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A bstract. The paper contains some aspects concerning message passing in object oriented languages which are specified through lambda- calculus. This aspect is most often not taken in view while other objcct oriented features are well presented. The semantics used is based on lambda calculus with types. In this paper we prove that the two models for message passing are, in essence, equivalent. 

1. Introduction 

Object oriented programming has cstablished itself as the most modern 
and natural way of software development. That's why recent studies try to for- 
malise the OOP characteristics as better as possible. One of the way in which the 
research is carried on is lambda caleulus, most of the studies following Cardelli 
and Wegner point of view (3. 

The notions with which the OOP deals are objects, classes and methods 
(or messages, as method calls). The main features of OOP are: inheritance (or 
Subtyping), polymorphism and information hiding (followed up from data abstrac- 
tion). Various extensions of typed lambda calculus model these features. 

In my point of view message itself is not "a big deal" . Message passing 
Seems to me a more important aspect, a more suitable notion, because is the only 

Way in which the object can communicate. 
A message syntax can be supposed of the following form: 

message.receiver

OUt restraining its generality, because all object oriented languages has a sim- 

ar torm(if the receiver is not specified it is implicit). 
ne transmission of a message implies the existence of a receiver, which is 

A Ct (or more generally an expression returning an object); when it receives 

8 the system, at run-time, selects among the methods defined for that 
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object the one whose name corresponds to the message nane, if this o 

existence of such a method should be checked at compile-time. 
1s ists. The 

2. Message passing 

There are two ways to understand message pasSing: 

a): the first one is based on Cardelli's point ol view [2] and consists of 

object is considered a record in which methods are its fields and 

labels are the messages of the corresponding methods. This point of 
is know as "objects as records" analogy and can be found in [31. (51 in 

b): the second way is used in the language CIOS and consists of: in the co 

text of typed functional languages, message passing is viewed as a func 
tional application in which the message is the function (identifier of the 

function) and the receiver is its argument [4 

he 
hose 

w 

Con- 

In some sense these two interpretations are similar because records can be 

represented as functions from labels (messages) to values. 

2.1. Objects as records". Let's review some aspects in favour of this choice: 

in Simula (considered an ancestor language in object oriented paradigm) 
objects are records with possibly functiona! components 
a record selection usually requires the selection label to be known at compile- 
time (allowing compile-time checking of the called method). 
In 2 is presented how records can model the basic features of objects, in cluding: inheritance, multiple inheritance, message passing, private instance varl- 

ables and the special variable "self", The method chosen is based on typed lambda 
calculus with records and variants. 

The subtype relation is defined as foliows 2: a record type is a subtype (written ) of a record type if y has all the fields of ', and possibly more, and 
the common fields of 7 and 7 are in the relation. The typing rules are: 

Rule la: if e : 1 and.. . and en: n then (a1 = e1, . . . , an = en) :(i 1, Gn : n) 

Rule 2a: ]< (t a basic type, like int and bool) 
1 Yn Tn (1: 71 , dn +m n+n) < (a1 : ,dn n Rule 3a: if a:7 and 7 then a:7 Rule 4a: lif f: o- 7 and a:o then f(a) is meaningful, and f(a Rule 5a: ] if f:a7 and a:, where o' < o then f(a) is mea and f(a) 
Rule Ga: J if o' a and then o -> o 

ingful, 
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2.2 

distinguish meti 
essage passing a functional application'", We note first that we 

ethods from functions, at least two main aspects being consid- 
must 

ercd 

pe nendiug on the type ol the object). "Thus, messages are identifiers of the verloaded functions and in message passing the first argurment of the over-

orloading (the aswer of two objects to the same message can differ, de- 

laaded function is represenled by the receiver and the one on whose type the selection of the code to be executed is based. Each methord constitutes a branch of the overloaded function referred by the message it is associated to 
late binding: The difference consists in the fact that a function is bind 

to its meaning at compile-time, while the mcaning of a method canbe 
decided only at run-time when the actual type of the receiver is known. 
This feature is called late binding and it's shown up in the combination 
between overloading and subtyping. 
Combining overloading with late binding implies a new distinction be 

tween message passing and ordinary functions. Overloading and late binding 
requires a restriction in the evaluation technique of arguments: while ordinary 
function apPplication can be dealt with by either call-by-value or cal-by-name, 
Overloaded application with late binding can be evaluated only when the run- 
time type of the argument is known, i.e. when the argument is fully evaluated 

closed and in normal form). In view of our analogy "messages as overloaded 

functions" this corresponds to say that message passing acts by call-by-value or, 

more generally, only closed and normal terms responds to nessages. 

An overloaded function is formed by a set of ordinary funciions (lambda- 

abstractions), each one forming a different branch, and the notation is: 

(M&N) 

0t an overloaded function with two branches M and N that will be selected 

aCcording to the type of the argument. 
The subtyping relation is defined as follows: 

if U U and Vi then Ui + Vi <U2- V2 

and 

if Vi e I,3j e J such that U-> V <U"> V" 

then{U V)jeJ {U"+V"Jiel 

The type-checking rules are [4: 

Rule 1b: 1 eV: V denotes :V 
le 2b: 1 it Aa".M :U> V then M: V 

le 3b: 1 if M : U> and N : W then 
MN:V 

Rule 4b: ] ¬: {} 31 
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Rule 5b: ] if M : W {U Vlicn-1) and N: W2 <U. _ 

(M&Ui->Vijicn N) : {U, -> V}i<n 
[Rule 6b: | if M: {U; > Vi}icl and N:U, U; = minies{U;|U< I 

M*N: V; M* N denotes the overloaded application 

+ Vn then 

U} ther 

3. Comparative study 

First of all we must note that the same notation has been used for ture : 

ing and subtyping relations. 
If we study the two scts of typing rules We must find an equivalenec" between them. We will follow the equivalence from the first set of rules (frOIn 9 to the second set of rules (from 2.b), since records can be represented as functions from labels (messages) to values. 

a 

Rule la: e; are values of the correspouding type 7i (for I<i<n). Then if we proceed with labelling in a record we obtain Rule la. In other words the type of a record is obtained from the types of the labels. Since it is a rule specialized for records we can't find a match in the second set of rules. 
Rule 2a We can decompose this rule as follows: 

i n n then 
(41 1.. , a n) (a1: ,a n) (1 1.. . , Gn+m ntn) (41: 1 , n n) 

Comparing this rule with {Rule 5b] which states that overloading a func- tion (with n+1 members) with a new member N which type is a subtype ot U V the result has the type {U; Vi}i<n: We can generalize [Rule 5b] as follows: 
if M: Wi<{U; + Vi}is(n-1) and Ni : W1,.. . , Nm : W2m then (M& (Ui->VijiSn N,&:&N,) {U > Vi}ignti and the correspondence with [Rule 2a is observable. Rule 3a] is in fact the principle of subtyping. The following 3 rules have as basic studying object the typing rules when functions are involved. 

Rule 4a states that the type of the function value can be deducLe from 
the definiton of the function, if it is meaningful. If we describe the funeu 

defi-
nition in the lambda-calculus notation we obtain the operation called aPP* 

pn. 
And [Rule 2b} it is the exact transeription of the [Rule 4aj Hule Sa) is concerned with the case when we consider a subtypeial 
domain ype of the function. [Rule 3b] states a similar situation when au 
is involved.

ule Ga) 1s similar to the definitiol of the subtyping relation ro 
2b. 32 



H TO MODEIL MESSAGE PASSING BY LAMBDA-CALCULUs 4. Conclusions 

/hen necessary, we develope some theory from the most suitable point of ust never forget that this theory has to be consistent. Both ways of elling message passing meet this criterion. 
mode On the other hand, it might be possible that these two thcories have to 

iew. 

1ified. Then the problem of equivalence is asked 
We have argued that in principal the typing rules can be deduced one another. The study takes into account only one direction of this deduction o objects as records Study to "message passing as functional application" d.The reverse sense of the equivalence can be deducted in a similar way. Finally, we will note once again that the main idea of this deduction is the 

fact that records can be represented as functions fron labels (messages) to values. 

study) 
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