
IV "BABES-BLYAT", INFORMATICA, Volume I, Number 2, October 1996

STUDIA UNIV

SIMPLIFICATION OF MAGIC-SET RULES BY LOGIC
GRAMMARS

D. T�TAR AND V. VARGA

Abstract. The magic scts method is a bottom-up query evaluation technique that solves a query with particular adornments to the goal predicate. The
program is transtormed to an equivalent program using its adorned rules and

sideways information passing. The transformed progran has a bigger set of
rules .The logic grammar as introduced in [6 can be used to simplify these

rules.

. Logic grammars

In 6 we defined a new concept of "Logic grammar" (LG) and we showed
the soundness and completeness of them. In this section we shortly recall the basic
concepts that are used in definition of "Logic grammar. Section 2 will present

the magic-set method of optimization in Datalog programs [5] and in section 3 we

will use LG's for simplification of magic-set rules. The language considered here

IS essentially that of the first-order predicate logic without function symbols. Let

Pr be a set of predicates,
C be a set of constants,

V be a set of variables.
All atom over C UV is of the form

P{U1,, un), n 0,

Where p E Pr with arrity n, and each uj is an element of C'UV. If the arguments

are not interesting in a particular context, then we will denote an atom simply

P. Let A be tlhe set of atoms over CU V, and, if P C Pr, let Ap be the

t of atoms with predicate symbols from P. In sone recent papers [1], [2), the

O1 predicates is considered as divided into two disjoint sets: the set EDB of

Aensional predicates (or extensional database predicates) which represent basic

Keceived by the editors: January 27, 1997.

991 Mathematics Subject Ciassificaiion. 68N17.

min CR Categ ories and Descrip tors. D.1.6 [Programming
Techniques: Logic Program

2.3 [Database Managementj: Languages
data description languages, query languages.

1

D. T�TAR AND V. VARGA

facts", and the set IDB of intensional databases predicates, representing f.
deduced from the basic facts via the logic program |11). Particularly, the set Dn
can be the empty set (as, for simplicity, in most of the following demonstratinm.

Definition 1.1. A logic program P is a scqucnce of llorn clauses ((definite clasun.

that is, clauses of the form:

pt-1 In
where p and q1, ., gn are atomic formulas n frst-07der logic, the comma is the

logic operation "and", and the sign t- 18 "f" or reverse oj the logical implication

We refer to the left (p) and right-hand side (91, .., Gn) of a clause as its
head and body. A clause is logically interpreted as the universal closure of the

implication g1 A*A gnp. If a clause has no right-hand side we will call it a
fact or a unit clause. Let us observe that this definition considers only the class of
positive logic programs (all atoms in all clauses are positive). From the properties
of IDB and EDB predicates it follows that a predicate from the set EDB cannot
occur in the head of clauses, but a predicate from the set iDB can occur in the
set of facts.

Definition 1.2. A goal G consists of a conjunction of atoms, and is denoted by:
T1, * * , T't.

The following definition considers the fact that a goal G is treated by the resolution mechanism as a word rewritten by some weil-defined rules. The last form of this rewriting tells us about some properties of the goal G.
Definition 1.3. The logical grammar GL associated with a logic program P and the goal G is the system:

CL= (lN, Ir, Xo, F)
where:

IN = ADB U{Xo} is the set of nonterminals, Ir = AEDE U {A}U{False, True} is
the set of terminals,

Xo is the goal G,
F is a finite sct of pruduclion rules, of the form:

P 1* qm, n 2 1,
where p E IDB and "p -41, ..., qn " is a clause in the program P. Or

where "p." 1s a unil clause n the program P. 22

GIMPLIFICATION OF MAGIC-SET RULES BY LOGIC GRAMMARS We e a5Sume, in the following, that substitutions, composition of substitu- a the most general unifiero= mgu(g, h) of atoms g and h are defined as
tions,

and the mos

rogramming. {1,2].
For a logic gramn

in logic
nmar GL we define the rewriting relation "=" as follows:

nohnition 1.4. 1f R E AT and QE A', then

R Q

if there erists an atom h E. IN, and a production rule in F:

9 ..h,n
such that:

R= R,hR2, a = mgu(h, g)
and

Q= o(R)a (h1).. -o(hm)o(R:)
(Here the variables of the production rule are renamed to new variables, so that

all the variables in the rule do not appear in R).

Let* denote the reflexive and transitive closure of the relation . As in
formal language, modulo the peculiarity of the above relation, an "derivation"
is the sequence:

G G2 - G
We denote by G1 =" *Gn the fact that 9 is the composition of all substitutions
In every direct derivation.

Definition 1.5. The language generated by a logical grammar GL = {Iy, Ir, Ko, F),

15 L[GL) = {(R, 0)|X *R, RE Aj,0 = 01. Gk, k is the length of derivation
Jor R, and 0; is the substitution in the step i} U {S2}

We have some possibilities for the pair (R, 0)

1 Ao (or the goal G) is a ground formula, (not containing the variables)

hen the substitution 0 is the empty substitution, and Ris True or False,

epending on the fact that G is a formula deducible or not from the set of

clauses of P (by refutation);
Ao contains variables, and the computation terminates, in the pairs (R, 8)

ave RE l7, and the number of pairs is the number of solutions. If

B= o, then RA. Let us denote R in the last situation by , the
EDE

pty clause, like usually in logic of resolution, and let 0 be the answer

substitution.
he progrann P is not terminating for the goal G, then L{GL) = {S2},

where 2 4 IDBU EAB
23

D. T�TAR AND V. VARGA

2. Magic-set transformation

A general deductive database is defined as a pair (D,C), where D is a f. ite
set of clauses and C is a first order language. It is assumed that C has at leas
symbols, one representing a constant symbol and another one representing a Dted.

icate symbol. A definite (resp. normal) database is a deductive database (D,c

where D contains only definite (resp. normal) clauscs. A relational database is a
deductive database (D,C), where D contains only definite facts.

two

D,C),

Datalog is a logic programming language designed for use as a database
language [2. It is nonprocedural, set-oriented with no order sensivity, no special

predicates, and no function symbols.
Consider a Datalog program P. As we mentioned in section l, an 1DB

predicate is a predicate thal appears in the head of some rule; if a predicate does

not appear in any head, then it is an EDB predicate. The EDB (ertensional
database) is a set of relations for the EDB predicates; each relation is a set of
tuples (or ground facts). The IDB (intensional database) is a set of relations for
the 1DB predicates. The EDB is the input for program P, and the lDB is the
output and it can be computed by applying the rules of P to the EDB.

Because Datalog programs operate on potentially large databases, efficient
computation of them is very important. The optimization methods are classified
according to various criteria like: formalism, the search strategy, the objective of the optinmization. There are two altenative formalisms: algebric and logic. In the
case of logic formalism the evaluation of a Datalog goal requires building a proof tree. This tree can be constructed in two different ways: bottom-up, starting from
the existing facts and inferring new facts, thus going towards the conclusions, or

top-down trying to verify the premises which are needed in order for the conclusion to hold. From the objective of optimization method point of view some methods
perform program transformation, namely, they transform a program into another
program which is written in the same formalism, but which yields a more efficient
computation when one applies an evaluation method Lo it; we refer to these as
rewriting methods. These nethods contrast with the pure evaluation methods, which propose effective evaluation strategies, where the optimization is performed during the evaluation itself.

The magic sets method is a bottom-up query evaluation technique which solves a query with particular adornments io the goal predicate. The progran 15 transformed to an equivalent program using its adorned rules and sideways nformation passing. The transformed prograin models the constant propagau strategy of top-down methods through its magic subgoals added to the body O rules in the original program.
Let P be a Datalog prograrm, and consider a goal on P. We can view goal itself as defined by a rule and we add the goal rule to the program.

he

24

SIMPLIFICATION OF MAGIC-SET RULES BY LOGIC GRAMMARSs
efinition 2.1. . on 2.1. An adornment of an alom A is an assignmenl cilher bound or

abbreviated to b o

with n aguments

b orf respectively) to each argument of A. An adornment of an is denoted as a n-tuple. An atom p(t1,.., tn) wilh adorn- anis denoted as p"ldn (t1,.., ln) where each a; is assigned to

atom

cnts < a1, ..., an > is
men.

t, and is
cither b or f.

ion 2.2. Given an adornment of the head of rule r, an argument of a

efinition 2.2.

subye

1. It 1s a constant, or

9 lt is a variable occuring in the head ofr and the corresponding adornmcnt

bgoal of r is satd to be distinguished if either:

is b, or

3. It appers an a EDB subgoal of r which has a dislinguished argument.

From this definition, variables in a EDB predicate occurrence are either
all distinguished or all not distinguished. A EDB predicate occurrence with ali
variables distinguished is a distinguished predicate occurrence.

For each rule rof P, and for each adornment of the head predicate of r, we
generate an adorned rule as follows. We consider all the distinguished arguments
to be bound; this will generate an adornment for all the IDB predicates that are
in the rule. The rule obtained by replacing all these predicates with their adorned
version is an adorned rule.

We give distinct number to different occurences of the same predicate p

in the right-hand side of a rule. For predicate p, we denote its i-th occurrence by

p. f there is only one occurrence of a certain predicate in the right-hand side
ol a rule, we may omit the occurrence number in that rule.

Definition 2.3. We say that an adorned rule is reachable for the goal iff either
t is the adorned rule corresponding to the goal rule, with all the LHS predicate

anguments free, or its head predicate appears, uith the same adornment, in the
RHS of a reachable rule.

ALGORITHM MAGIC SETS

Input:
set of adorned rules pA, including the goal rule, all reachable from the goal.

Output: A W Set of rules Ipmagic cquivalent to Pa with respect to the goal.

Method:
new

pmagie PA

*O each adorned rulc r, and For each occurence of an

ntensional predicate p in the RHS of r Do

Begin
Generate one naqic rule in the following way:

) Delete all other occurrences of 1DB predicates in the lRIS;

D)Keplace the nane of p in this occurrence with nagic_r-p"-

25

D. T�TAR AND V. VARGA

where a is the adornment of p in that occurrence and i is the

Occurrence number;

c) Delete all nondistinguished variables of this OCcurrence of p,

thus possibly obtaining a predicate with fewer arguments

d) Delete all nondistinguished EDB predicates in r;

e) Replace the name of the head predicate p with magicp where

a is the adornment of p;

f) Delete all nondistinguished variables of p;
e) Exchange the places of the head magic predicate and the body

magic predicate;
Add this rule to pmagic

End

For each adorned rule r in the original program Do

Begin
Generate a modified rule in the following way:

For each occurence of an intensional predicate p in the RHS of r Do

Begin
add to the RHS the predicate magic-r-p"_i(X} where a is the

adornment of the occurence of p, i is the occurence number,
X is the list of distinguished arguments in this occurrence.

If p is not the head predicate
Then the magic predicate must be inserted just before that

Occurrence;

Else the magic predicate is to be inserted at the beginning

of the rule body, before al! other literals.
End

Replace r with its modified version in Pp"agie,
End

For each DB predicate p and For each adornment Do

Begin
Generate a complementary rule as follows:

For each adorned rule r, and For each occurrence of p
in the RHS of r Do

Begin
add the rule:

magic-p" (X): - magic.rp"-i(X)
where i is the considered occurrence of p, a is its adornment and X is the list of its distinguished arguments. End

26

CIMPLIFICATION OF MAGIC-SET RULES BY LOGIC GRA MMARS
Add this rule to Pmagic

End

Endmethod

Application of logic grammars formalisme Applicat

Let us illustrate the simplilication of the magic-set algorithin's output by
an

example from [2.

Example 3.1, The program P is:

:r1: anc(X, Y): -par(X, Y).
:r2: anc(X, Y): -anc(X, 2), par (Z, Y).

Let us consider the goal ?-anc(X, a) which is added to the program P as

the rule ro.

The reachable adorned system PA is

Ro: g(X):-anc'°(X, a).
:R1: anc°(X, Y):-par(X, Y).

Ra: anc/b(X, Y): -anc(X, 2), par (2, Y).
As result of first DO loop, the following rules are generated:

from Ro :magic Ro-ancle (a).
:from R2 :magic.ka-anc"(Z):-magie.anco(Z), par(2, Y).

As result of second DO loop, the following rules are generated:

:from Ro q-magic_Ro-anc°(a), anc(X, a)
:from R2: anco(X, Y) : - magic_R2anc°(Z), ancl°(X, 2), par (Z, Y)

As result of third DO loop, the following rules are generated:

: from Ro magic_anc°(X) : -magic.Ro anc/o (X).

from R2 :magic_anc®(X): -magic-R2-anci"(X).

Finally, the following equivalent program is obtained:

1. magic_Ro-ancbs (a).
.magic_R2anc'b(2): -magic.anc' (Z), par(2, Y).

3. q-magic.Ro-anes(a), anc°(X, a)

2anc°(X, Y): -magic_R2_anc/°(2), ane'°(X, 2), par(Z, Y)

.magic.ancsb(X):-magic-Ro-anc°(X).

.magic.ancsb(X): -magic_Rz-anc°(A).

he logical grammar G associated with this logic prograun P and the

80al G is the system

F 1s the finite set of production rules, of the forn:

GL = (lN, Ir, Xo, F)

Where IN is the set of predicates, Iy is as in section 1, Xo is the goal G,

Tnagic_Ro-ancs A. 27

D. T�TAR AND V. VARGA

2. magic-R2-anclo magic_anc°,par
3. q magic-Ro-ancb,ancs
4. anc - magic_R2-anco, anc, par
5. magic_anceJ° magicRo ancsb
6. magic.anc magic_R2-ancs

The last two rules (5 and 6) are of type "renaming" rules. Mor
in the clauses 5 and 6, the two pairs of prcdicates magic-anc", magic R.
and magic-anc?0, magic_l2 _anc' have the same arguments: X. That
that the "rewriting" relation defincd in section 1 has the property: V0 and v magic_ancfb »G» iff nagic_Ro_ancJ° =>*Gn Analogously, Vo and v magic-ane!0 » *G iff magic_R2-ancs >" +G

oreover aqic-anc, magic-Rg anc!b
means

YGn
As in formal grammars |7, 14, this grammar can be transformed by elim ination of useless predicaies magic-Ro-anc'° and magie.R2_anco. The obtained grammar GL has the same generative power: L{GL) = L{GL'). Thus, the semantics of logic progranms is the same.
The logic grammar after the elimination of renaming" rules is the follow ng

:1.magic-anel° > A.
:2.magic-anc' magic_anc'°, par
:3.q anc°
4. anc' par
:5. ancJ° > magic.anc0, ancio, par

The corresponding logic program is identical with the program in |2.
References

(1] K.R. Apt, M.H. van Emden Contribution to the theory of logic programming Journal of ACM, vol.29, 1982, pp. 841-862.
2] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Spriger-Verlag, 1990. 3] P. Deransart, J. Maluszynski A grammatical view of loyic programning MIT Press, 1993. [4] C.J. Hogger, Derivation of logic Programs, Journal of ACM,5] J. Minker, Perspective in deductive databases, J. of Logic Programming, voi.5, 1988, PP. 33-61.

6 D. Tatar, Logic grammars as formal languages, Studia Universitas "Babes-Bolyai", l94, nr.3.

(7 J.E. Hopcroft, J.D. Ullman, Introduction to automala theory, langu ages and computat Springer Verlag, 1979. t1on,

BABeS-BoLYAI UNIV ERSITY, FacULTy OF MaTHEMATICcs AND INFORMATICS,
RO 3400 CLUJ-NAPOCA, STR. KoGÀLNICEANU 1, RoMANIA -mail address: {dtatar , ivargaj@cs.ubbcluj.ro

28

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

