‘(A UNIV. “BABES- BOLYA["
sTUDl Al” INFORM
b 4 ATICA VYO

» Volume 1,

J
Number 2, October 1996

SIMPLIFICATION OF MAGIC-SET RUjps gy I

D. TATAR AND V. VARGA

Abstract. The magic sets methodis a bottom-u
that solvtes a query with particular adornments
program is transformed to an equivalent program

b query evaluation technique
to .tlm goal predicate. The
B s Ffr : 1 using its adorned rules and
y formation passing. The transformed program has a bigger set of

be) S€)

rules . The logic grammar as i
C I as introd i wari F . .
rules. duced in (6] can be used to simplify these

1. Logic grammars

In [6] we defined a new concept of “Logic grammar” (LG) and we showed
the soundness and completeness of them. In this section we shortly recall the basic
concepts that are used in definition of “Logic grammar”. Section 2 will present
the magic-set method of optimization in Datalog programs [5] and in scction 3 we
will use LG’s for simplification of magic-set rules. The language considered here
is essentially that of the first-order predicate logic without function symbols. Let

e Pr be a set of predicates,
¢ (' be a set of constants,
e 1V be a set of variables.

An atom over C' UV is of the form
pluy, Jun),n >0,

Where p € Pr with arrity n, and each uj is an element of" CuV. If the argllmel'lts
u; are not interesting in a particular context, then we mll} denote an atom simply
by p. Let A be the set of atoms OVer C U l\ and, il P C Pr, let Ap be the
st of atoms with predicate symbols from P'. In some ?ecent- papers [1], 71[2], the
set of predicates is considered as divided into two disjoint sets: the set bDbB 9f
€Xtensional predicates (or extension) which represent basic
B —
Received by the editors: Jant
1991 Mathematics Subject €'

~ 1991 CR Categories and Descriptors.
Ming; H.2.3 [Database Managr'mc:m’]I Language

al database predicates

wary 27, 1997.
assificatton. 68N17.
D.1.6 [Program

s - data descr

]: Logic Program-

ming Techniques
languages.

iption languages, query

21

D. TATAR AND V. VARGA

intensional databases predicates, representip fac
“facts”, and the set /DB of intensio g facte

. ia the logic program [11]. Particularly, the get DB
m the basic facts via the logic program . : .E‘
dedf:i]fzocmt::i set, (as, for simplicity, in most of the following demonstrat]ons)
can empty set (as,

! 5 A SC rn clauses ((defing .
Definition 1.1. A logic program P s a sequence of Horn cle (definite Claus(;s)’
that s, clauses of the form:
p iy qny

where p and ¢ gn are atomic formulas in first-order logic, the comma the
Nere p ! IR . . . L . - . i
logic operation “and”, and the sign « s “if " or reverse of the logical implication

We refer to the left (p) and right-hand side (¢;,...,¢5) of a clause as jis
head and body. A clause 1s logically interpreted as the universal closure of 1
implication g1 A -+ A g, = p. If a clause has no right-hand side we will call jt a
fact or a unit clause. Let us observe that this definition considers only the class of
positive logic programs (all atoms in all clauses are positive). From the properties
of IDB and EDB predicates it follows that a predicate from the set EDB cannot

occur in the head of clauses, but a predicate from the set /DB can oceur in the
set of facts.

Definition 1.2. A goal G consists of a congunction of atoms, and is denoted by:

Ll A6 DACICINY P

The following definition considers the fact that a goal G is treated by the
resolution mechanism as a word rewritten by some weil-defined rules. The last
form of this rewriting tells us about some properties of the goal G.

Definition 1.3. The logical grammar G L associated with q logic program P and
the goal G is the system:

GL=(Iy, I, Xy, F)

where:

* IN=Aipp U {Xo} is the set of nonterminals,
* It =ApppuUir}u {False, Truc) s
the set of termanals,
* Xy is the goal (e
o I 15 a finite sct of production rules, of the form:

P=q1qm,m > 1,
where p e 1D R and
PE=qy. .. " s . TRy :
- Iy s aclause in the program P.
P = A\

where “p.7 45 untl clayg
ause an the Program |’

Y

R R R SRR

SIMPLIFICATION OF MAGIc.gp RULES Ry |,
G 0G

We assume, in the following, that
and the most general unifier o —
programming. [] .2]

For a logic grammar GG J, we define the

IC GRAMMARS
substity tions,

composition of substitu-
mgu(g, h) of

{ons; atoms g and J
t

, are defined as
JogiC

n o
FeWnting relation "= as follows:

pefinition 1.4 If € AT and Q € A%, fhey,

R =C Q

TG

f there exists an atom h € In | and q production rule i [
if t .

9 hnl~--h1u
such that:
R=RihRy o = mgu(/h, g)
and

Q= 0(R1)o(hy) - o(hm)o(Rs)

(Here the variables of the production rule are renamed to new variables, so that
all the variables in the rule do not appear in R).

Let = * denote the reflexive and transitive closure of the relation =. st ir}
formal language, modulo the peculiarity of the above relation =, an “derivation
s the sequence:

G =0 Gy - =001 G,.

We denote by G; =¢ G, the fact that 8 is the composition of all substitutions
m every direct derivation.

Definition 1.5. The language generated by a logical grammar GL = (Iv, IT‘, Xg“ F),
1s LGL) = {(R,)| Xo =0 xR Re A}, 0="00 0, k 1s the length of derivation
for R, and 6; is the substitution in the step 1} U {Q}

We have some possibilities for the pair (&,0) _
* if X (or the goal G) is a ground formula, (not containing rthe \'al‘la;lelb‘);
then the substitution @ is the empty substitution, and f1s 1{' ue :)ll i \ZtN;t
dppending on the fact that G is a formula deducible or not from the set
clauses of P (by refutation); _ L airs (R. §)
*if X, Contains(v};rial)les and the computation temmmtabb, in Lijﬁj E}:lllr;u(ls -
' "1 ' f pairs 1s the number of solutions.
we h * and the number o ' PRI M. the
f*'l)l;lve P Et;}IT ’R ~). Let us denote J{m the last mtu?triolll?.\ Ln]\. o
W _— > — . A = : X » Lhe answe
€mpty]¢’, ILIl'lk usually in logic ol resolution, and let ¢ be the
g clause, like usually
Substitution. o for the g
if the program [’ is not terminating for the g
where Q¢ TDB U EAD

oal (i, then L(GL) = {Q},

23

D. TATAR AND V. VARGA

9. Magic-set transformation

A general deductive database is defined as awpa,n' ((E)tlﬁ)L‘lefre D is a fingy,

lauses and £ is a first order language. It is assumed that £ has at least, ty,

set of ¢ esenting a constant symbol and another one representing a preq.

-SyTbOI.S;lcl))]:]\ refrdcﬁm'te (resp. normal) database is a deductive databage (D,ﬁ).

ii;a].;esyls Con't,aAinS only definite (resp. norr'nal) C}ausc§. ‘A ,"P‘elaftonal database 5,
deductive database (D,£), where D contains only deﬁmte facts.

Datalog is a logic programming languagg designed for use as a database
language [2]. It is nonprocedural, set-oriented with no order sensivity no spe
predicates, and no function symbols. - ' ‘

Consider a Datalog program P. As we mentioned in section 1, an IDB
predicate is a predicate that appears in the head of some rule; if a predicate does
not appear i any head, then it is an EDB predicate. The EDB (extensiona
database) is a set of relations for the EDB predicates; each relation is a set of
tuples (or ground facts). The IDB (intensional database) is a set of relations for
the IDB predicates. The EDD is the input for program P, and the /DB is the
output and it can be computed by applying the rules of P to the EDB.

Because Datalog programs operate on potentially large databases, efficient
computation of them is very important. The optimization methods are classified
according to various criteria like: formalism, the search strateqy, the objective of
the optimization. There are two altenative formalisms: algebric and logic. In the
case of logic formalism the cvaluation of a Datalog goal requires building a proof
tree. This tree can be constructed in two different ways: bottom-up, starting from
the existing facts and inferring new facts, thus going towards the conclusions, or
top-down trying to verify the premises which are needed in order for the conclusion
to hold. From the objective of optimization method point of view some methods
perform program transformation, namely, they transform a program into another
program which is written in the same formalism, but whicl, yields a more efficient
computation when one applics an evaluation method (o it; we refer to these as
rewriting methods. These methods contrast witl the pure cvaluation methods,

which propose effective evaluation strategies, where the optimization is performed
during the evaluation itself.

The magic sets method is

solves & query with particular adornments to the goal predicate. The program
is transfqrmed to an equivalent program using its adorned rules and sideways
mformation passing. The transformed program models the constant propagatlon

strategy of top-down methods through its magic subgoals added to the body of
rules in the original program.

Let P be a Datalog progr
goal itself as defined by

Cla)

a bottom-up query evaluation technique which

am, and consider a goal on P. We can view the

a rule and we add the goal rule

to the program.

24

SIMPLIFICATION OF MAGIC-SET QU kg By LOGIC GRAMMAR
LG / S

eﬁniti‘mg'l' A;’l a(?orm‘rmmr[vnf an alom A 45 an assignment either bound or
] (abbremated tob o1 . respectively) to each argument of A. An adornment of an
o with 1 argumen(s s denoted as a n-tuple. An atom p(1

am]“ < By RN ¢ 79 > 18 dﬂ’l()t'f’d as))“‘r |“n(t|, Ly

fm((:”;{ ;s either b or {.

H

oy ty) with adorn-
chy ’n) where cach ai 18 assigned to

D"ﬁ“ition 2.2. Gwen an adornment of the head of rule r
ybgoal of T 1s said to be distinguished if cither:
‘ .
1. It 1s a constant, or
9. It 1s a variable occuring in the head of v and the
is b, or

3. It appers in a EDB subgoal of v which has « distinguished arqument.

an arqument of «

corresponding adornment

From this definition, variables in a EDB predicate occurrence are either
all distinguished or all not distinguished. A EDB predicate occurrence with all
variables distinguished is a distinguished predicate occurrence.

For each rule rof P, and for each adornment of the head predicate of r, we
generate an adorned rule as follows. We consider all the distinguished arguments
to be bound; this will generate an adornment for all the IDB predicates that are
in the rule. The rule obtained by replacing all these predicates with their adorned
version is an adorned rule.

We give distinct number to different occurences of the same predicate p
m the right-hand side of a rule. For predicate p, we denote its -th occurrence by
"p0’. If there is only one occurrence of a certain predicate in the right-hand side
of a rule, we may omit the occurrence number in that rule.

Definition 2.3. We say that an adorned rule 1s reachable for the goal iff either
it s the adorned rule corresponding to the goal rule, with all the LHS predicate
Urguments free, or its head predicate appears, with the same adornment, in the

RHS of a reachable rule.
ALGORITHM MAGIC SETS

Iput:
Aset of adorned rules P4, including the goal rule, all reachable from the goal.
Outnns ’

put:

W set of rules P49 equivalent to PA with respect to the goal.
M‘ft}l()d:

Pmagic A
= P4

For each adorned rule », and For each occurcnce of an
. . . ' o
intensional predicate pin the RIS of » Do
Ii(!gill
Generate one magic rule in the follownig way. the RILS:
a) Delete all other occurrences of 1DB predicates in the [0S

N 2]
. : FTENCEe W corpt
b) Replace the name of pin {his occurrence with mage i

[
(&/]

26

D. TATAR AND V. VARGA

where a is the adornment of p in that occurrence and i is the

occurrence number; |
c) Delete all nondistinguished variables of this occurrence of p,

thus possibly obtaining a predicate with fewer arguments;
d) Delete all nondistinguished EDB predicates i r;

) Replace the name of the head predicate p with magic_p ® where

/

e
a is the adornment of p ; /

f) Delete all nondistinguished variables of p;

¢) Exchange the places of the head magic predicate and the body

magic predicate;
Add this rule to P9,
End

For each adorned rule r in the original program Do
Begin
Generate a medified rule in the following way:
For each occurence of an intensional predicate p in the RIS of r Do
Begin
add to the RHS the predicate magic_r_p®_i1(X) where a is the
adornment of the occurence of p, ¢ is the occurence number,
X 1s the list of distinguished argniments in this occurrence.
If p is not the head predicate
Then the magic predicate must be nserted just before that
occurrence;
Else the magic predicate is o be inserted at the beginning
of the rule body, before all other literals.
End
Replace r with its modified version in P"49i¢,
End

For each IDB predicate p and For each adornment Do
Begin
Generate a complementary rule as follows:
For each adorned rule r, and For each occurrence of p
in the RHS of » Do
Begin
add the rule:
magic_p*(X): - m.agic-r_;')“_((,\’)
where ¢t is the
and X is the]
End

.C()nslqél-e(i occurrence of p, ais its adornment
15t of its distinguished arguments.

SIMPLIFICATION OF MAG]C.¢
3 (__\- ATa s e

. SET RULES BY LoGic gpay ,

Add this rule to pmagic IMARS

End

Endmetho d

3 ADPI“‘“MOn of logic grammars formalisme

Let us illustrate the simplification of the mag
d c

‘ 'I('--ﬂ(\i ¢] ‘o .
an example from [2]. algorithin’s output by

gxample 3.1. The program P is:
Crys anc(“(, Y) . —p(I.T‘()(, Y).
o ane(X,Y) : —anc(X, Z), par(Z,Y).
Let us consider the goal ?-anc(X,a) which s added to the program P as
the rule ro. |

The reachable adorned system P4 is:
: Ro: ¢/ (X) : —anc/®(X, a).
. Ry anc’®(X,Y) : —par(X,Y).
. Ry: anc®(X,Y) : —anc/®(X, Z),par(Z,Y).
As result of first DO loop, the following rules are generated:
: from Rg :magic_Rg-anc’®(a).
. from R, :magic_Ry_anc/®(Z) : —magic_anc’?(Z), par(Z,Y).
As result of second DO loop, the following rules are generated:
: from Ro : ¢/ . —magic_Ro-anc/®(a),anc/®(X, a)
: from Ry : anc/®(X,Y): —magic-Rg_ancfb(Z),a.ncfb(X,Z),par(Z,Y)
As result of third DO loop, the following rules are generated:
—magic_Rg_anc’*(X).
—magic-Ry_anc!®(X).
program is obtained:

: from Ry :magic_ancfb(-x) f
: from Ry :magic-anc’’(X) :
Finally, the following equivalent

:magic_Ro-anc® (a).
:magic_Ry-anc!’(Z) P)
T : 15(q). anc’®(X, a

g/ —magic_Ro-anc (a),(m H) o, -
tanc/®(X,Y) —may'ic_Rz_a.ncfb(Z)'a"'c'fb("\\ Z),par(Z,Y)
-mayic_arl(.fb(X) : -—-7n(1g'iC—R0,(lan:)(_Xv).
6. ‘magic_anc/®(X) : —magic.Rg-anc’’ (X)-

; —mayic_ancfb(Z),par(Z, Y).

S A oo 0

The logical grammar (1, associated with this Jogic progratil P and the
80l G is the system: o, 1
GL = (In, e, Xoo 1)

o . .] s goal &,
[p 1s as I section 1, Xo 18 the goal &

cates,

where [y is the set of predi |
s, of the tormn:

I . ,
5 the finjte set of production rule

L magic_Ig_anc!’ = A ,

~1

D. TATAR AND V. VARGA

magic-Ry_anc’® — m.agic_;lgch”, par
g/ — magic_Ro_anc/® anc: "
ancf® = magic_Ro _anc!® anc: K par
777ag1f(‘._a.nc-fb — magic_Ry J“'ij;
6. magic.anc/® = magic_ Ry _ane/ |
The last two rules (5 and 6) are of. type ”renz}mltlg’/”rules. M‘Jrewer
in the clauses 5 and 6, the two pairs of predicates magic_ane ’,7’7,,,,,_,117(:_}%
and 7naqic_ancﬂ"mang(_]f,g_a.m'-”’ ha..vo t,he. same arguments: X hat e,
that th(; “rewriting” relation defined in SOCL]();] 1 l'ms the property: vyp and Ve,
magic_anc!® =0 xG,, ifl magic_Ry_anc'® ? T(,”_ Analogously, vy and Vo
magic_anc’® =¢ xG,, iff magic.Ry_anc/® =¢ (3, .
) As in formal grammars [7], [4], this grammar can be transformed py, elim.
ination of useless predicaies magic_Ry-anc’® and n1(lg-icf.Rg_(trchb, The Obfr'rtined
grammar (L’ has the same generative power : L(GL) = L(GL). Thus, 1,
semantics of logic programs is the same.
The logic grammar after the elimination of ” ren aming” rules is the fo]]

U!ANN

anelh

ow-
ing:
L.magic_anef® —).
¢ 2.magic_anc’® magic_anc’® par
: 3.¢/ — anef?
: 4. aneft o par

: 5.0 ancf® o magic_anc’® anc’® par
The corresponding logic program is identical with the program in [2].
References

[1] K.R. Apt, M.H. van Emden Contribution to the theory
ACM, vol.29, 1982, pp. 841 862,

[2] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Spriger- Verlag, 1990.

[3] P. Deransart, J. Maluszynski A grammatical view of logic programming MIT Press, 1993.

(4] C.J. Hogger, Derivation of Logic Programs, Journal of ACM,

(5]

5] J. Minker, Perspective 1n deductive databascs, J. of Logic Pl'ogrmnming, vol.5, 1988, pp.
33-61.

of logic programming Journal of

(6] D. Tatar, Logic grammars as
nr.3.

(7] J.E. Hopcroft, J.D. Ullman,
Springer Verlag, 1979.

Jormal languages, Studia Universitas “Babes-Bolyai”, 1994,

Introduction to automata theory, languages and computation,

BABES-BoLyar UNIVI')RSJ'I'Y, I
RO 3400 CLUJ—NAPOCA, STR.,

L-mail address- {dt

ACULTY oOF MATHEMATICS AND INFORMATICS,
I\(')(;ALN](‘-I",ANU 1, Romania

atar,ivargalecs. ubbcluj.ro

2K

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

