘: th; OL-deduction of O from S wit
figurc2 represent:

le 7‘(‘(1' C

(.l"“l,\)‘(”

RO:PVQ C():PV_‘QVR

:P\/"\QV"‘R
Ri=PVI[QIVR ’ C

N\

= PV = R
R, = PVI[Q]VIR]V-Q C Q

N\

1 y==PVR
Ry=PVI[QIV[R =P Cs
Ry=[P]VR - .Cy==-PV-R
Rs =[PV [R]V -P > Oy =P = Ry

e
Re =0 -

FIGurE 2. OL-deduction

I this example, R, ig
clauge previously generated,
Ry. Similar e is
The steps 3 anc
directly t}e red
literals are usef

. .(\n[(’r

| fore (o 18 a ¢ -

a reducible ordered c];mgc, therefore ( ;1 Jause 0
) dered C

namely Ry and Ra s the reduced order

the rediuced ordered clause of R,

16 m the Process of ‘l(*(lll('ti()ll c

cting
1ced ordered

o . ~onstru
an be eliminated, con

t the fram®
Clauses Ity and [t. We can observe that t
U only for the unfrag,

1ed literals which [ollow them.
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R L[/OSED Nulll\’lf\lz ‘)]",l-‘AU[rr '[‘f”‘()l(ll‘i,

ment of linear resolution i
Ly reﬁneuse we need Only the 1a1(,)tn 18 very easy (o implemenl, and 18 very eff
ent beca st resolvent, (last, center clause) in the pr(;r);q;.rf

Jeduction

A Jefault proof method for normal default theorjes using OL-resolution

finement of the Reit : _

A. refin . e Reiter ploof.' method [4] for closed normal theories is

roposed in this section. The OL-resolution seems to be appropriate to be used in

ihe default. proof method of Reiter for determine the sets [);. The idea 1s to —use

0L-resolution to allow the go'fll B to help select a suitable subset Dy of D, and so

on. We must have an apr?ropna,te representation of a closed normal default theory

for using the OL-rei(?lutlon. Assume that W is a set of ordered clauses. For a

sormal default d= 7,1 suppose C1, ..., C, are all the clauses of . A pair (C;, {d})

is called an ordered consequent clause of the default d.

Let A = (D, W) be a closed normal default theory, where W is a set of ordered

Jauses. We define CLAUSES(A) = {(C,0)|C € W}U

u{(C,{d})|d € D and (C, {d}) is an ordered consequent clause of d}.

A pair (C,D), where C is an ordered clause and D is a set of defaults is called

ndexed ordered clause; C is said to be indexed by D.

The resolvent of the two indexed ordered clauses (C1, D;) and (Ca, D>

indexed ordered clause (R, D, UD3), where R is the ordered resolvent of C' against

Cy.

An OL-resolution of 3 from some

ties:

- the top clause Ry 1s an ordered clause of —3; ‘ |

for1 < i< n, Ri—1 and C:_; are indexed ordered clauses and R; is their resol-

vent;

--forO <i<n—1,Ci € S or C;

)<

) Rn = (Q, D) for some set of defaults.
esay that such OL-resolution proof of f returns D.

) is the

<ot S of indexed ordered clauses has the proper-

is a an ordered clause of =3 or C; is R; for some

it . 3 with respec losed normal
Definition 4.1. A top down default pr oof of 3 with respect to a ¢ 054’ o

defaylt theory A = (D, W) 1s a sequence of OL- resolution proofs Lo, -

that

?:')')Lfo is an OL-resolution proof of B from CLAU SES(A);

Y for 0 < i< k, L; returns Di; o
g”) for L < i<k [‘/,- is an Ol-resolution proof of PRE(Di-1) Jrom
_I‘AUSE§( A_)—;

(ZU) Dk = 0

('U) Wu U:;O CONS(D;) 15 consistent.
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of top down default proofs) Let A — (D
and A a closed formula. Then the the,, ,W)
N - uEs 1
and only if # has a top down default [)']‘(,()[J .
] wl],

Theorem 4.2. ((Completeness
be a closed normal default theory,
an extension E such that 7 € I of
respect to the theory.
ation of this theorem results from the completeness of 4
o

The demonstr
7) and the completeness of OL-regolyt;
50lution

fault proofs (Theorem 2.6 and Theorem 2
(Theorem 3.7). Remarks:
1. The defaults of Dy, Dy 1

extension E.
9 1f there are more extensions which contain the same formula 3, then exists ,

top down default proof for 8 corresponding to each extension.
3 If none of the defanlts of the theory has prerequisite, then the top down defanlt

)i 1 belong to the generating defaults set of t
v L1ne

proof consists in Lo only.

Example 4.3. Let A = (D, W) be a normal default theory, where W = {-PV
‘s V - [ = = = &G VR' = = -
R.P Q V R}' and D = {dl — PV-QVR ’d2 - '1[])):'/—11}33 ’

A top down default proof of 3 = =P A =@ 1is Lo which returns Do = {di,d,}

according to figure$.

Ry=PVQ

/Co = (PV-QV R,{d})
R, = (PVI[Q]V R,{d1}) // //C1 = (PV-QV-R,0
R, = (PVI[Q)VI[R]V-Q.{d1}) 7 LCy=(PVQ= R0

////
Ry =(PV[QV[R =P {d}) ~7 Gy = (~PVR,D)
R, = ([P]V R,{d}) / .Cy = (nP VR, {d2})
Ry = ([/)] \Y {R] V=P, {d], (12}) ,/’//’ P Cs = Ry = (P, {(11})

Ity = (0, {d,, ds}) e

Fraurr 3. A top down default, proof of = £ A =@

In this example Ity is [, CLAUSES
_ o s o, CL ,hMA):{hPVRﬁLMVﬂQV
ng))(] / ﬂ(J \V /(,‘{(/1})'(-./)\/~-.]{,{([2})]' The set W U("ONS'({dl,d'/.’}) 15
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Lsistent: The theory of this example hag
. :

(/?()NS({dl)d2}))» and 3 € I,

le 4.4. Let & = (D, W) be a closed no

pxamp P b tosed normal defaull theory, wher =
A DANB o ELEVD.D 5 P, and D = {d; - i i O
EC ds4 = b 2 0 ANF 5 %3 =
A/Ac':"'s 4 -FE ' ‘

This theory has two extension by =ThWU{AAF,B,C)) and By = {Th(W U
4 A F,mE}). We want o demonstrate that formula f = D A A Selongs: ta Zoth
ertensions. We will construct the top down defaull proof of 3 (:z)rr‘(:.sl)(;rz//zrtq to

ertension Ey (figure 4).

an unmaque extension f — Th(W U

,(/'l,,

I A {di}) ROA2X)
e //

(DAY T (EVD) (D, 1) /// (~=DV F,0)

(E,{d1}) ///(ﬂE, {di} (F,0) s (~F, %)

(Dv{dl’d‘l})/ (D,@) I/////

The OL-resolution Lg The OL-resolution L

FIGURE 4

CLAUSES(A) = {(A, {d}), (F, {d1), (B, {d2}), (C, {ds}), (7B, {da}) (~CV
D), (~AV BV E,}),(EV D, M), (=D V F,0)}
The top down default proof of AA D as an element of Es is the sequence Lo, L1,

where:

Lo returns Dy = {di,da}, PIRE(Do) = {7F, - F}
Ly returns D; = 0.

The set W U CON S({d1, dq}) s consistent.
The top down default proof of AAD as an eleme
where:

Lo returns Dy = {dy,d3}

Ly veturns D, = {ds, d1}

Ly returns D, = {dy}

nt of I is the sequence Lo, L1, L2, Ls

] ;
3 returns Dy = ()

. 3 — . o 7 Al N S { . sl s
and can be constructed in a similar way. [he set W U CON b(lth,dz.d.x,) 18
“Onsistent,.
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