
RABES-BOLYA", INFORMATICA, Volume 1, Number 2, October 1996

TUDIA UNIV. "E

O MODEL MESSAGE PASSING BY LAMBDA-CALCULUJs
HOW

S. MOTOGNA

A bstract. The paper contains some aspects concerning message passing in object oriented languages which are specified through lambda- calculus. This aspect is most often not taken in view while other objcct oriented features are well presented. The semantics used is based on lambda calculus with types. In this paper we prove that the two models for message passing are, in essence, equivalent.

1. Introduction

Object oriented programming has cstablished itself as the most modern
and natural way of software development. That's why recent studies try to for-
malise the OOP characteristics as better as possible. One of the way in which the
research is carried on is lambda caleulus, most of the studies following Cardelli
and Wegner point of view (3.

The notions with which the OOP deals are objects, classes and methods
(or messages, as method calls). The main features of OOP are: inheritance (or
Subtyping), polymorphism and information hiding (followed up from data abstrac-
tion). Various extensions of typed lambda calculus model these features.

In my point of view message itself is not "a big deal" . Message passing
Seems to me a more important aspect, a more suitable notion, because is the only

Way in which the object can communicate.
A message syntax can be supposed of the following form:

message.receiver

OUt restraining its generality, because all object oriented languages has a sim-

ar torm(if the receiver is not specified it is implicit).
ne transmission of a message implies the existence of a receiver, which is

A Ct (or more generally an expression returning an object); when it receives

8 the system, at run-time, selects among the methods defined for that

RCategories and Descripto rs. D.1.5 [Programming Techniques] Object oriented
1991
Mathematics Subject Classification. 68NO5, 68Q55.

Calcu ng, F.4.1 {Mathematical logic and formal languages Mathematical logic, Lambda-

Calculus and related systems.

29

S. MOTOGNA

object the one whose name corresponds to the message nane, if this o

existence of such a method should be checked at compile-time.
1s ists. The

2. Message passing

There are two ways to understand message pasSing:

a): the first one is based on Cardelli's point ol view [2] and consists of

object is considered a record in which methods are its fields and

labels are the messages of the corresponding methods. This point of
is know as "objects as records" analogy and can be found in [31. (51 in

b): the second way is used in the language CIOS and consists of: in the co

text of typed functional languages, message passing is viewed as a func
tional application in which the message is the function (identifier of the

function) and the receiver is its argument [4

he
hose

w

Con-

In some sense these two interpretations are similar because records can be

represented as functions from labels (messages) to values.

2.1. Objects as records". Let's review some aspects in favour of this choice:

in Simula (considered an ancestor language in object oriented paradigm)
objects are records with possibly functiona! components
a record selection usually requires the selection label to be known at compile-
time (allowing compile-time checking of the called method).
In 2 is presented how records can model the basic features of objects, in cluding: inheritance, multiple inheritance, message passing, private instance varl-

ables and the special variable "self", The method chosen is based on typed lambda
calculus with records and variants.

The subtype relation is defined as foliows 2: a record type is a subtype (written) of a record type if y has all the fields of ', and possibly more, and
the common fields of 7 and 7 are in the relation. The typing rules are:

Rule la: if e : 1 and.. . and en: n then (a1 = e1, . . . , an = en) :(i 1, Gn : n)

Rule 2a:]< (t a basic type, like int and bool)
1 Yn Tn (1: 71 , dn +m n+n) < (a1 : ,dn n Rule 3a: if a:7 and 7 then a:7 Rule 4a: lif f: o- 7 and a:o then f(a) is meaningful, and f(a Rule 5a:] if f:a7 and a:, where o' < o then f(a) is mea and f(a)
Rule Ga: J if o' a and then o -> o

ingful,

30

uOW TO MODEL MESSAGE PASSING BY LAMBDA-CALCULUS
2.2

distinguish meti
essage passing a functional application'", We note first that we

ethods from functions, at least two main aspects being consid-
must

ercd

pe nendiug on the type ol the object). "Thus, messages are identifiers of the verloaded functions and in message passing the first argurment of the over-

orloading (the aswer of two objects to the same message can differ, de-

laaded function is represenled by the receiver and the one on whose type the selection of the code to be executed is based. Each methord constitutes a branch of the overloaded function referred by the message it is associated to
late binding: The difference consists in the fact that a function is bind

to its meaning at compile-time, while the mcaning of a method canbe
decided only at run-time when the actual type of the receiver is known.
This feature is called late binding and it's shown up in the combination
between overloading and subtyping.
Combining overloading with late binding implies a new distinction be

tween message passing and ordinary functions. Overloading and late binding
requires a restriction in the evaluation technique of arguments: while ordinary
function apPplication can be dealt with by either call-by-value or cal-by-name,
Overloaded application with late binding can be evaluated only when the run-
time type of the argument is known, i.e. when the argument is fully evaluated

closed and in normal form). In view of our analogy "messages as overloaded

functions" this corresponds to say that message passing acts by call-by-value or,

more generally, only closed and normal terms responds to nessages.

An overloaded function is formed by a set of ordinary funciions (lambda-

abstractions), each one forming a different branch, and the notation is:

(M&N)

0t an overloaded function with two branches M and N that will be selected

aCcording to the type of the argument.
The subtyping relation is defined as follows:

if U U and Vi then Ui + Vi <U2- V2

and

if Vi e I,3j e J such that U-> V <U"> V"

then{U V)jeJ {U"+V"Jiel

The type-checking rules are [4:

Rule 1b: 1 eV: V denotes :V
le 2b: 1 it Aa".M :U> V then M: V

le 3b: 1 if M : U> and N : W then
MN:V

Rule 4b:] ¬: {} 31

S. MOTOGNA

Rule 5b:] if M : W {U Vlicn-1) and N: W2 <U. _

(M&Ui->Vijicn N) : {U, -> V}i<n
[Rule 6b: | if M: {U; > Vi}icl and N:U, U; = minies{U;|U< I

M*N: V; M* N denotes the overloaded application

+ Vn then

U} ther

3. Comparative study

First of all we must note that the same notation has been used for ture :

ing and subtyping relations.
If we study the two scts of typing rules We must find an equivalenec" between them. We will follow the equivalence from the first set of rules (frOIn 9 to the second set of rules (from 2.b), since records can be represented as functions from labels (messages) to values.

a

Rule la: e; are values of the correspouding type 7i (for I<i<n). Then if we proceed with labelling in a record we obtain Rule la. In other words the type of a record is obtained from the types of the labels. Since it is a rule specialized for records we can't find a match in the second set of rules.
Rule 2a We can decompose this rule as follows:

i n n then
(41 1.. , a n) (a1: ,a n) (1 1.. . , Gn+m ntn) (41: 1 , n n)

Comparing this rule with {Rule 5b] which states that overloading a func- tion (with n+1 members) with a new member N which type is a subtype ot U V the result has the type {U; Vi}i<n: We can generalize [Rule 5b] as follows:
if M: Wi<{U; + Vi}is(n-1) and Ni : W1,.. . , Nm : W2m then (M& (Ui->VijiSn N,&:&N,) {U > Vi}ignti and the correspondence with [Rule 2a is observable. Rule 3a] is in fact the principle of subtyping. The following 3 rules have as basic studying object the typing rules when functions are involved.

Rule 4a states that the type of the function value can be deducLe from
the definiton of the function, if it is meaningful. If we describe the funeu

defi-
nition in the lambda-calculus notation we obtain the operation called aPP*

pn.
And [Rule 2b} it is the exact transeription of the [Rule 4aj Hule Sa) is concerned with the case when we consider a subtypeial
domain ype of the function. [Rule 3b] states a similar situation when au
is involved.

ule Ga) 1s similar to the definitiol of the subtyping relation ro
2b. 32

H TO MODEIL MESSAGE PASSING BY LAMBDA-CALCULUs 4. Conclusions

/hen necessary, we develope some theory from the most suitable point of ust never forget that this theory has to be consistent. Both ways of elling message passing meet this criterion.
mode On the other hand, it might be possible that these two thcories have to

iew.

1ified. Then the problem of equivalence is asked
We have argued that in principal the typing rules can be deduced one another. The study takes into account only one direction of this deduction o objects as records Study to "message passing as functional application" d.The reverse sense of the equivalence can be deducted in a similar way. Finally, we will note once again that the main idea of this deduction is the

fact that records can be represented as functions fron labels (messages) to values.

study)

References

1 K.B. Bruce, G. Longo, A modest model of reco rds, inheritance and bounded quantification,

Information and Computation, 87(1/2), 1990, PE. 195-240.

2 L. Cardeli, A semantics of multipie inheritance, Semantics of Data Types. Lectures Notes
in Computer Science, 173, Springer Verlag, 1984, pg. 51-67.

3L. Cardelli, P. Wegner, On understanding types, data abstraction and polymorphism, Com

puting Surveys, 17(4), dec. 1995, pg. 471-522.
4 G. Castagna, G. Ghelli, G. Longo, A semantics for A-early: a calculus with overloading and

early binding, ACM Conference on Lisp and functional languages, 1994, pg. 107- 123.

5 B. Meyer, Objeci-Oriented Sofiware Construction, Prentice Hall International Series, 1988.
6) S. Motogna, Formal Specification for Small aik through Lambda- Caiculus. A Comparative

Study, Studia 3/1993.
S. Motogna, V. Prejmerean, Various kinds of inheritance, Studia 3/1992, pg. 75-80

BABES-BoLYAI UNIVERSITY, FaCULTY OF MATHEMATIcs AND INFORMATIcs,

RO 3400 CLUJ-NA POCA, STR. KoG�LNICEANU 1, RoMANIA

B-mail address: motogna@cs. ubbcluj. ro

33

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

