A UNIV. “BABES-BOLYA["

ICA, \O]Ume 1]‘J ey t l er 1-3
y Un]b : 2' OC Hele} S

96

HOW TO MODEL MESSAGE PASSING BY LAMBDA-CALCULUS

S. MOTOGNA

. . erning messa assing |
object oriented languages which are speci) g€ passing in
aspect is most often not taken in view
are well presented. The semantjcs use

types. In this paper we prove that the
in essence, equivalent.

while other object oriented features
d is based on lambda calculus with
two models for message passing are,

1. Introduction

Object oriented programming has established itself as the most modern
and natural way of software development. Thatl’s why recent studies try to for-
malise the OOP characteristics as better as possible. One of the way in which the
research is carried on is lambda calculus, most of the studies following Cardelli
and Wegner point of view [3].

The notions with which the OOP deals are objects, classes and methods
(or messages, as method calls). The main features of OOP are: inheritance (or
subtyping), polymorphism and information hiding (followed up frem data abstrac-
tion). Various extensions of typed lambda calculus model these features.

In my point of view message itself is not “a big deal”. Message passing
Séems to me a more important aspect, a more switable notion, because is the only
Way in which the object can communicate, ‘

A message syntax can be supposed of the following form:

message.receiver
Without, restraining its generality, because all object oriented languages has a sim-
lar fory (if the receiver is not specified it is "“Ph“t")- ¢ o recoiver. which is

The transmission of a message implies the existence ol a recelv er,t his

SIm1st . 4 fect): recelves
" object (or more generally an expression returning an Objﬁcg, 3/}:“ ; el
a o : < s among the methods dehne
Message, the system, at run-time, selects g
\
1991 Mathematics Subject (f'lassz:ﬁcafio'
1991 cr Categories and Descriptors.

lamming' F.4.1 [Mathematical logic and forn
s and related systems.

.. 68NO5, 68Q55.
D.1.5 [Programmn
1al languages}

g Techniques] Object oriented

ica i ambda-
s Mathematical logic, Lam

Ca cu

29

5. MOTOGNA

o corresponds to the message name, if this ey;

. . Sts.
A be checked at compile-time, The

object the one whose nan

existence of such a method shoul

2. Message passing

avs atand message passing:
There are two ways (0 understan age pi g

a): the first one is hased on (‘n‘l'('lvlli’s.|>0inl. of Yi(!w [2] .an(llurmsist.« of: the
object 18 considered a record 1n which 11}0“10(!.‘; Ale L _fl@lf]s and wh,
labels are the messages of the corresponding methods. This point of Vies
is know as “objects as records” analogy :11)(] can be found in (3], 5], 7.

b): the second way is used in the Janguage CLOS and consists of: in the con
text of typed functional languages, message passing 1s viewed as g func-
tional application in which the message is the function (identifier of 1},
function) and the receiver is its argument [4].

In some sense these two interpretations are similar because records can he
represented as functions from labels (messages) to values.

2.1. “Objects as records”. Let’s review some aspects in favour of this choice:

e in Simula (considered an ancestor language in object oriented paradigm)
objects are records with possibly functional components

e arecord selection usually requires the selection label to be known at compile-
time (allowing compile-time checking of the called method).

o I.n (2] .is presented how records can model the basic features of objects, in-
ciuding: inheritance, multiple inheritance, message passing, private instance vari-
ables and t.he special variable “self”. The method chosen is based on typed lambda
calculus with records and variants.

~ The subtype relation is defined as follows [2]: a record type ¥ is a subtype

(;~r1Lten <) of arecord type 4" if 4 has all the fields of ', and possibly more, and
the common fields of 4 and 4/ are in the < relation. The typing rules are:

[Rule 1a: Jife; : 4, and ... and €n

Y1 An Yy
[Rule 2a:] <

tYn then (a) = ey, ... a, =€,): (@1

t a basic type, like int and bool)
711.,3”“ _— .)
s Iny = (’11 STy, Un4m . 7n+m,) S (al : 7{1 cov sy Anos ‘7/:’)

[Rule 3a: Jif @+ and 7<=+ then a : ~

(Rule 4a: Jif 1. ;
: O =y . o . .) .
[Rule 5a; | if f e ‘>/Alr'x](: (lt : (r (Jlu/n f(a) is meaningful, and f(a) 17 i
and f(a) : ey where o' < o then f(a) is meaningful

Rule Ga: | if 5 -
[Rule Ga: Jifo! < o and TSy then o ! '
30 | S

e

HOW TO MODEL MEssaGp PASSIN
S¢ G

«Message passing as functj,

l BY [;.’\M”])A--(,‘AI,CULT'“
N ' . na a o
2 t distinguish methods fron g
ust &

lu:at.mu”. We

note first, t)
i > hirst, that we
asl two main d

1 r 1] S
]ﬂ unc “()ll. y 'd,t, I(“
(‘qp(f(".g |)‘!iﬂg (‘.()l].gi’]‘

eer' .

, overloading (the answer of two ohjects 1o ()
pending on the fv)’l)(‘ of the U})‘i(?(.‘i‘,)/.""[‘h(l)l.“;’ ,1(1‘)4.‘,“ B .
overloaded fl.m(‘.t‘?ons and in message Pﬂﬂsin‘g ”];vn{’x?ts are 1dentifiers of the
]()élded fll?](‘,ivl()n IS represented])y e ,-O(-in“r '|l’ll(!l.‘»“I’a,l‘glllm:nt of the over
the selection of the code to be SkEGiited i |~,.,w\('| [;,‘ '1;: one o Wh()s"tv type
a branch of the overloaded function refe il o COLS e

t0,
- o m . . .
. Iate't bzndzng: 1 he; dlﬂ\ele'll(:(? consists 1n the fact that a function is bind
o 1ts meaning tle-t] ! ' '
Elo 1 s el gta Complle time, while the meaning of a method can be
J -
ecided only at run-time when the actual type of the receiver is known.

This feature is cz?lled late binding and it’s shown up in the combination
between overloading and subtyping.

Same ”I“S.‘\'Fl,ﬂ;(' can (“”'(»r (l(»_

I'rec ' INessage it 3 :
I by the message it 13 associated

Combining overloading with late binding implies a new distinction be-
tween message passing and ordinary functions. Overloading and late binding
requires a restriction in the evaluation technique of arguments: while ordinary
function application can be dealt with by either call-by-value or call-by-name,
overloaded application with late binding can be evaluated only when the run-
time type of the argument is known, i.e. when the argument is fully evaluated
(closed and in normal form). In view of our analogy “messages as overloaded
functions” this corresponds to say that message passing acts by call-by-value or,
more generally, only closed and normal terms responds (o messages.

An overloaded function is formed by a set of ordinary functions (lambda-
abstractions), each one forming a different branch, and the notation is:

(M&N)
for an overloaded function with two branches M and N that will be selected
dccording to the type of the a.rgumen.t. ' |

The subtyping relation is defined as follows:

if Uy < Uy and V1 < V, then Uy =+ Vi S U2 v
and g Y /!

evs - [35 € J suc J o
lfVZ(:I)] {Ui”—‘}‘/il/}iel'

then{U; — Viljes <
The type-checking rules are [4]:
[Rule 1b:]2V V g denotes & V o
[Rule 2b:] if Ae” M 2 U =V then MY NV
(Rule 3b: it MU~ {7 and N oW = U0
[Rule 4b:] ¢))

‘NV“V".T(4
e

S MOTOGNA
[Rule 5b:] if M - Wi < (Ui = Vikicouony and N2 Wy <y they
.(}‘!’&'{“,’._>\f,']{(”n N) : {1r' Y \/1}1(" o | {U {
| ier and U UG = minge iU <
[Rule 6b: Jif M {U; =3 Vilier and N J er{Ui|1r <)

! 1) I(-“
/ X ' apphcation
VM o« N denotes the overloadec
M« N . \‘7]\1 * N de
3. Comparative study
. b 5 BETHG ation has bee Usec ,
First of all we must note that the same not; n used for ta’p‘z,g
and subtyping relations.

] st i oy K :
If we study the two sets of typing rules we must find an “equivaley e,
between them. We will follow the equivalence from the first set of rules (

to the second set of rules (from 2.b), since records can be represented ag
from labels (messages) to values.

from 2.4
funct 10ns

(Rule 1a]: e; are values of the corresponding type ~; (for | <7< n). They,
if we proceed with labelling in a record we obtain Rule 10
of a record is obtained from the types of the Jabels. Since it is a ruje specialize(
for records we can’t find a match in the second set of rules.

[Rule 2a] We can decompose this rule as follows:

la. In other words the type

if ¥1 < 91ym < ¥ then
. C ot ot
(a1 :v1,... a, tn) < (ar iy s an Y]
(al 0 S IR s Qng-m 57n+m) S (al 0 6 IR UPIPY o :')’n)

Comparing this rule with [Rule 5b] which states that overloading a func-

tion (with n41 members) with a new member N which type 1s a subtype of
Un =V, the result has the type {U; — Viticn.

We can generalize [Rule 5b] as follows:

M WI S {U1 — Vi}iS(”"l) and Nl : M'/l!l’ cee ,Nm : [’Vl!m

then (M&{U"“W"}"S"/\H&S&Nm) Ui - V)

i<n+m
and the correspondence with [Rule 2a] is observable.
[Rule 3a] is in fact the principle of subtyping.
| ~ The following § rules have as basje studying ohject the typing rules whet
functions are involved ‘ ‘

(Rule 4a)

states (hat the type of t
the definitoy of t} e

e def 1e I'un(ftion, if it iy
mtion in the lambda.
And [R

' .) TOom
he function valye can be deducted fitf
: ‘ . N . . Al l—
meaningful. If we describe the function de
. . - ot . : lcation
¢ lam| alculys notation we obtain the operation called applicatic
tale 2610 is g1y

F eXact Lranseription of tl

- Bal ja .. .' f e [R“l(a 4&] ‘ i
domaiy, '[:/{'”l' f);tJ Cponeerned wig, the hen we consider a subtype ol the
s yie oty Lion. o , , T

Is I“VOIV"I, “‘“l RI)] |~,t

: - . . straction
ates a siyilar sttuation when abstrac
Rule Ga]

case w

15 Similay R :
32 o the definition of the subtyping relation from 2b-

HOW TO MODEL MESsaGE p

'\SQING BY T
. LAM “
conclusions IBDA-CALCULUS

When necessary, we develope some theory £
r t never . . (Jr-\' rony trhj 3t Qi .
We mus fgrgot that this theory has (o b ¢ Most suitable point of
ling message passing meet, this criterion © consistent. Both ways of
On the other hand, it might be possible that t]
. - . ‘ hat thes :
be anified. Then the problem of equivalence is asked 1ese two theories have to
We have argued that ip principal the tym“.g 1
her. The study i ' 3 EILIE
from ar‘]olt}'] t d} "takes Mto account only one direction of this deduct;
¢ cts as recor / i« : o -ductior
(from objec S StUd) to message passineg as functi P . -)..l
dy). The reverse sense of the equi T tonal application
study)- - I N > equivalence can be deducted in a similar way
N 1y, w : A So i g
Fina zl, we Wi) note once again that the main idea of this deduction is the
t records can es 1 as : T
fact that r € represented as functions from labels (messages) to values.

vieW~
model

s can be deduced one

References

[1] K.B. Bruce, G. Longo, A modest model of records, inheritance and bounded quantification,
Information and Computation, 87(1/2), 1990, pg. 195-240.

(2] L. Cardelli, A semantics of multiple inheritance, Semantics of Data Types. Lectures Notes
in Computer Science, 173, Springer Verlag, 1984, pg. 51-67.

(3] L. Cardelli, P. Wegner, On understanding types, data abstraction and polymorphism, Com-
puting Surveys, 17(4), dec. 1995, pg. 471-522.

[4] G. Castagna, G. Ghelli, G. Longo, A semantics for \-early: a calculus with overloading and
early binding, ACM Conference on Lisp and functional languages, 1994, pg. 107- 123.

[5) B. Meyer, Objeci-Oriented Software Construction, Prentice Hall International Series, 1988.

[6] S. Motogna, Formal Specification for Smalltalk through Lambda-Calculus. A Comparative
Study, Studia 3/1993.

(7] S. Motogna, V. Prejmerecan, Various kinds of inheritance, Studia 3/1992, pg. 75-80

BABES-BOLYAl UNIVERSITY, FACULTY OF MATHEMATICS AND INFORMATICS,
RO 3400 CLUJ-NAPOCA, STR. KOGALNICEANU 1, ROMANIA
E-mail address: motogna@cs.ubbcluj.ro

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

